
~

MULTICS SYSTEM-PROGRAMMERS- M4NUAL SECTION BF.20.06 PAGE 1

Published: 08/04/67
(Supersedes: BF.20.06, 02/09/67)

Identification

Generation of the Class Driving Tables
using the 1/0 Table Compiler (IOTC)
C. D. Olmsted

Purpose

Given an appropriate input file (described below) the
IOTC creates a segment which contains a Class Driving
Table (CDT). The CDT and its use are described in BF.20.01.

Introduction

The IOTC is a program which can be called by issuing the
Multics command

iotc name

which causes the file II name. iotc11 to be compiled into
a f i 1 e II name. cdt" • The f i 1 e II name. 1 otc" is an asc 1 i f i 1 e
which has been created by the user, using the Multics
editor. It consists of statements in the IOTC lan~uage
(described below). The segment created, 11 name.cdt1 , is
the resulting Class Driving Table.

The IOTC is used only when a new CDT is required, i.e.,
when a peripheral device requiring new and different control
is attached to a GIOC. The DCM for such a device will
then be able to access this CDT through calls to the GIM
which in turn wi 11 discover the CDT wlthin the file system.
These procedures are described in more detail in BF.20.01.

The IOTC Language

There are five kinds of statements in the language, each
identified by its keyword which must occur as the first
element of the statement. These keywords will be written
in capitals here for clarity, but for actual input they
will be typed in lower case. The statements are in free
field form with elements separated by space or NL and
with statements separated by a semicolon(;). A statement
is made up of a key word followed by various argument
elements. Square brackets 11 [•••] 11 ind ice +:e that the presence
of the argument is optional.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.06 PAGE 2

1) Comment keyword • 11 / 11 • This has as arguments any
character string, e.g.:

/ this is a conment for illustration;

2) Class Ori ver Table keyword • 11 CDT".

CDT op_type [type_value];

where op_type is a decimal number between 1 and 6 and
type_value is a binary argument. The formation of binary
arguments is described below.

3) Field keyword • 11 FLO".

FLO fld_no [fld_action [fld_end [fld_mask]]];

where fld_no is a decimal number,
fld_action is a decimal number between O and 4,
fld_end is a decimal number between O and 83,
and fld_mask is a binary argument.

4) Value keyword = "VAL".

VAL index [value(index) value(index+1) ••• value(n)];

where index is a decimal number between O and n, and the
value(i) are decimal numbers or binary arguments.

5) Termination keyword = 11 ~•.

Each of keywords 2), 3), and 4) corresponds to the appropriately
named level in the CDT structure (see the declaration in BF.
20.01 or BF .20.03). Thus the 11 CDT11 keyword wi 11 cause the value
of the argument 11 type_value11 to be substituted in

cdt_ptr....cdt(op_type).type_value.

Similarly, the "FLO" keyword causes values corresponding to its
arguments to be substituted in the substructure array named
"field" with its index having the value of "fld_no". "VAL" key
words cause substitution in a like manner into the 11 value11

substructure. The statement "END;" should be the last one in the
file and signifies the end of input to the IOTC.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.06 PAGE 3

Binary arguments are a representation of bit strings of length
84. These arguments will provide the values to be substituted
into the pseudo_DCW's and pseudo_CCW's which are described in
BF.20.01. Binary arguments should be no more than 100 characters
long. If longer, only the left-most 100 characters are
considered. They have the form

"bit_string, position [-bit string, position] •••

where the punctuation marks double quote, comma, and minus si0n
occur literally, 11 bit_string11 is a strin~ of O's and 1 's
representing a bit string, and II posit ion' is a one or two digit
decimal number between O and 83 which indicates the position of
the rightmost bit of II bi t_stri ng'' in the 84-bi t bit-string being
represented. The initial double quote identifies the argument
as binary, the comma separates the bit string from its position
indicator and the minus sign separates the occurrance of
(optional~ subsequent bit strings and position indicators. No
blanks are allowed within a binary argument. For example, the
argument

II 11 01 , 12 -10011 , 67 • 1 , 83;

wi 11 cause the construction of the 84 bit string

0 1 2 9 10 11 12 63 64 65 66 67 83

where zeros are inserted in the remaining unspecified positions.
Binary arguments are processed from left to right so that if a
subsequent string overlaps a previous one, the later bit
configuration replaces the overlapped part of the earlier one.

Decimal arguments are strings of decimal digits of length < 6.
If more than 6, only the left most 6 are considered.

