MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BF.20.,06 PAGE 1

Published: 08/0u4/67
(Supersedes: BF.20,06, 02/09/67)

Identification

Generation of the Class Driving Tables
using the 1/0 Table Compiler (I0TC)
C. D. Olmsted

Purpose

Given an appropriate input file (described below) the
I0TC creates a segment which contains a Class Driving
Table (CDT), The CDT and its use are described in BF.20.01,

Introduction

The I0TC is a program which can be called by issuing the
Multics command

iotc name

which causes the file "name.,iotc" to be compiled into

a file "name,cdt", The file "name.iotc" is an ascii file
which has been created by the user, using the Multics
editor, It consists of statements in the 10TC langua?e
(described below), The segment created, "name,cdt", Is
the resulting Class Driving Table,

The I10TC is used only when a new CDT is required, i.e.,

when a peripheral device requiring new and different control
is attached to a GIOC. The DCM for such a device will

then be able to access this CDT through calls to the GIM
which in turn will discover the CDT within the file system,
These procedures are described in more detail in BF.20.01,

The 10TC lLanquage

There are five kinds of statements in the language, each
identified by its keyword which must occur as the first
element of the statement, These keywords will be written

in capitals here for clarity, but for actual input they

will be typed in lower case. The statements are in free
field form with elements separated by space or NL and

with statements separated by a semicolon (;). A statement

is made up of a key word followed by various argument
elements. Square brackets "[...]" indic: te that the presence
of the argument is optional.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF,20,06 PAGE 2

1) Comment keyword = "/", This has as arguments any
character string, e.g.: ’

/ this is a comment for illustration;
2) Class Driver Table keyword = "CDT",
CDT op_type [type_value];

where op_type is a decimal number between 1 and 6 and
type_value is a binary argument. The formation of binary
arguments is described below.

3) Field keyword = "FLD",
FLD f1d_no [fld_action [fld_end [fld_mask]]];

where fld_no is a decimal number,
fld_action is a decimal number between 0 and 4,
fld_end is a decimal number between 0O and 83,
and fld_mask is a binary argument,

L) Value keyword = "VAL",
VAL index [value(index) value(index+1)...value(n)];

where index is a decimal number between 0 and n, and the
value(i) are decimal numbers or binary arguments.

5) Termination keyword = "',

Each of keywords 2), 3), and L) corresponds to the appropriately
named level in the CDT structure (see the declaration in BF.
20,01 or BF,.20.03). Thus the "CDT keyword will cause the value
of the argument "type_value" to be substituted in

cdt_ptr-»cdt(op_type).type_value,

Similarly, the "FLD" keyword causes values corresponding to its
arguments to be substituted in the substructure array named
"fleld" with its index having the value of "fld_no". "VAL" key
words cause substitution in a like manner into the "value"
substructure, The statement "END;" should be the last one in the
file and signifies the end of input to the 10TC.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20.06 PAGE 3

Binary arguments are a representation of bit strings of length
84, These arguments will provide the values to be substituted
into the pseudo_DCW’s and pseudo_CCW’s which are described in
BF.20.,01., Binary ar?uments should be no more than 100 characters
long. If longer, only the left-most 100 characters are
considered, They have the form

"bit_string, position [-bit string, position] ...

where the punctuation marks double quote, comma, and minus sian
occur literally, "bit_string" is a string of 0°s and 1°s
representing a bit string, and "position" is a one or two digit
decimal number between 0 and 83 which indicates the position of
the rightmost bit of "bit_string' in the 8u4-bit bit-string being
represented., The initial double quote identifies the argument
as binary, the comma separates the bit string from its position
indicator, and the minus sign separates the occurrance of
(optiona]S subsequent bit strings and position indicators. No
blanks are allowed within a binary argument., For example, the
argument

"1101,12-10011,67~-1,83;
wi 1l cause the construction of the 84 bit string

012 9 10 11 12 63 64 65 66 67 83

o|0|0 vg 111{0}1 éé 1 {ojoj1 |1 %D 1

where zeros are inserted in the remaining unspecified positions.
Binary arguments are processed from left to right so that if a
subsequent string overlaps a previous one, the later bit
configuration replaces the overlapped part of the earlier one,.

