MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2,21 PAGE 1

Published: 04/10/68

Identification

The Generic Device Strategy Module (DSM)
and The Device Control Module (DCM)

S, I. Feldman

Purpose

In the I/0 System, Device Strategy Modules (DSMs) are the outer
modules responsible for device attachment, synchronization
management and interfacing with the Device COntrol Modules, This
section describes features common to all DSMs, and gives a brief
summary of the standard IOS procedures and inner modules
available to DSM writers, This section also describes certain
disciplines which must be followed by DCM writers, '

Introduction

In the 1/0 System, devices are controlled by Device Contrcl
Modules (DCMs), which execute in special processes called Device
Managers (DMPs). Normal ly, the DCM runs in a system process
group in a universal DMP, Device Strategy Modules (DSMs) can run
in all of the processes in the process group assigned to a
device, The interface between the DSM and the DCM therefore has
special properties, (See BF,2.0l1,) DSMs handle data buffering

and are responsible for synchronization (read-ahead,
write-behind) and for handling . the calls relating to
synchronization (readsync, writesync, worksync, xesetread,

resetwrite, and iowait). There are several inner modules and
standard procedures for use especially by DSMs. The use of these
modules will be discussed and some of the data bases of these
modules will be mentioned., The restrictions the use of these
modules place on the DSM writer will then be discussed, and
finally the handling of certain calls will be described, -

Inner Modules

Since DSMs and DCMs are outer modules, they use the Mode Handler

(see BF.2,27) and the Transaction Block Maintainer (see BF.2,20),

Also, the DSM and DCM are expected to use the standard data bases

-found in the per-ioname segment (IS) and the standard conventions

for use of auxiliary data bases in the IS (see BF.2,20).

In addition to the above standard modules, the DSM uses the
Attachment Module and the Request Queuer, ’

MULTICS SYSTEM PROGRAMMERS’ MANUAL SECTION BF.2.21 PAGE 2

Code conversion is usually done by the DCM, However, if the DSM
must do any code conversion and needs a driving table of ' some
sort, it should use the second driving table pointer to access
the data base. The Switching Complex will set up this pointer if
a segment name is given in the Type Table for this driving table.
The Attachment Module will set up this pointer if this is
indicated by the Registry Files it examines., As an example of
the use of this driving table, the typewriter DSM uses a
procedure that canonicalizes ASCII text, ' '

The Attachment Module

The Attachment Module (see BF,2,23) is called to handle the
following outer calls: - ‘

attach
detach
divert
revert
invert

The DSM calls the Attachment Module immediately to handle the
last three calls, and does no other processing, In response to
an attach call, the Attachment Module calls the Mode Handler,
traces through the Registry Files implied by the arguments of the
attach call, allocates devices associated with the files, creates
a private Device Manager, (if requested and permitted), and
attaches the DCM, It splices in the Sectional Formatting Module
(SFM) if the SECTional mode is specified, In response to a
detach call, the resources are deallocated, the DCM is detached,
and the DMP is destroyed if it was created above,

The Attachment Module also handles three order callsg

trap_quits

trap_hangup

get_rf
These calls are handled entirely by the Attachment Module, The
last call may be of interest to the DSM itself (see Device
Profiles, below). The names of the entry points of the

Attachment Module are the above eight names of calls handled,

The Request Queuer

The Request Queuer (see BF,2.24) is called to pass calls to the
DCM, Basically, the Request Queuer stores a representation of an
outer call in a TBE associated with a transaction block allocated
in the DSM’s auxiliary chain by the Reguest Queuer, and then
signals an event that causes the DMP to wake up, In the DMP, the
Dispatcher calls the Driver which reconstitutes the call and
passes it to the DCM, The Driver is also responsible for

MULTICS SYSTEM PROGRAMMERS’ MANUAL SECTION BF,.2.21 PAGE 3

updating status and signaling events,

For each queuable outer call (for a list, see BF,2.24), there is
an entry point of the Reguest Queuer, This call includes all of
the normal arguments other than the jioname and the status
arguments., There is only one DCM per DSM sO no ioname needs to
be passed to the Queuer., The DSM gets return status by making a
call to rg$get chain. Among the other arguments required by the
Request Queuer are a transaction block index, an 18-bi: mask, and
two event channel names, - The transaction block index returned by
the Queuer is the index of the block allocated by the Request
Quever and threaded onto the auxiliary chain; the D3M can include
this block in a down chain from a buffer or call transaction
block chain., The status mask defines the conditions under which
one of the event channels will be signaled, It is possible at a
later time to change an event or mask,

The use of the Request Queuer puts restrictions on certain types
of outer call arguments, Specifically, delayed use arguments
(workspace pointers and pelemt arguments of read and write-type
calls, see below) must reside in the DSM’s per-ioname segment,
This implies that the DSM must have its own intermediate bufi-rs
for data, since the DCM cannot transmit directly into the user’s
workspace, The location of workspaces in Request Queuer calls is
restricted to reduce the number of segments the DMP must initiate
and to simplify inter-process communlcation.