The order in which statements may occur is restricted as followsr

1) An II FLO" keyword may not occur unless a II CDT" keyword
appears in some earlier statement. The field quantities
entered by means of the II FLO" keyworc wi 11 be associated
with the 11 op_type11 of the nearest pn aeding "CDT" keyword.

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BF.2O.O6 PAGE 4

2) Once a "CDT op_type ••• " statement has occurred. a second
"CDT" statement may not occur with the same value for
II Op_ type" •

3) A "VAL" keyword may not occur unless an II FLO" keyword appears
in some earlier statement. The value quantities entered
by means of the II VAL" keyword wi 11 be assoc lated with the
11 f ld no" of the nearest preceedi ng "FLO" keyword. The
"FLOl'T' statement must have a field action of 1 (masked
value substitution).

4) Once a "FLO fld_no ••• " statement has occurred., a second
"FLO" statement may not occur with the same value for
11 f ld no" - .

Mnemonics

For convenience in writing input files for the IOTC. the
capability is provided for using mnemonics in place of either a
decimal or binary argument. These mnemonics are defined by
creating a segment named "mnem_dict" which is made available to
the IOTC (and also to the IOCT--see BF.2O.O7). This file is a
dictionary containing the mnemonics and their defined values.
It is created by issuing the command

mnemonics input_file

where input_file is an ascii file written by the user in a very
simple-minded language in which statements are in free field
form, separated by semicolons. and with elements separated by
one or more blanks. tabs. or carriage returns. Each statement
is of the form

mnem value [comment]J

where 11 mnem11 is an alphanumeric character string of length ~ 31
(if longer., only the leftmost 31 are considered). the first
character of which is alphabetic. "value" is a decimal number
or a binary argument. and "corrment" is any character string at
all (even empty). Such a statement will create an entry in
"rnnent' and "value". A distinction is made between binary and
decimal values so that the IOTC can check the propriety of a
mnemonic argument. The last statement in the file should start
with a 11 ~• and signifies the end of the w~emonics definitions.
Conrnent statements of the same form as in the IOTC language
(starting with"/") may also be included.

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BF .20.06 PAGE 5

Error Returns

The IOTC extensively checks the syntax of the input segment.
Errors are transmitted to the users error file in the
standard way (BY.11.00) with a copi of the ill-formed
statement being included as extra nformation. Also included
is a code the meaning of which is given below.

code

1
2
3
4
5
6

7
8

9
10
1 1
12
13
14
15
16
17
18

meaning

bad key word
bad argument
undefined mnemonic
bad VAL index
excess VAL arguments
repeated VAL index

missing VAL index
argument in wrong mode

fld action out of bounds
fld-end out of bounds
missing fld_no
invalid fld_no
repeated fld_no
missing op-type
invalid op-type
repeated op-type
keyword sequence error
no end statement

action taken

statement ignored
zero inserted
zero inserted
statement ignored
excess arguments ignored
previous values are written
over
statement ignored
if op-type or fld_no# the
statement is ignored.
Otherwise zero inserted.
zero inserted
zero inserted
statement ignored
statement ignored
statement ignored
statement ignored
statement ignored
statement ignored
statement ignored
previous statements are lost.

Similarly# error codes are returned from the mnemonic
dictionary maker. Their meanings are given below.

~ meaning action taken

18 no end statement size of dictionary lost
31 ill formed value statement ignored
32 too many mnemonics statement ignored
33 missing value statement ignored
34 repeated mnemonic statement ignored
35 ill formed mnemonic statement ignored

Error 32 means that the size of the dictionary has been
exceeded. This size is 40 binary mnemonic and 60 decimal
ones. Running out of room for one mode do, , not prevent
mnemonics of the other mode from being entt :ed.

MULTICS SYSTEM-PROGRA~ERS' ~NUAL SECTION BF .20.06 PAGE 6

. s yn,na ry .o.f !mt Language
Argument types a

1. decimal Integer

2. Binary argument of the form

3.

"blt_string, position [-bit_string, .position] •••

where bit_string is zeros and ones and o ~ position
S. 83.

Mnemonics, which are from one to thirty-one characters
long with the first character alphabetic. .

