Lo

. -

MULTICS SYSTEM=PROGRAMMERS' MANUAL Section BF.10+01 1
oLd/

Published: 8/14/67
ldentification
Input Code Conversion

E. L. lvie

Burpose

This section contains a detalled description of the way Input
code conversion Is implemented iIn the code conversion module

(CCM).
lontroduction

An understanding of the following MSPM Sections will be assumed
throughout thils document:
BC.2.00 Introduction: Character Input/Output for Multics
BC.2.01 Character Set
BC.2.02 Interpretation of ASCI| Character Streams
BC.2.03 Erase and Kill Conventions
BC.2.04 Character Escape Conventions

BF.1.05 Data Mapping
BF. 10 00 An Overview of Input/Output Code Conversion

The objective of this section will be to describe in depth the
way input code conversion Is implemented in the CCM. Included in
the discussion will be such toples as data bases, flow of
control, Inner procedures, and additional details on how the code
conversion operations work.

Delimiters

The use of delimiters within Multics 1Is covered briefly in
Sections BC.2.00 and BF.,1,01. Certain code converslion functlons
(e.g. canonicalization) require the use of speclial characters
called delimiters. There are baslically two such types of
delimi ters: ‘

1. read delimiters
2, break delimlters

Read delimiters control the amount of data r turned with each
read call. For each call issued, the 10S atte 'ts to return a
certaln number (pelem) of characters. If, however, a read
delimiter is encountered first, then only the :haracters up to
and including the read delimiter are returned.

S TR TR IS T,

2 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF,10.01 ~. .-

Break delimiters perform two functions. First, they delimit the
canonicalization and erase-kill functions. The new line(NL) also

serves In this capacity., Thus, the set of characters which serve <
oscangnicalizatgon delimiters and erase-=kil1 delimiters consists

of all break delimiters plus the NL character.

The second function of break delimiters is to serve as hardware.
interrupt characters In the GIOC.

The set of read delimiters may be empty or it may contain all 128
ASCl | characters. The ASCIl characters horizontal tab (HT),
vertical tab (vT), and form feed (FF) are, however, alw ‘s

deleted by canonicalization from the input string. Therefo. e
even if they are designated as read delimiters they would In fact
not be able to function 1iIn that capacity, . Also, the ASClIi

characters backspace (BS), red ribbon shift (RRS), black ribbon
shift (BRS), half line forward (HLF), and half line reverse (HLR)
are inserted by canonicalization at varlous points in the Input
string and may, therefore, be equally poor choices for read
delimi ters. ‘

The set of break delimiters may also vary from none to all 128
ASCIl characters. |f, however, one designates one of the control
characters mentioned above as a break delimiter, then that
control character effectively loses its ordinary meaning. For
example, if an HT is designated as a break delimiter, and thus as
a canonicalization delimiter, are the spaces It generates
appended to the preceding 1line or the following 1line? The -J
convention adopted here Is that control characters that have been
designated break delimiters are interpreted as iIf they are new
line characters. Thus, an HT would not generate any spaces, but
would cause canonlcalization to begin a new line.

The set of read and/or break delimiters can be changed by a

call. Upon receiving a setdelim call the CCM stores the
lists of read and break delimiters. Only the CCM need keep track
of the read delimiter list, so that 1list 1Is not passed on.
However, the CCM needs to have the break delimiters serve as read
delimiters in the next outer module. Therefore, the call is
passed on by the CCM, but the read list in the forwarded call s
made equal to the break list in the recelved call,

Since the characters in the setdelim lists received by the CCM
are ASCIl, they must be converted to their equivalent device
codes before they are passed on.

Data Bases

PIB EXTENSION:
The CCM maintains in its ioname segment the : andard per-ioname.
data (pib) described in BF.2,20, Additionally the CCM maintains

the following data as a pib extension: “J

“. -~ MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.kﬁT&;Ef 3

dcl 1 pibl based(p),

—~ (2 color, /* red/black color status #/
2 case, /* upper/lower case status #*/
2 hsw, /* user-set horizontal tabs flag */
2 vsw) bit(l), /* user-set vertical tabs flag */
(2 1inepos, /* carriage position on line */
2 vpos, /* vertical position on page */
2 nhtabs, /* number of horizontal tabs #/
2 nvtabs)fixed bin, /* number of vertical tabs #*/
(2 hrelp, /* relp to horizontal tab list #/
2 vrelp) bit(18), /* relp to vertical tab list */
(2 erase, /* erase character =/
2 ki11) bit(9), /* ki1l character =/
2 delim (0:127),
(3 break, /* break delimiter indicators =/

