
._, . ~ MULTI CS SYSTEM-PROGRAMMERS' MANUAL

•rJentlftcatJon

Input Code Conversion

E. L. Ivie

Purpose

• Section BF.-•- 1
0,1:,t/

Published: 8/14/67

This section contains a detailed description of the way Input
code conversion Is Implemented In the code conversion module
(CCM).

1ntr9ductlon

An understandln1 of the following MSPM Sections will be assumed
throuahout this document:

ec.2.00 Introduction: Character Input/Output for Multics
Bc.2.01 Character Set
ec.2.02 Interpretation of ASCII Character Streams
BC.2.03 Erase and Kill Conventions
BC.2.04 Character Escape Conventions
BF.1.05 Data Mapping
BF.10.00 An Overview of Input/Output Code Conversion

The objective of this section will be to de-crlbe In depth the
way Input code conversion Is Implemented In the CCM. Included In
the discussion will be such topics as data bases, flow of
control, Inner procedures, and additional details on how the code
conversion operations work.

PoJ irnJ tars
The use of delimiters within Multics Is covered briefly In
Sections BC.2.00 and BF.1.01. Certain code conversion functions
(e.g. canonicalization) require the use of special characters
called delimiters. There are basically two such types of
delimiters:

1. read delimiters
2. break delimiters

Read delimiters control the amount of data r turned with each .c.eu. call. For each call Issued, the 10S atte ,ts to return a
certain number <oeJem> of characters. If, however, a read
delimiter Is encountered first, then only the ~haracters up to
and lncludln1 the read delimiter are returned.

2 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.01 - . ,_..

Break delimiters perform two functions. First, they delimit the
canonicalization and erase-kill functions. The new llne(NL) also
serves In this capacity. Thus, the set of characters which serve
~canenlcallzataon delimiters and erase-kill delimiters consists
of all break delimiters plus the NL character.

The second function of break delimiters ts to serve as hardware.
Interrupt characters In the GIOC.

The set of read delimiters may be empty or ft may contain all 128
ASCII characters. The ASCII characters horizontal tab (HT),
vertical tab (VT), and form feed (FF) are, however, alw ''S
deleted by canonicalization from the Input string. Therefo,e
even ff they are designated as read delimiters they would In facL
not be able to function In that capacity. . Also, the ASCII
characters backspace (BS), red ribbon shift (RRS), black ribbon
shift (BRS), half line forward (HLF), and half line reverse (HLR)
are Inserted by canonicalization at various points In the Input
string and may, therefore, be equally poor choices for read
del lmf ters.

The set of break delimiters may also vary from none to all 128
ASCII characters. If, however, one designates one of the control
characters mentioned above as a break delimiter, then that
control character effectively loses Its ordinary meaning. For
example, If an HT Is designated as a break delimiter, and thus as
a canonicalization delimiter, are the spaces It generates
appended to the preceding line or the following line? The
convention adopted here Is that control characters that have been
designated break delimiters are Interpreted as If they are new
line characters. Thus, an HT would not generate any spaces, but
would cause canonicalization to begin a new line.

The set of read and/or break delimiters can be changed by a
setdellm call. Upon receiving a setde]Jm call the CCM stores the
lists of read and break delimiters. Only the CCM need keep track
of the read delimiter list, so that list Is not passed on.
However, the CCM needs to have the break delimiters serve as read
delimiters fn the next outer module. Therefore, the call Is
passed on by the CCM, but the read 1 Is t In the forwarded ca 11 Is
made equal to the break list In the received call.

Since the characters In the setdellm lists received by the CCM
are ASCII, they must be converted to their equivalent device
codes before they are passed on.

Data Bases
PIB EXTENSION:
The CCM maintains fn Its loname segment the t andard per•loname.
data (ptb) described In BF.2.20. Addi tlonal h. the CCM maintains
the following data as a plb extension:

.r·. · - MULTI CS SYSTEM-PROGRAMMERS I MANUAL .?-I· 31
Section BF.10.01 3

r"'

I,,...._

dcl 1 pfbl based(p),
(2 color,
2 case,
2 hsw,
2 vsw) btt(l),
(2 1 I nepos,
2 vpos,
2 nhtabs,
2 nvtabs)ftxed bin,
(2 hrelp,
2 vrelp) blt(l8),
(2 erase,
2 kill) blt(9),
2 dellm (0:127),

(3 break,
3 read)bft(l);

/• red/black color status•/
/•upper/lowercase status•/
/• user-set horizontal tabs flag•/
/• user-set vertical tabs flag•/
/• carriage position on line•/
/• vertical position on page•/
/• number of horizontal tabs•/
/• number of vertical tabs•/
/• relp to horizontal tab list•/
/• relp to vertical tab list•/
/• erase character•/
/• kill character•/

