MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.32 1

Published; 01/10/68
(Supersedes: BF,.10.01, 08/14/67)
Identification

A o S - — - —— — - -

Output Ccde Ccnversion

D. L. Stone

This secticn describes the conversion of ascii character strings
to strings of device codes by the output half of the Code
Conversion Module (CCM). It is intended to be useful to those
people interested in the specification of output code conversion
tables or in the workings of the CCM code which uses thenm. The
call interface of the CCM is given in BF.2.30.

General

Cutput code conversion is necessary for the follcwing devices
supported by the Multics I0S:

typeuwriters IBM 1050, 2741

TTY M35, M37
line printers GE PRT202

IBM 1403-n1, 1403-2
card punches GE CPZz200

IBM 1442-5, 2520-a?

The peculiarities of each of these devices are reflected by a set
of driving tables for each one. During the processing of output
data for one of these devices, ah output driving table is
selected to accord with the user's choice of code conversion
mode; that table will be used to initialize the CCM and, during
each gutput call, to guide it in translating the data. In order
to change the way in which the output code conversion is
performed, a new table must bLe selected (for the same or a
different device). The makeup of the tables is detailed below
and the selection and means of construction are given in BF.2.33.

The driving tables are the heart of the CCM's function. Each
output driving table consists of three types of infcrmation: 1)
initializaticn information, including certain printing
characteristics and hardware capabilities, 2) the character
table, which speacities the desired treatment of each character
which may be processed by the CCM, and 3) the escape arrays,
which contain sequences of characters which are to replace
certain characters as specified by the <character tatble. All

2 MULTICS SYSTEM-PROGRAMMERS' MANUAL Secticn BF.2.32

these categories are descrited at great length below. N
Cutput Code Conversion Tables
The declaration of an output driving table for the CCM 1is given
below. For all switches, a "1"t indicates an affirmative answer
to the questicn fposed by the switch.
dcl 1 outccm_table based (p).,
2 relps, /¥relps to vble length datax*/
3 (ctable_relp, /*to "character_table"*/
ascii_relp, /*¥to "escape_strings'"*/
device_relp, /*to "device_escape_strings"x/
modes_relp, /¥to "hardware_modes" array*/
ctl_modes_relp) bit (18), /*to "ctl_modes*/
2 sizes,
3 (ctable,
ascii,
device,
modes,
ctl_modes) bit (18),
2 initialization,
3 num_overstrikes bit (9), /*max num simulated backspaces ~
per print position*/
3 software_esc kit (9), /*in ascii*/ ,
3 prt202 bit (1), /*¥"1"b = each line begins in upper case*/
3 pad bit (17), ‘
2 character_table (0:511),
3 action kit (6), /*what to do with each character*/
3 1s_count Lit (3), /¥how does this char affect the

print position; 0 = backspace,
1 = no change; 2 = graphic*/
3 device_ccde bit (12), /*left justifiedx*/ o
3 esc_length bit (6), /*index into escape tables*/
3 esc_offset bit (9),
2 escape_strings (N),
3 escapes char (1),
2 device_escafpe_strings (M),
3 escapes kit (element_size),
2 hardware_modes (num_hardware_modes),
3 status kit (1),
3 pad bit (2),
3 mede_index bit (6), /¥correlated bit index in DSB
hardware status string*/
3 esc_length bit (9),
3 esc_offset bit (18), /*indices into "device_escape_strings"*x/
2 ctl_modes (num_ctl_modes),
3 fake Ltit (36) ; <

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.32 3

Since all of the conversion functions of the CCM are controlled
by the driving tables, a detailed description of the output
tables will elucidate all functions of the output rfpart of the
CCM. Since the character table controls the flow, we begin with
that.

The character takle is an array of information about the way 1in
which each of the 512 nine-bit characters is to be treated. As
ascii data is processed Lty the CCM, the binary equivalent of the
character code is used as an index into the character table. The
six bits of information in the "“action" entry are used as an
index into a table which specifies the appropriate action by the
CCM for the character. The possible actions are specified below
with their octal equivalents.

0 Append the actual bit configuration of this character
to the output ruffer; wuseful for devices which accept
ascii or some sukset thereof.

1 Append the bits given ky the "device_code" éntry for
this character to the output buffer.

2 Mode change; this character may cause a change in the
physical state of the device which will affect 1its
printing (e.g. - red-rikbon-shift or case-shift). Use

the "esc_offset™ field to get the index which
corresponds to this mode and change the status of the
mode in the current device status Llock. The
"esc_length" field is "XXX0"b for set and "XXX1"b is
interpreted as reset. Having set the status, use the
appropriate "hardware_modes" pointer and length pair to
find the device <codes to be placed in the output
buffer. See discussion of hardware modes later in this

section.
3 This character requires that a certain mode be in a
certain state for proper printing. "esc_offset" ,

interpreted as a fixed binary number, gives the mode
index and "esc_length" is "XXX0"b if mode should be set
("XXX1"b if mode should be reset). If necessary, add
the device codes to change the hardware mode. Append
the "device_code" to the output buffer after verifying
this mode.