3 read)blt(l); /* read delimiter indlicators #*/

CCM INPUT DRIVING TABLE:

The CCM input data which remains constant is placed in the Input
part of the input-output code conversion tables(I10CCT). There iIs
an 10CCT for each type of 1/0 device. Each I0CCT resides In a
single segment and may be shared by multiple process groups.
Section BF.10,03 describes how [10CCT's can be created and
changed. The declaration of the input portion of an I0CCT is as

follows:
~ del 1 locct,
2 input,

3 char (0:255), /* A1l information about the incoming
char. and its ASCI! equivalents #/

4L lower bit(9), /*ASC!| equivalent to device char.

when device Is In lower case */
4 upper bit(9), /* Same for upper. On devices w/o

case shift, only lower Iis meaningful =/
4L bit(9), /* 1 if this char. can start an
escape sequence */
4 esc_index bit(12), /* index into escape tree for this

char.,
only meaningful if escape=l #*/

4 canon bit(5), /* flags for char. requiring special

treatment during canonicalization,
e.g. backspace, newline, etc. */

3 escape_tree (N), /* N depends on the table */
4 nbranches fixed bin(9), _ /* number of sons of
this node */
4 branchdata (nbranches), /* each node has... */
5 branch_char bit(9), /* a next char. In a valid

escape sequence */
5 new_char bit(9), /* the char sp cified by the
completed escape sequ ce.,
P valid if branchx is 0 /
S branchx bit(18); /* index to next node In the escape

L MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10,01

. sequence If branchchar was input */

A description of how the escape tree is used will be given in the

CCESCAPE section.

Elow of Control

The operation of the CCM upon receiving a read call is shown I~
Figure 1. Each of the six steps in Fig., 1 are described below:

STEP 1:
The CCM first checks in its buffer to see If the converted data

there will satisfy the read request. There will be data iIn the
CCM buffer if there has been unavoidable read-ahead. Unavoidable
read-ahead may occur, for example, when several read dellimiters
occur on a single line. The CCM picks up the whole 1lne and
processes It, The string up to the first read delimiter Is then
delivered to the calling procedure and the rest of the 1line s
stored in the CCM buffer, See Section BF.1.04 for a further
description of unaviodable read-ahead.

STEP 2:

If there Is insufficlient data in the buffer to meet the request
the CCM issues a read call to the DSM or next outer module. The
pelem argument in this call is set to some large value (4096) so
that in general the return will be triggered by the occurrence of
a break delimiter and not by character count.

STEP 3:

Once control is returned from the DSM the CCM checks the status
to see if the call was completed. The call may be incomplete If
some error condition was located further down the iopath. It may
also be incomplete because the workspace synchronization mode 1Is
asynchronous and the DSM returned control after physical or
logical initiation. In either event the CCM returns control to
the calling procedure.

STEP &4:

If, however, the read call issued by the CCM was completed then
the CCM checks the returned string for one or more
canonicalization delimiters (CD's). |If there are no CD's then
the CCM returns to STEP.2 to perform another read.

There are at least two reasons why there may not be a CD In the
returned string. [t may be because the pnelem argument was too
small and the request returned before a br ak delimiter was
encountered. Or it may be because the brea delimiter which
evoked the return is In reality a hidden chara :er (See BC.2.04)
and therefore does not qualify as a valid CD.

IR SR R TR AT N T A D T Y R T 5 e 1

-3/

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF, 6561 5
STEP 5: '

After one or more (valid) CD's have been found the actual code
conversion operations are performed on the string. (Actually

only those portions of the string which precede CD's are
converted. The characters between the last CD and the end of the
string are saved for conversion later.)

The code conversion operations performed on the string are
described in the next section of this document. The final,
processed string Is added to the data in the CCM buffer and
control is returned to STEP 1. ’

STEP 6:

Finally, when a read delimiter is encountered in STEP 1 or when
enough (pelem) characters have been collected in the CCM buffer
to satisfy the original read call the data 1is moved to the
designated workspace and control 1Is returned to the <calling
procedure.

Code Conversjion Operations

{here are six basic operations Involved In input code conversion
STEP 5):

1., Device-to=ASCll| conversion

2. Elimination of hidden escape sequences

3. Canonicalization

4, Erase and ki1l processing

5. Escape processing

6. Recanonicalization

These operations have been described in general terms in BF.1.05
and BF.10.00, A much more detailed picture of how they function
is presented in subsequent parts of this document.