/• break delimiter Indicators•/
I• read delimiter Indicators•/

CCM INPUT DRIVING TABLE:

The CCM Input data which remains constant ls placed In the Input
part of the input-output code conversion tables(IOCCT). There Is
an IOCCT for each type of 1/0 device. Each IOCCT resides In a
single segment and may be shared by multiple process groups.
Section BF.10.03 describes how IOCCT's can be created and
changed. The declaration of the Input portion of an IOCCT Is as
fo 1 lows:

dcl 1 I occt,
2 Input,

3 char (0:255), /• All Information about the Incoming
char. and Its ASCII equivalents•/

/•ASCII equivalent to device char.
device Is In lower case•/

4 lower btt(9),

4 upper blt(9),

4 blt(9), I•

when

case
1 If

I• Same for upper. On devices w/o
shift, only lower ts meaningful •/
this char. can start an

escape sequence•/
4 esc Index blt(l2), /* Index Into escape tree for this
char.;

4 canon blt(S),
only meaningful ff escape•l •/

/• flags for char. requiring special
treatment during canonicalization,
e.g. backspace, newline, etc. •/

3 escape_tree (N), /• N depends on the table•/
4 nbranches fixed bln(9), . /• number of sons of

th Is node * / ·
4 branchdata Cnbranches), /• each node has ••• •I

5 branch_char blt(9.), /• a next char. In a valid
escape sequence•/

5 new_char blt(9), /• the char sp clfled by the
completed escape sequ ice.
Valid If branchx ts O /

5 branchx blt(l8); /• Index to ne~t node In the escape

4 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.01

. sequence if branchchar was input•/

A description of how the escape tree is used will be given ln the,,J
ccESCAP~ section.

Flow of Control

The operation of the CCM upon receiving a .c.u.si call ts shown t~
Figure 1. Each of the six steps In Fig. 1 are described below:

STEP 1:
The CCM first checks In its buffer to see If the converted data
there will satisfy the .tAa.St request. There will be data tn the
CCM buffer if there has been unavoidable read-ahead. Unavoidable
read-ahead may occur, for example, when several read delimiters
occur on a single line. The CCM picks up the whole line and
processes It. The string up to the first read delimiter Is then
delivered to the calling procedure and the rest of the line ts
stored In the CCM buffer. See Section BF.1.04 for a further
description of unavlodable read-ahead.

STEP 2:
If there ts Insufficient data In the buffer to meet the request
the CCM Issues a~ call to the DSM or next outer module. The
oe)em argument In this call is set to some large value (4096) so
that In general the return will be triggered by the occurrence of
a break delimiter and not by character count.

STEP 3:
Once control is returned from the DSM the CCM checks the status
to see if the call was completed. The call may be Incomplete If
some error condition was located further down the iopath. It may
also be incomplete because the workspace synchronization mode ts
asynchronous and the DSM returned control after physical or
logical Initiation. In either event the CCM returns control to
the calling procedure.

STEP 4:
If, however, the ..cJ:.1.Si call Issued by the CCM was completed then
the CCM checks the returned string for one or more
canonicalization delimiters (CD's) •. If there ar.e no CD's then
the CCM returns to STEP.2 to perform another read.

There are at least two reasons why there may not be a CD In the
returned string. It may be because the oe]em argument was too
sma 11 and the request returned before a br ,ak de 11 ml ter was
encountered. Or it may be because the brea delimiter which
evoked the return Is In reality a hidden chara ~er (See BC.2.04)
and therefore does not qualify as a valid CD.

~· ·. MULTICS SYSTEM-PROGRAMMERS' MANUAL
~ .. ?:> I

Section BF.~ 5

STEPS:
After one or more (valid) CD's have been found the actual code
conversion operations are performed on the string. (Actually
only those portions of the string which precede CD's are
converted. The characters between the last CD and the end of the
string are saved for conversion later.)

The code conversion operations
described In the next section of
processed string ts added to the
control is returned to STEP 1.

STEP 6:

performed on the
this document.

data In the CCM

string are
The final,
buffer and

Finally, when a read delimiter ts encountered In STEP 1· or when
enough Cne]em) characters have been collected In the CCM buffer
to satisfy the original .cJtad. call the data Is moved to the
designated workspace and control Is returned to the calling
procedure.

code conyersJoo Operations

There are six basic operations Involved tn input code conversion
(STEP 5):

1. Device-to-ASCII conversion
r-', 2. Elimination of hidden escape sequences

3. Canonicalization
4. Erase and kill processing
S. Escape processing
6. Recanontcallzatlon

These operations have been described In general terms In BF.1.05
and BF.10.00. A much more detailed picture of how they function
is presented In subsequent parts of this document.