DSM Data Bases

The Attachment Module and the Request Queuer make use of a
special data base in the per-ioname segment, the Inter-process
- Communication Block, This data base is accessed via a relative
pointer in the segment header. The main body of the DSM is not
interested in the ICB, ' ‘

The primary data base of the DSM is the Per-Ioname Base (PIB),
PIBEs (per-ioname base extensions) are chained together using
relative pointers in the first word of each block., If there are
more than two PIBEs, the first one should contain an array of
relative pointers. to the later PIBEs to increase speed of
accessing, '

The first driving table pointer in the PIB. points to"the mode
control structure used by the Mode Handler.

The Request Queuer uses the auxiliary transaction block chain for
communication with the Driver,

Registry Files and Device Profiles

DSMs need to get at device profiles from‘the Registry Files for .
the devices they handle, The device profiles are used to hold

MULTICS SYSTEM PROGRAMMERS’ MANUAL SECTION BF.2.21 PAGE 4

relatively constant information, A PRegistry File may‘ hold
permanent information, such as the association between a
particular tape drive and a particular tape controller. A

Registry File may contain temporary information such as the tab
settings on a typewriter, but a Registry File may not be used to
contain information as transient as the present position of a
typewriter carriage, Typically, the DSM examines the profile at
attach and restart time, or when a status return from the DCM
indicates a change in the profile, Data 'is stored into the
profile by the DCM and DSM as necessary.

In order to get at the profile, the DSM uses the Registry File
Maintainer (see BF,2,22)., A call to attm$get rf returns the
information needed to find the Registry File implied by the type
and description arguments of the attach call. Registry Files are
identified by two 32-character strings called ¢type and pname.
These strings are returned by the above call to the Attachment
Module and may be used in calls to the Registry File Maintainer
(RFM). A call to rfm$get devices will return a list of resource
names (for use in calling the GIM, for example), and a list oOf
device types. A call may then be made to rfmiget profile to get
the desired information, If the given RF is not the desired one,
the type and name of the next one in the chain of connected
devices may be ascertained via a call to rfm$get down.

As an example of the use of Registry Files, consider magnetic
tape., The call to attm$get rf will return the type and name of
the tape reel, The call to rfm$get devices will therefore return
a code indicating that the device is a reel of magnetic tape,
The call to rfm$get profile uses the type and name of the file,
and index of the device (found by checking the device types if
more than one is possible), a pointer and the number of bits
desired., These data in the profile will be passed back for . use
by the DSM. The device profile of a magnetic tape would
presumably contain such information as the amount of data on the
tape, number of tracks and density at which the tape was
recorded, and possible the Registry File names of other tape
reels if the given reel is part of a multi-reel file, If it is
necessary to store information in the profile, the DSM may call
rfm$set profile, which overwrites the entire profile. A call to
rfm$get down will return the type and name of the device on which
the reel is mounted, the tape drive, A further call to
rfm$get down using the name of the tape drive would get the name
of the Registry File for the tape controller to which the drive
is connected,

Attachment

In response to an attach call, the DSM first stores the ioname,
type, and description arguments in the appropriate parts of the
PIB. Then, the DSM calls attmfattach, as described above, If no
errors are detected by the Attachment Module, pib.,bmode contains
a valid mode string, the DCM has been attached, and the SFM (if

-/

MULTICS SYSTEM PROGRAMMERS®’ MANUAL SECTION BF.2.21 PAGE 5

any) has been spliced in, The DSM then allocates the first PIBE
and does any other processing needed to initialize itself,

Specifically, the DSM may need to allocate extra resources for
its own use. For example, the tape DSM will have to allocate all
reels other than the first of a multi-reel file,