;h?‘names of the procedures which perform these operations are as
o OWS :

cccanon operations 1,2,3
ccerase operation 4
ccescape operation 5
ccrecanon operation 6

A description of the procedures together with the operations
which they perform follows. ‘

CCCANON

The procedure gccanon performs device-to-ASC | code conversion,
deletes hlidden sequences, and performs print . :sition allignment.
1t Is Invoked by the call,

6 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF,10.01

call cccanon (inptr, size, outptr, plibptr);
decl (inptr, outptr, pibptr) ptr, slze fixed bin;

The argument fnptr points to the input character string of 9=-bit
characters. The string Is gize characters long. The output from
the procedure is placed in the area pointed to by outptr. It is
a one-word-per-character list where each word has the following
declaration:

dcl 1 word (size) based(p),

(2 hpos, /* horizontal print position »/

2 vpos, /* vertical character position */
2 char)bit(9), /* ASCII character code */

2color bit(l), /*color code ("1'"=red) =»/

2 pad bit(8); /* padding */

The argument pibptr is the same as the last argument for outer
calls. It points to the per-ioname data base (pib) in the CCM's

joname segment.

The three conversion operations performed by gccanon will now be
described.

DEVICE-TO=-ASCI |

Each character from the device is converted to 1Its equivalent
ASCl| representation. This Is a simple one-to-one transformation
with one exception. Certain devices (like the IBM 1050) generate
special case shifting characters. For these devices gccanon
notes and deletes the case shift characters. It then selects the
correct ASCII| upper case or lower case character for each device
character depending on the current case.

Note that device codes for which no ASCIl equivalent has been
defined (e.g. characters with bits 8 and/or 9 a "1") are left In
the string unconverted by gggcanon.

The lower and upper entries in the structure of the CCM input
driving table (CCIDT) provide the information for the
device-to=ASCIl transformation. Only the lower field is used for
those devices which do not have case shifting characters. (See
Data Bases section of this document.)

HIDDEN CHARACTER ELIMINATION: :

Hidden character sequences allow a user to type a character on
his typewriter which has only a local effect (See Section
BC.2.04)., For example, one might wlsh to return the carriage to
the left margin without ending the 'logical' line he is currently
typing in. To do this he would type an escape sequence, a '"¢",
and a new line. The new 1line would rettL'n the typewrlter
carriage to the left margin. However, all thr 2 characters would
be eliminated from the input string by gccanon oecause they form
a hidden character sequence.

T g

:;H':éqf>y,ﬁ

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.TU.01 7

There are two consequences which one should be aware of in using
hidden character sequences. First, since hidden characters are
removed before print position alignment, the relative position of
characters may be destroyed internally, - For example, if one
backspaces over a hidden character sequence, overstrikes on the
printed page will be three positions out of register with the
CCM's internal representation,

Second, since erase and ki1l characters can be hidden, one cannot
erase a "c" typed after an escape character, The sequence,
escape character, 'c¢'", and erase character would be eliminated b+

cccanon and not by ggerase.

CANONICALIZATION:

As was noted above the output of gggcanon assoclates with each
character typed a horizontal print position, a vertical character
position, and a color type. As ggcganon scans the input string it
keeps a count of the current horizontal and vertical position and
the color status. This Is done by taking note of the ASCII
control characters backspace (BS), vertical tab (VT), horizontal
tab (HT), form feed (FF), half 1line forward (HLF), half 1line
reverse (HLR), red ribbon shift (RRS), black ribbon shift(BRS),
and new line (NL). These control characters change the
appropriate count or status (e.g. BS reduces the horizontal count
by 1). They are not, however, placed in the output 1list (unless,
of course, they are functioning as a canonicalization delimiter.)
The output is then sorted numerically so that the ‘characters will
have a canonical order.

The basic rules for erase and kill processing are found in
Section BC.2,03, The procedure ggcerase implements these rules,
It is Invoked by the following call:. _

call ccerase(inptr,size,pibptr);

The argument jnptr points to the one-word=-per=-character 1list

generated by gccganon. This 1list 1is gsjze words 1long. The
argument pibptr points to the CCM's per-ioname data base.

The output of ccerase Is In. the same .form as the input and
" overlays the input. The argument sjizZe is set on return to the
number of words in the output list. '

Those escape sequences which change the erase or ki1l character

are also processed and deleted from the string by gcerase. Note
that there are always three characters In such sequences, and
that these three characters must occupy contigious horlizontal
print positions, they must be on the same vertical 1line, and
there must be no other characters In the three horizontal

positions.