4 Escape this character by means of the standard octal
software escape sequence specified in BC.2.04.

4y MULTICS SYSTEM-PRCGRAMMERS' MANUAL Section BF.2.32

5 Escape this character using the ascii character string
specified ty the "escape_length" and "escape_offset"
index into the "“escape_strings".

6 Escape this character using the device code string in
"device_escape_strings" specified by "escape_length"
and "escape_offset".

7 Ignore this character. The output will afpfpear just as
it would have if this character had not Leen in the
character string.

10 Simulate a backspace. This action is meant for those
devices which can not backspace but possess a
carriage-return capability (Cage - the PRT202).
Backspaces are simulated by using two print lines with
a carriage return between then.

1" This character will end the print line (NL). Apply the
appropriate sequence to the output buffer wusing the
"escape_length" and "escape_offset" entries as an index
into "device_escape_strings".

12 As in category 11 (NP). (new page).

13 Carriage-return; reset line_size and use
"escape_length" and "escape_offset" as above, if bit 7
of "device_code" is Oe Otherwise, simulate a
carriage-return as if it were the appropriate number of
tackspaces to get to the rkeginning of the line. This
category takes into account those devices which can
overprint tut do not respond to a single carriage
return character. (PRT202).

14 Vertical tab; increment counter appropriately, then

use "device_escape_strings" as for category 11.

15 Horizontal tak; see category 14,

16 Half-line feed (HLR); increment counter, ﬁhen use
"device_escape_strings" as for category 11.

17 Half-line feed (HLF); see category 16.

20 Undefined character; this category 1is treated as

category U4 except that the "undefined character" bhit is

Bach character processed by the CCM is treated according to the
category in which it is placed by the character_table 1in the
driving takle specified. The creator of the driving table can
tailor the prccessing of the CCM to suit any output device and/or
personal fancy since this mechanism allows a completely general

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.32 5

character-by-character transliteration.

To allow faster processing by the CCM, each character string is
assumed to be in a generalized canonical forn. A precise
definition of the criterion for canonicalization is dJiven later
in this section.

The entry "ls_count" in the character table can take on the values:
octal 0 for tackspace

octal 1 for ncn-printing characters (as rrs)

octal 2 for graphics

It is used tc reflect the change in horizontal print position
caused by a character.

The "device_code" entry in the character_table contains the (six,
nine or twelve-bit) device code which corresponds to the ascii
character on the intended device (the GIOC only transmits six-
and nine-bit elements).

The "escape_length"™ and "escape_offset" entries specify a string
of characters in either the ascii "escape_strings'" array or the
"device_escape_strings" array. The intended string of characters
is of length escape_lenygth and begins at the escape_offsetth
character in escape_strings. Since the ascii strings are fed
back into the "character_table", no ascii characters requiring
escapes are allowed in the escape strings.

Escape Arrays

The "escape_strings" array in the driving table 1is simply a
packed array of characters representing ascii escape strings.
The strings are in nc particular order.

The "device_escafpe_strings" array, similarly, is a packed array
of fields which represent device code sequences. Since the
"ls_count*" associated with such a string can only reflect a
change of one print position, it is not advisable to use these
strings to introduce sequences which cause a change of more than
cne print position (other than those which cause predictable
actions as NL, NP, CR).

The two escape arrays are intended for different purposes. The
ascii array should only ke used when the escape sequence 1is
ambiguous in device code; that is, when case-shifts or other
device status can affect the interpretation of the sequence. The
PRT202 is an example of such a device. The device code array can
be used for all other escape sequences and for special seguences
which take the place of a single character -as with new-line and
carriage-return ¢n the PRT202.

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.32

[«

Hardware Modes

In order tc implement character table "action" entry 3. and the
uset_status" call, the CCM needs information on all of the
character-settaktle device hardware modes. The initial status of
the modes is assumed from the default [CSE in the driving table
segment header. In the DSB, the thirty-five bit
"hardware_status" string provides the setting of each of (a
potential) thirty-five modes. A "0"b in the nth bit from the
left is taken to mean that the nth mode is "set"™ and "1"b,
"reset"”. Whenever it becomes necessary for the CCM to change the
setting of a hardware mode, it uses the hardware_modes array as
follows:

1. The "mode_index" entry (regarded as a fixed binary number)
specifies which hardware mode this entry refers to.

2. The "status" entry specifies whether the indices ‘"set" or
"reset" the mode.

3. "esc_length and "esc_offset" specify a bitstring in
"device_escape_strings" which will cause the specified
hardware mode to tecome "set" or I'"reset" according to the
"status" entry.

This use of the "hardware_modes" array implies that there are two
entries for each useful mode -- one which specifies the "setting"
sequence and one which specifies the "resetting” sequence.