Diversion

The divert outer call creates a new iopath for a device, To
handle the diversion, the DSM calls attmfdivert. BRecause divert
outer calls pass through I/O segment locks, care must be taken
not to disturb the contents of the IS, No transaction block i-
allocated by the Switch for this call, ' _ '

The new DSM is created in two steps Dby the Attachment Module:
First, the switching complex is called to establish a new node,
All of the processing for handling an attach is done except that

no call is passed to the DSM, The Attachment Module th-~n
initializes parts of the new per-ioname segment (the ICB and tne
parts of the PIB containing the three arguments of the attach

call that would have been passed), After the DCM has been
attached, an "attach" order call is made for the new DSM, This

special order call is supposed to cause the DSM to do all of the
attach call processing other than the initial storing of
arguments. the items in the PIB and the calling of the Attachment
Module,

If any manipulation of media is required, the DSM must call the

Media Request Module (see BT.2,02), The Attachment Module does
not make any calls to the Media Management Module.

‘Detachment

When the DSM gets a detach call, it is supposed to force out any
remaining I/0 and then detach the device, First, the DSM should
call the Mode Handler, If the modes are invalid, it should
return immediately, Otherwise, the DSM should . complete all
pending transactions, If the UNLOAD mode is specified, +the DSM
should call the Media Regquest Module to unload any media it has
loaded, If the RELEASE disposal mode is specified, the DSM
should deallocate any devices it explicitly allocated, After the
DSM has done all of its internal cleanup, it should call
at detach, If there are no errors in the performance of that
call, the DCM will have been detached upon return. " The DsSM
should then call atmidelete ioname with the delayed bit ON and
then return, Upon return, the ATM will free any transaction
blocks held for the DSM and will then destroy the DSM’s
per-ioname segment and the DSM's information in the Attach Table,

MULTICS SYSTEM PROGRAMMERS’ MANUAL SECTION BF.2,21 - PAGE ©

Process~Dependent_ Information

Since the DSM is expected to operate in several different
processes for several different ionames, it must be very careful
about process-dependent data, Spec;fically, care must be taken
with pointers and with event channel names, Certain pointers are
handled automatically by the Switch (the driving table pointers).

However, the DSM will have to store a workspace pointer in a read
call with asynchronous workspace, It is necessary to store the
process id for which the pointer is valid along with the pointer;
the pointer cannot be used unless the DSM ' is operating in the
proper process, Event channels are a somewhat different problem,
The DSM will need at least one event channel for use in calls to
the Request Queuer, It is suggested that the DSM keep a table
with process ids and event channel names to avoid creation and

destruction of channels. Furthermore, the DSM must call
rg$give access before the first use of an event channel name in a
Queuer call. (The DMP may be a universal DMP in a different

process group, and must be given permission to signal on the
event channel.) : ’

Peculiarities of the DSM-DCM Interface

The DSM calls the Wait Coordinator (see BQ.6.,06) to wait - for an
event to be signaled if it must synchronize itself with the

actions of the DCM, Such ‘a need will arise if the
synchronization modes require the DSM to return only after a
transaction is complete in some sense, If the DSM knows in

advance that it will have to wait for a particular condition to
hold, it will set the status_mask and create an event channel
before calling the Request Queuer,

Normally, the DSM creates event channels and passes their names
to the Request Queuer, However, it is possible for the user to
take over synchronization management., He informs the DSM of his
intention by adding an extra pointer argument when he makes an
outer call, (see BF.2,02) The I/0 Switch will assume that the
extra argument points to a structure containing two event channel
names, These channel names will be copied into the DSM’s PIB
{(pib.sync_event and pib.error_event). It is the DSM’s
responsibility to use these event channel names, if non-zero,
instead of the event channels it would normally have used, Thus,
the error event should be used in all calls to the Request Queuer
relating to the outer call, and the completion (sync) event
should be used for the final Queuer call,

It is sometimes necessary for the DSM to synchronize itself with
a transaction in progress, This is the case if the DSM has
requested advancd input from the DCM, and then receives a read
call with synchronous workspace, In this case, the DSM must wait
until a certain number of characters have been read in (or wuntil
a read delimiter is reached).