Not all characters can serve as erase or kill :haracters. Since
the definition of erase and ki1l Implies that the erase or ki1l
character occupy a print position the control characters BS, HT,

8 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.,10,01 *

NL, VT, FF, RRS, BRS, HLF, and HLR can not be used. Also the
three characters: escape character, "E", and "K" must be excluded
in order to retain the abllity to make further changes. In
addition, read and break delimiters are excluded on the grounds
that a given character <can't serve in both capacities

meaningfully,

If ccerase encounters an escape sequence which attempts to make
some excluded character an erase or kill character, then an error
bit Is set in the status. The procedure ggcerase continues to
process the string, however, and the offending sequence Is left
in the string unaltered.

The procedure ggerase adjusts the horizontal print position

(word.hpos) of suceeding characters to reflect deletions due to
preceding erases, kills, and processed escape sequences, Note
that erase and kill do not affect the vertical character position
(word,.vpos) counts or the color types (word.color).

The pib extension in the CCM ioname segment is used to store the
information needed by sssn?ag. For example, the and kill
substructure entries contain the ASCI| codes of the current erase

and kill characters.

The basic rules for escape processing are found 1In Section

BC.2.04, The procedure gcascape implements these rules. The
escape tree in the CCM input driving table (CCIDT) designates the
valld escape sequences for the device belng serviced. The
procedure gcescape is called by the same arguments as gcerase. -

A diagram of an escape tree for the IBM 1050 Is shown in Fig, 3.

All characters that are the art of some valld escape. sequence
are so mg$k§5 by the gscape gft fn the table. In the case

of the 1050 the character, '"¢Y, is the only character currently
defined, For these 'escape starting' characters there " Is a
relative pointer to a list of valid second characters. In the
1050 example there are seven valid second characters. (Note that
octal escape sequences are treated as a speclial case and are not
part of the escape tree.) Six of these are terminal (l.e. the

escape sequences are completed). For terminal branches the
charout field contains the character represented by the escape
sequence. One character, "¢", leads to a second node. This

branch represents the escape sequences, "¢¢(", and '"¢é)",

The escape tree allows for ovérstruék escape sequences. In such
cases. one of the gharin characters In the path will be the

backspace character, Since has already ordered the
string only one path is needed in the tree for each distinct

sequence.

The extra horizontal print positions occu led by an escape
sequence are eliminated by gccescape. Thus, fcr the IBM 1050 the
four-position sequence, "a,b, would reduce to a three-position

-

| I 2/
MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.:EQ;T‘ 9

sequence consisting of "a", "less than'", and a '"b". A problem
rises {f the horizontal print position that would normally be
eliminated contains other (non-escape) characters. |In such cases
the position is not deleted. An example 1is a string with an
escaped superscript and a multi-character subscrlpt which occupy
the same horizontal positions.

CCRECANON

The character string generated by gcescape may no longer be in
the order specified by Section BC.2.01. The procedure gcgrecanon
restores the string to its canonicalized order and reformats 1|t
into four 9-bit characters per word. In the process *he
followling control characters and inserted as necessary: (B.),
(HLF), (HLR), (RRS), (BRS), and (SPACE).

The procedure ggrecanon is called with the same set of arguments
as cccanon. However, lpptr now points to the
one-word-per~-character 1ist while outptr points to a 9-bit
character string.

10 MULTICS SYSTEM=-PROGRAMMERS' MANUAL Section BF,10.01

Read call

!

1. Will converted 6. Move data
data in CCM buffer into workspace -
satisfy request? ' >

Y L Return

no
Y

2, lssue read
call to DSM,

\

. Was call
completed?
Return

yes

\

4, Does returned
string contailn a
(non=hidden)
canon delimiter?

yes

N
5. Perform code
conversion on
string and add
result to CCM
buffer.

Figure 1: Flow of control in CCM upon receiving a raad call.

MULTICS SYSTEM=-PROGRAMMERS' MANUAL Section BF, 70T 11

2!

. Device=-to=ASCI!|
conversion.

!

2, Elimination of
hidden escape
sequences.

3. Canonical-
ization

4, Erase and kill
processing.

1

5. Escape
processing.

l

6. Recanonical-
ization,

Figure 2: Code Conversion Operations (Step 5 of Fig. 1).

12

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.10.01

I{om 71
Ll o]
Lel~l 0]
LLI< 0l
& 3 I
JdC T o
O ot +/ T
DT o1
ccmin first level second level
character node | node

table

Figure 3: Diagram of Escape Tree for IBM 1050.

o

i