Statements:

Let the superscripts identify the arguments by type as followsa

* means binary or binary n11emonic (2. or 3.)
.... means decimal or decimal mnemonic (1. or 3.)

means either* or (1., 2. or 3.),

Then permissible statements are

1. / this is any conrnent,

2. CDT op_type"' [type_value*l,

3. FlD fld_no"' [fld_action"' [fld_end""' [fld_mask*]]l,

4. VAL index"' [value(lndex)' value(lndex+1)' ••• value,
(n)']J

s. *

A cguroent Limits

1. Binary arguments are limited to 84 specified bits or
100 characters.

2. 1 i op_type i 6

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BF.20.06 PAGE 7

3. 1 ~ f ld_no ~ 50

4. O ~ fld_actlon ~ 3

s. 0 ~ fld_end ~ 83

6. 0 ~ value(i) ~ 2*8ll -1# ff It ls decimal

7. O ~ index ~ 50

Standard Mnemonics

The mnemonic dictionary source fl le, "input-fl le" wl 11 Include
the following statements. These standard nnemonlcs should not,
of course, be redefined.

status 1 op_type rmemonlcs,

ccw 2,

cdcw 3J

tdcw 4J

ldcw s,
ddcw 6J

mv 1 field action mnemonics,

lit 2,

da 31

off 0 bit switches,

null OJ

on 1 J

term 1
\ status word fields,

adapt_err 21

gioc_err 31

tr_timlng 41

MULTICS SYSTEM-PROGRA~ERS' ~NUAL SECTION BF.20.06 PAGE 8

exh 2

esig 31

isig 41

xes s,
par 61

last 7;

utag 81

term_mask "111, 5

exh_mask "111 ,81

es i g_mask 11 111 , 11 1

i s i g_mas k 11 111 , 14 1

xes_mask "1,15 1

par _mask 11 1, 161

last_mask "1, 17-1,81 1

utag_mask 11 111111, 77 1

nose 0

sc1 1 . ,

sc2 2;

sc3 3;

sc4 4J

sc5 5· ,

sc6 61

sc7 71

field definitions,

field definition masks,

status channel pointers,

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BF.20.06 PAGE 9

list_id 9 transfer DCW fields and masks1

list_id_mask "111111111111,531

indx 101

lndx_mask 11 111111111111,651

1i teral 9 literal DCW fields 1

1 i tera l_mask

ta 1 ly

tal ly_mask

data

pack

pack_mask

micro

micro_mask

match

match_mask

char

count

flow

flow_mask

pack6_v

pack9_v

clear

clear_v

idle_v

internal

9

11 J

II 1111111 1 1111111111 1 35 I

"111111111111,651

data DCW fields1

II 11 67 -111 71 • . . ,

''111 2-111 20, ,. .

11 111,ao,

11 11,67-000,71 values for pack field,

II 101 67-0001 71 J

0

II 0, 83 J

11 1,201

values for microcode DCW fieldJ

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BF.20.06 PAGE 10 r,

internal_v 11 1.,19J

ct l_char 3J

ctl_char_v "1.,21J

int_ctl 4J

int_ct l_v II 101 # 21 J

nomatch 0 values for control character DCW
field1

nomatch_v 11 1.,21

is 1 J

is_v 11 1 2-1 20J ., .,

isae 2J

isae_v 11 1 2-1 191 ., .,

I"""" isedt 31

isedt_v II 1.,2•11.,20J

misae 41

misae_v 11 1.,2-1., 18J

cis SJ

cis_v 11 1.,2-101.,201

cisae 61

cisae_v 11 1.,2-110.,201

cisedt 71

cisedt_v 11 1.,2-111 .,20J

read 0 direction of data flow values 1

read_v "1.,78J

write 11
,,,......._

wri te_v II 1 ., 79;

MULTICS SYSTEM-PROGRAMMERS" ~NUAL SECTION BF.20.06 PAGE 11
.r

Examples of JOJC Language Source Files

I Example of transfer DCW IOTC deflnltion1

cdt tdcw 11 11,21

fld utag lit 77 utag_maskJ

fld list_id 1i t 53 llst_id_mask;

fld lndx 1i t 65 lndx_maSkJ

*1

I Example of 11 teral DCW definitionJ

cdt ldcw II 1 01 001 , 5 J

fld term 1l t 5 term_mask1

fld exh lit 8 exh_mask;
,,,-,

fld eslg lit 77 esig_mask1

fld xes mv 15 xes_mask1

val 0 off on1

fld last mv 81 last_mask1

val 0 II Q 17•0 81 , , 11 1, 17-1,81 J

fld utag lit 77 utag_mask;

fld 1l teral lit 35 1 l tera 1_mask1

fld tally lit 65 ta 1 ly_mask;

*1