The names of the procedures which perform these operations are as
fo 1 lows:

cccanon
ccerase
ccescape
ccrecanon

operations 1,2,3
operation 4
operation 5
operation 6

A description of the procedures together with the operations
which they perform follows.

CCCANON
The procedure cccanon performs devlce-to-ASC I code
deletes hidden sequences, and performs print ; •sltlon
It Is Invoked by the call,

convers I on,
a 11 anment.

6 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.01

call cccanon Clnptr., size, outptr, plbptr);

dcl Cinptr, outptr, plbptr) ptr, size fixed bin;

The argument lnptr points to the Input character
characters. The string Is illl characters long.
the procedure Is placed In the area pointed to by
a one-word-per-character list where each word has
declaration:

dcl 1 word (size) based(p),

string of 9-blt
The output from
oytptr. It Is

the f o 11 ow I n g

(2 hpos, /* horizontal print position•/
2 vpos, /• vertical character position•/
2 char)bltC9), /* ASCII character code•/
2color blt(l), /•color code C"l"•red) •/
2 pad bltCS); /•padding•/

The argument plbptr Is the same as the last argument for outer
calls. It points to the per-loname data base (plb) In the CCM's
loname segment.

The three conversion operations performed by cccanon will now be
described.

DEV I CE - TO -AS C I I :
Each character from the device Is converted to Its equivalent
ASCII representation. This Is a simple one-to-one transformation
with one exception. Certain devices (like the IBM 1050) generate
special case shifting characters. For these devices cccanon
notes and deletes the case shift characters. It then selects the
correct ASCII upper case or lower case character for each device
character depending on the current case.

Note that device codes for which no ASCII equivalent has been
defined Ce.g. characters with bits 8 and/or 9 a "1") are left In
the string unconverted by cccanon.
The lower and upper entries In the structure of the CCM Input
driving table CCCIDT) provide the Information for the
device-to-ASCII transformation. Only the lower field Is used for
those devices which do not have case shifting characters. (See
la.1.fl Bases section of this document.)

HIDDEN CHARACTER ELIMINATION:
Hidden character sequences allow a user to type a character on
his typewriter which has only a local effect (See Section
BC.2.04). For example, one might wish to return the carriage to
the left margin without ending the 'logical' line he Is currently
typing In. To do this he would type an escapA sequence, a "c",
and a new line. The new line would retl ·n the typewriter
carriage to the left margin. However, all thr e characters would
be eliminated from the Input string by cccanon oecause they form
a hidden character sequence.

MULTICS SYSTEM-PROGRAMMERSl MANUAL

There are two consequences which one should be aware of in using
hidden character sequences. First, since hidden characters are
removed before print position alignment, the relative position of
characters may be destroyed Internally.· For ~xample, If one
backspaces over a hidden character sequence, overstrikes on the
printed page will be three positions out of register with the
CCM's internal representation.

Second, since erase and kill characters can be hidden, one cannot
erase a "c" typed after an escape character. The sequence,
escape char·acter, "c", and erase character would be eliminated h•·
cccanon and not by ccerase.
CANONICALIZATION:
As was noted above the output of cccanon associates with each
character typed a horizontal print position, a vertical character
position, and a color type. As cccanon scans the Input string ft
keeps a count of the current horizontal and vertical position and
the color status. This Is done by taking note of the ASCII
control characters backspace (BS), vertical t~b (VT); horizontal
tab (HT), form feed (FF), half line forward (HLF), h~lf line
reverse (HLR), red ribbon shift (RRS), black ribbon shlft(BRS),
and new line (NL). These control characters change the
appropriate count or status (e.g. BS reduces the horizontal count
by 1). They are not, however, placed in the output list (unless,
of course, they are functioning as a canonlcillzatfon delimiter.)
The output Is then sorted numerically so that the 'characters will

,r-, have a canon I ca 1 order.

CCERASE
The basic rules for erase and kill processing
Section BC.2.03. The procedure ccerase implements
It ts Invoked by the following call:

call ccerase(inptr,slze,pibptr);

are found In
these rules.

The argument lnptr points to the one-word-per-character list
generated by cccanon. This list Is a.1ll words long. The
argument plbptr points to the CCM's per-loname data base.

The output of ccerase ts In. the same .form as the Input and
overlays the input. The argument .ilil Is set on· return to the
number of words in the output list.

Those escape sequences which change the ~rase or kill character
are also processed and deleted from the string by ccerase. Note
that there are always three characters In such· sequences~ and
that these three characters must occupy contlgtous horizontal
print positions, they must be on the same vettlcal llhe, and
there must be no other characters in t~e three horizontal
positions.