An example of the use of hardware modes for a 1050 typewriter
follows:

The hardware_modes array has four entries:

rode 1 -- interpreted as ribbon-shift

"set" equated to Llack
“"reset®" equated to red

hardware_modes (1) .status = "0"b

hardware_modes (1) .mode_index = "000001"b;

esc_ (length and cffset) would point to an entry in the
"device_escape_strings" array containing the six-bit character
sequence which makes a 1050 shift to blacke. Entry two would

point to the red-shift character sequence.

The action entry in the character table for BRS and BRS (ascii
016 and 017) would be 2; "Yesc_offset"would be 1; "esc_length"
would be "COC1"b for 016 and "0000"b for 017. No other action
entries would specify mode 1.

mode 2 -- interpreted as case-shift
set equated tc lower

PULTICS SYSTEM-PEOGRAMMERS' MANUAL Section BF.2.32 7

reset to ugper
hardware_modes (3) .status = "Q"p
hardvare_modes (3) .mode_index = "000010"}b
The set and reset sequences would be the 1050 six-kit codes to

shift to lower and to upper case, respectively. No ascii
gharacter would have a character table entry specifying this mode
index (2) from an "action" of 2 (set or reset mode) ; but any

graphic which prints only in one case-shift mode (e.g. =-- Waw)
would have an action entry of 3 and specify hardware mode 2 (and
for "A" , "esc_length" would be "0001"b tc indicate that reset or
upper case was to be in effect before the device code could be
appended to the output tuffer).

mode 3 -- interpreted as line feed mode

set equated to single line

reset to doutle line
status = "(C"b
No ascii characters currently defined deal with this mode. The
DSM can cause the CCM to change the hardware setting of this or
any other mode by means of the "set_status" call (for which see

Ctl modes

The "ctl_modes™ array will ke used for characters which have
peculiar interpretations and hardware effects (such as the ascii
"escape'" character on the new model 37 teletype). It will be
clarified when the Multics policy towards such characters \is
defined.

——— v - — - -

"num_overstrikes" specifies the maximum number of overstrike
lines to be created durinjy backspace simulation.

"software_esc" gives the ascii character which is tc precede all
octal escape sequences on output.

"prt202" indicates that the case-shift mode (number 2) is always
to be put to upper ("reset") at the keginning of a line. '

—— —— — — — - o ———— — — —

Cne of the parts of the CCM implementaticn which requires further
explanation is escaping. The replacement of a given ascii
character ty a string of ascii <characters 1is accomplished by
temporarily changing the input pointer and index so that they

8 MULTICS SYSTEM-PROGRAMMERS' PMANUAL Secticn BF.2.32

point to a buffer containing the desired ascii characters. The
current pointer and index are saved and restored when the escape
tuffer has been exhausted. The count of characters left in the
escape buffer is put into the normal comparison for end of input
buffer. Since this mechanism is not recursively implemented, no
further characters specifying ascii escape should be put into an
ascii escafpe string.

Replacement Lty a string of device code characters is intended for
use by DIM writers whose devices require special sequences for
certain characters (carriage-return, new-line). The specified
string of cutput characters is placed in the current output
buffer directly. :

Another part of the CCM implementation which needs explication is
backspace simulation. This feature of the CCM was included to
deal with the PRT202 line printer which has no ability to handle
overstrikes in its hardware. The feature is potentially useful
for any device which has an overprinting capability but no
tackspace. A backspace is simulated by creating a new output
line and padding it with Lklanks until the desired print position
is reached. The character to be overstruck 1is then put into
position. When the end of line is reached, the CCM returns all
of the lines created in this way with a “carriage-return"
equivalent except the last one, which is issued with a "new-line"
equivalent. Clearly, any output code conversion table which
specifies backspace simulation must also include entries for both
new-line and carriage-return, since Lkoth those entries will be
accessed by the CCHM directly.

The backspace simulation is implemented by changing the output
buffer pointer and length to a new output buffer which is first

padded to reach the proper print position. A list of output
buffers for each line is kept =- the maximum number of such
buffers is controlled kty "num_overstrikes" in the table. For

each buffer a pointer, the current size in output elements and a
device status Lklock are maintained. The DSB is set to the status
assumed at the beginning of the line so that appropriate changes
of status can be made between lines , if necessary. When a
backspace is encountered in the data processed by the CCM, a
check for contiguous backspaces is made. A cluster of backspaces
generates a count which, subtracted from the print position of
the current output buffer, yields the desired print position for
the next character. The print positions of all currently
allocated output buffers are checked toc see if any is less than
the desired one. If one such is found, that buffer becomes the
current one, spaces are inserted to adjust the print fposition 1if
necessary, and processing continues. If no currently allocated
output buffer has a print position less than the desired one,
then a new tuffer is allocated, provided that the limit has not
teen reached. If the 1limit is met, then the "non-canonical" bit
is set in cstatus and a return is made. Previously translated
data is returned as usual. The LCSM can determine the tLkeginning
of the non-canonical data from the "output_tbe", which will have

P

MULTICS SYSTEM-PHOGRAMMERS' MANUAL Section BF.2.32

line pointers cnly tc the translated data.