C

MULTICS SYSTEM PROGRAMMERS’ MANUAL SECTION BF,2.21 ' PAGE 7

The following technigue should be used in such a case: Whenever
the DCM is called and observes an interesting status change, it
inverts the "special happening" bit in the call-oriented status
field of the outer call({s) affected by the interrupt, Normally,
the interesting event will be a change in the number of elements
transmitted, but the DSM may inform the DCM of a different
criterion to use by means of order calls, When the TBM is called
to getstatus for that call, it will set bit 10 to one in order to
indicate that there has been a status change since the last
getstatus. Therefore, if a status mask with only bit 10 equal to
1 is used, the Driver will signal an event when the DCM returns,
If the DSM is still not satisfied by the status of the call, it
can make a call to rg$new event and then wait for another signal,

Whenever the DSM returns before logically completing (see
BF,1.04) a read or whenever the DSM returns before completing a
write where the contents of the workspace were not copied into a
buffer in the DSM’s IS, it must save a pointer to the wuser’s
workspace, Because pointers are not valid except in their
process of origin, the DSM must associate a process id with each
such pointer, Later calls will be able to move data to or from
the user’s workspace only if made in the same process as the
original call,

Status Updating and Error Hand ling.

In order to get status for calls made to the DCM, the DSM calls
rg$get chain. If the ERRFIX mode is speczfied the DSM is
supposed to try to correct errors if they occur, For example, on
output, the DSM usually restarts the transaction at a reasonable
point (such as the beginning of the last page on a line printer
or the beginning of the last 1line on a typewriter or the

beginning of the last physical record on tape or cards), This
error correction is done when a device error is detected or when
a transaction is marked "aborted due to quit", If the ERRRET

mode is specified, the DSM just marks its status for the call
indicating the error and return, This mode would be used by a
RUNOFF type program that could not tolerate extra lines on a
typewriter, or by a system tape generator that could not tolerate
error records on tape,

If a transaction is marked "aborted and reset", the DSM marks all
of its outstanding transactions with the same status, aborts any
other work it has planned, and returns, (Transactions will be
reset when a revert call with the RESET mode specified is made
after a diversion).

Reading and Writing

As discussed above, the DSM is responsible for handling
read-ahead and write-kehind,

SYSTEM PROGRAMMERS® MANUAL SECTION BF.2,21 .~ PAGE 8

T
MUL

b3

rIce

9}

If the DSM handles a read call with asynchronous workspace, it
must keep track of the read and break delimiters at the time of
the call since subsequent getdelim calls may change these
delimiters. However, the DSM is required to make it appear as if
the calls were handled, in their entirety, in the proper time
seguence, :

As mentloned above, workspaces for DCM calls must reside in the
DSM’s per-ioname segment. This is also true of nelemt arguments,
(nelemt is the number of elements actually transmitted by a read
or write call; arrays of such arguments are passed in readrec anc
writerec calls.) Because all DCMs operate in workspace
asynchronous mocde, nelemt would always be zero upon return if the
normal definition were used, Therefore, DCMs interpret nelemt
differently than do other outer modules. nelemt and is updated
whenever the DCM updates its own status, It equals the number of
elements physically transmitted at any given time; nelemt attains
its final value when bit 5 of status (no moré status change)
becomes 1, Therefore, it is recommended that nelemt be kept in a
TBE associated with the call, since disaster will ensue if the
storage is freed too soon,

Device Control Modules

The following is a brief discussion of some points relevant to
Device Control Modules (DCMs),

First, there is only a single DCM attached at a given time for a
device, When the DSM is diverted and a new iopath is created,
all pending transactions with the DCM are aborted, The
newly-attached DSM then makes calls to the old DCM, When the
path is reverted, it is necessary for the DSM to remind the DCM
of the modes active at the time of the divert, This can be
accomplished by use of an order call that passes a bit string
equal to the DSM‘s "bmode". The use of this c¢all implies that
the mode control structures of the DSM and DCM are essentially

equivalent,

When the DCM is first attached, it should set up communication
with the GIM. In order to do this, it makes the following GIM

call (see BF,20):

call hca_$assign(resource_name,devx,event,type,rcode);

The resource_name to be passed to the GIM is stored in the

related Registry File, and can be extracted by a call to
rfm$get devices (see BF,2,22), Alternately, the resource name
might be passed to the DCM as the description arguments of its
localattach call, The event argument is the name of the event to
be signaled whenever there is a hardware interrupt. The name of
this event can be gotten via the use of the following statement:

7/

—~

LI | b
dcl &
event

arove),

s

il

DROCRAMMERS Y MANUAL

SECTION

A

are_event;

the beginning of &l
use of Registry
interested in the

thardware_event entry returns (bit{70

]

2 PACE ©
.
b4

o
1

which gives a
DCM writers
e profile (sece