Not a 11 characters can serve as erase or k I 11 .:ha r ac ters.
the definition of erase and kill Implies that the erase or
character occupy a print position the control c~aracters BS,

Since
k 111

HT,

8 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.0!' 1
-'

NL, VT, FF, RRS, BRS,·HLF, and HLR can not be used. Also the
three characters: escape character, "E", and "K" must be excluded
in order to retain tht ability to make further changes. In ~
addition, read and break delimiters are excluded on the grounds
that a given character can't serve In both capacities
meaningfully.

If ccerase encounters an escape sequence which attempts to make
some excluded character an erase or kill character, then an error
bit Is set In the status. The procedure ccerase continues to
process the string, however, and the offending sequence Is left
In the string unaltered.

The procedure ccerase adjusts the horizontal print position
(word,hpos) of suceedlng characters to reflect deletions due to
preceding erases, kills, and processed escape sequences. Note
that erase and kill do not affect the vertical character position
Cword,ypos) counts or the color types (word.color).

The pib extension In the CCM loname segment Is used to store the
Information needed by ccer,se. For example, the ~case and WJ.
substructure entries conta n the ASCII codes oft e current erase
and kill characters.

CCE§CAPE
The basic rules for escape processing are found In Section
BC.2.04. The procedure ccescape Implements these rules. The
escape tree In the CCM Input driving table (CCIDT) designates the ~
valid escape sequences for the device being serviced. The
procedure ccescape Is called by the same arguments as ccerase.
A diagram of an escape tree for the IBM 1050 Is shown In Fig. 3.
All characters that are the sfarf of some valid escape. sequence
are so mar~ed by t~e escape b t n the ccmtn table. In the case
of the 1050 the character, "¢", is the only character currently
def I ned. For these 'escape start Ing' characters there"· r-s a
relative pointer to a list of valid second characters. In the
1050 example there are seven valid second characters. (Note that
octal escape sequences are treated as a special case and are not
part of the escape tree.) Six of these are terminal (I.e. the
escape sequences are completed). For terminal branches th.e
charout field contains the character represented by the escape
sequence. One character, "¢", 1 eads to a second node. Th Is
branch represents the escape sequences, "¢¢(", and 11¢¢)".

The escape tree allows for overstruek escape sequences. In such
cases one of the charln characters In the path will be the
backspace character. Since cfcano~ has already ordered the
string only one path Is needed n t e tree for each distinct
sequence.

The extra horizontal print positions occu led by an escape
sequence are eliminated by ccescaoe. Thus, fLr the IBM 10!0 the
four-position sequence, "a,b, would reduce to a three-position

~u
MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.iHtrr 9

sequence consisting of '!a", "less than", and a "b". A problem
rises if the horizontal print position that would normally be
eliminated contains other (non-escape) characters. In such cases
the position is not deleted. An' example Is a string with an
escaped superscript and a multi-character subscript which occupy
the same horizontal positions.

ccRECANON
The character string generated by ccescape may no longer be In
the order specified by Section sc.2.01. The procedure ccrecanon
restores the string to Its canonicalized order and reformats It
into four 9-blt characters per word. In the process the
following control characters and Inserted as necessary: CB~>,
(HLF), (HLR), (RRS), (BRS), and (SPACE).

The procedure ccrecanon Is called with the
as cccanon. However, tnptr now
one-word-per-character list while oytptr
character string.

same set of
points

arguments
to the

po I nts to a 9-blt

10 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.01

~ call

~~

1. Will converted 6. Move data
·- data in CCM buffer VAS Into workspace " satisfy request? -

Retur n

no ,,
2. Issue .c.usi

~
ca 11 to DSM.

\ I

3. Was call no -
completed? _,,

Return

yes
\ I

4. Does returned
s trl ng cont a In a

L.JlS! (non-hidden)
canon del lml ter?

yes

I

s. Perform code
conversion on
string and add
result to CCM
buffer.

Figure 1: Flow of control In CCM upon receiving a .c.u.d. call.

MULTICS SYSTEM-PROGRAMMERS' MANUAL Sect I on BF. • 11

'2-.•~'

,

l. Devtce-to-ASCI I
conversion.

, I,

2. El tm I nat ton of
hidden escape
sequences.

~

3. Canonical-
I zat Ion

,

4. Erase and kll 1
processing.

r
II

s. Escape
processing.

,

6. Recanonlcal-
tzatlon.

l
Figure 2: Code Conversion Operations (Step 5 of Fig. 1).

12 MULTICS SYSTEM-PROGRAMMERS' MANUAL

ccmln
character
table

z 1

I I I ' I o I

I tlNI o I

I 11< 1 o I

I ,1>1 o I

IC ILi o I I

I l IJ I o I

f I rst level
node

S ec t I on BF • 1 O • O 1, • • ,.,

... I o IO I 2 1

I l I l I o i
second level

node

Figure 3: Diagram of Escape Tree for IBM 1050.