Decimal arguments are strings of decimal digits of length < 6.
1f more than 6, only the left most 6 are considered.

The order in which statements may occur is restricted as follows:

1) An "FLD" keyword may not occur unless a "CDT" keyword
appears in some earlier statement, The field quantities
entered by means of the "FLD" keyworc will be associated
with the "op_type" of the nearest pre =zeding "CDT" keyword.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20.06 PAGE 4

2) Once a "CDT op_type..." statement has occurred, a second
"CDT" statement may not occur with the same value for

" op_type" .

3) A "VAL" keyword may not occur unless an "FLD" keyword appears

in some earlier statement. The value quantities entered
by means of the "VAL" keyword will be associated with the
"f1d_no" of the nearest preceeding "FLD" keyword., The
"FLDT statement must have a field action of 1 (masked
value substitution),

4) Once a "FLD fld_no..." statement has occurred, a second
:FL%" s}atement may not occur with the same value for
fid_no" .

Mnemonics

For convenience in writing input files for the 10TC, the
capability is provided for using mnemonics in place of either a
decimal or binary argument. These mnemonics are defined by
creating a segment named "mnem_dict" which is made available to
the 10TC (and also to the 10CT--see BF.20,07). This file is a
dictionary containing the mnemonics and their defined values.
It is created by issuing the command

mnemonics input_file

where input_file is an ascii file written by the user in a very
simple-minded language in which statements are in free field
form, separated by semicolons, and with elements separated by
one or more blanks, tabs, or carriage returns. Each statement
is of the form

mnem value [comment];

where "mnen' is an alphanumeric character string of length 31
(if longer, only the leftmost 31 are considered?, the first
character of which is alphabetic, "value" is a decimal number
or a binary argument, and "comment" is any character string at
all (even empty). Such a statement will create an entry in
“"mnenm' and "value", A distinction is made between binary and
decimal values so that the I0TC can check the propriety of a
mnemonic argument, The last statement in the file should start
with a "#' and signifies the end of the mnemonics definitions.
Comment statements of the same form as in the I0TC language
(starting with " /") may also be included.

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BF .20,06 PAGE 5

Error Returns

The 10TC extensively checks the syntax of the input segment,
Errors are transmitted to the users error file in the
standard way (BY.11.00) with a copz of the ill-formed
statement being included as extra information. Also included
is a code the meaning of which is given below,

code meaning action taken
1 bad key word statement ignored
2 bad argument zero inserted
3 undefined mnemonic zero inserted
L bad VAL index statement ignored
5 excess VAL arguments excess arguments ignored
6 repeated VAL 1ndex previous values are written
over
7 missing VAL index statement ignored
8 argument in wrong mode if op-type or fld_no, the
statement is ignored.
Otherwise zero inserted.
9 fld_action out of bounds zero inserted
10 f1d_end out of bounds zero inserted
1 missing f1d_no statement ignored
12 invalid fld_no statement ignored
13 repeated f1d_no statement ignored
14 missing op-type statement ignored
15 invalid op-type statement ignored
16 repeated op-type statement ignored
17 keyword sequence error statement ignored
18 no end statement previous statements are lost.
Similarly, error codes are returned from the mnemonic
dictionary maker. Their meanings are given below,
code meaning action taken
18 no end statement size of dictionary lost
31 i11 formed value statement ignored
32 too many mnemonics statement ignored
33 missing value statement ignored
34 repeated mnemonic statement ignored
35 i11 formed mnemonic statement ignored

Error 32 means that the size of the dictiacnary has been
exceeded, This size is 40 binary mnemonic and 60 decimal
ones, Running out of room for one mode do : not prevent
mnemonics of the other mode from being entc -ed.

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BF.20.06 PAGE 6

Summary of the Language
Argument types:
1. decimal integer
2, Binary argument of the form
"bit_string, position [-bit_string, position]...

whg;e bit_string is zeros and ones and 0O < position
S

3. Mnemonics, which are from one to thirty-one characters
long with the first character alphabetic.

Statements:
Let the superscripts identify the arguments by type as follows:
* means binary or binary mnemonic (2. or 3.)
- means decimal or decimal mnemonic (1., or 3.)
g means either * or ~ (1,, 2, or 3.),
Then permissible statements are
1. / this is any comment;
. CDT op_type™ [type_value*];
FLD fld_no~ [fld_action” [fld_end”™ [fld_mask*]]];

2

3

L, ¥A%]1ndex‘ [value(index)’ value(index+1)* ... value
n)’];

5 *

Argqument Limits

1. Binary arguments are 1imited to 84 specified bits or
100 characters,

2. 1 < op_type < 6

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF,20,06 PAGE 7

1 < fid_no £ 50

0 < fid_action < 3

0 £ fld_end £ 83

0 < value(i) € 2%*8y -1, {f it is decimal
. 0 < index £ 50

\‘0\-.\”'4"-‘\;‘

Standard Mnemonics

The mnemonic dictionary source file, "input-file" will include
the following statements, These standard mnemonics should not,
of course, be redefined.

status 1 op_type mnemonics;
cCw 2 3

cdew 3;

tdew L;

1dcw 5;

ddcw 6;

mv 1 field action mnemonics;
1it 23

da 3;

off 0 bit switches;

null O;

on 1;
~term 1 s%atus word fields;

adapt_err 2;
gioc_err 3;

tr_timing U4;

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20,06 PAGE 8

exh 2 field definitions;
esig 3;

isig L;

xes 5;

par 63

last 73

utag 8;

term_mask "111,5 field definition masks;

exh_mask '"111,8;
esig_mask "111,11;
isig_mask "111,14;
xes_mask '"1,15;
par_mask "1,16;
last_mask "1,17-1,81;
utag_mask "111111,77;

nosc 0 status channel pointers;
sci 1;
sc2 2;
sc3 3;
scly 4;
sc5 5;
scb 6;

sc7 73

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF .20,06 PAGE 9

list_id 9 transfer DCW fields and masks;
1ist_id_mask "111111111111,53;

indx 10;

indx_mask "111111111111,65;

literal 9 literal DCW fields;
literal_mask "111111111111111111, 35;
tally 10;

tally_mask "111111111111,65;

data 9 data DCW fields;

pack 11;

pack_mask "11,67-111,71;

micro 12;

micro_mask "111,2-111,20;

match 13;

match_mask "111,2-111,20;

char 14;

count 15;

flow 16;

flow_mask "111,80;

pack6_v "11,67-000,71 values for pack field;
pack9_v "10,67-000,71;

clear 0 values for microcode DCW field;
clear_v "0,83;

idle_v "1,20;

internail 2;

~

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20.06 PAGE 10

internal_v "1,19;

ct1_char 3;

ctl_char_v "1,21;

int_ctil L;

int_ctl_v "101,21;

nomatch 0 values for control character DCW
field;

nomatch_v "1,2;

is 1;

is_v "1,2-1,20;

isae 2;

isae_v "1,2-1,19;

isedt 3;

isedt_v "1,2-11,20;

misae L;

misae_v "1,2-1,18;

cis 5;

cis_v "1,2-101,20;

cisae 63

cisae_v "1,2-110,20;

cisedt 73

cisedt_v "1,2-111,20;

read 0 direction of data flow values;

read_v "1,78; |

write 1;

write_v "1,79;

MULTICS SYSTEM-PROGRAMMERS ¢ MANUAL SECTION BF,.20.06 PAGE 11
Examples of C nguage S es

/ Example of transfer DCW IOTC definition;

cdt tdew "11,2;

f1id utag 1it 77 utag_mask;
fid 1ist_id 1it 53 1ist_id_mask;
fid indx 1it }65 indx_mask;

*g |

/ Example of l1iteral DCW definition;

cdt ldcw - "101001,5;

fid term 11t 5 term_mask;
fld exh 1t 8 exh_mask;
fid esig 1it 77 esig_mask;
fld xes mv 15 xes_mask ;
val O of f on;

fid last mv 81 last_mask;
val O "0,17-0,81 "1,17-1,81;

fid utag 1it 77 utag_mask;
fid literal 11t 35 literal_mask;
fid tally 1t 65 tally_mask;

*;

