MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTICON BF.2.13 PAGF 1

Published : 05/21/68

ldentification

The Attach Table and Attach Table Maintainer
P. A, Levinson

Purpose

The purpose of this document is to describe the contents of the
Attach Table and the cflls to the Attach Table Maintainer by
which items of Attach Table entries are set, altered -and
referenced, and by which entries are created and deleted. Table
1 is the FPL declaration of the Attach Table entry, The items
are discussed more fully in the following,

Structure of the Attach Table

Figuré 1 displays the Attach Table (AT) as a per-group sesment
with a local (per-process) extension (labeled AT for local

attach table in Figure 1) for each process requiring one, (Tte
LAT's are discussed below, In Figure 1 only Process 2 and
Process 4 are shown with LAT's.,) As shown, an AT Template

resides in file system storage and is known by name to the ATM,
The AT Template is an initialized but otherwise enmpty Attach
Table Segment, On first reference to the ATM in a fsroupy the
Attach Table Maintainer calls the SMM (Segment Management Module)
to create the per=-group AT segment and copies the AT Template
into it, On each reference to the ATM in a new process, the ATM
calls the SMM to make the existing per-group AT segment known to
the new process. In contrast with the AT which 1is a segment
shared by a user=-group, the LAT is an unshared segment of the
process in whose hehalf it was ecreated., Once, they are obtained
from the SMM, pointers to the AT and LAT reside in the ATM's
per-process (internal static) storage, Finally, the AT Template
"nointer" is simply a literal in the ATM procedure.

figure 2 shows the Attach Tabhle Structure as a three-level
threaded list. The structure is intended to facilitate searchine
and avoid varying-length entries,

The ioname level entries contain the process=invariant items of
the AT, The key for searching this level is of course the ioname
itself,)

The process level entries of the AT contain the process-dependent
items of the ioname entries, To explain further, some of the
items in an AT entry are pointers., Pointers to the same data in
different processes have different forms, Specifically, the
segment number (but not the offset) is different in different
processes., This is handled by maintaining the offset of a
pointer as a process invariant item at the ioname level of the
entry, and the segment number as a process-dependent item at the
process level. A process level subentry appears under an ioname

MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTION BF,2.13 PAGF 2

for each process in the group which process has referenced the
ioname at least once.

X i e A h Tab

lonames may be attach locally, that is, such that the fioname s
known only to the attaching process, It is important to note
that if an foname "alpha" is attached locally, then during the
term of its attachment the esiven process canrot operate on a
simul taneously attached global alpha, A reference to an ioname
"alpha'" is taken as a reference to the local ioname "alpha" if
one exists, This is built into the ATM's search algorithm, 1t
is also worth noting that this does not restrict A process
locally attached to "alpha" from attaching a global alpha, hut it
does prevent it from referencing global alpbha,

When an ioname is attached locally by a process, the AT entry for
that ioname appears in an AT extension for the attaching process
(the LAT of Figure 1). The LAT is created in a given process
only if a localattach call is issued in that process. |f an LAT
does exist, when an ioname is referenced, the ATM always searches
it first, and only if the search of the extension fails does it
continue the search in the global (per-group) AT,

The ltems of an Attach Table Entry

A1l of the items of an Attach Table entry are briefly «discussed
in this paragraph. (Complete discussions of items not directly
connected with the switching complex are given in the papers to
whose matter these items are primarily relevant,) For example,
jonamel, type, and ionamel2, are discussed in detail in MSPM
Section . PBF,1,01, Attachment and Detachment of |Input/QOutput
Devisces and Pseudodevices.) The items of an Attach Table entry
are as follows:

1) right_relp - is a relative pointer to the next entry at
the level of the current entry if one exists, else to
the parent entry at the next higher level if one
exists, else null;

2) down_relp - is a pointer to the first entry at the next
lower level if one exists, else null;

3) up_relp - is a pointer to the parent entry at the next
higher level if one exists, else null;

L) fonamel - is the ioname specified by the first argument
of the user's attach-call. |t serves as the name of
the entry and is the key on which the Attach Table s
searched;

5) proc_id - is the identification of the process to which
the process-independent items of the entry are
relevant;

MULTICS

6)

7)

6)

9)

10)

11)

12)

13)

14)

15)

1b)

SYSTEM PROGRAMMFRS' MANUAL SFCTION RF,2.13 PACF 3

type - is the type specified by the second argument of
the user's attack call. It is used hy the Mot Ffounder
(see MSPM Section FF.2.12) to search the Type Table
which relates each type to a unique outer module (see
MSPM Section PF.2,14, The Type Tahle Maintainer);

ioname2 - is the (third) argument of the user's attach

call, It is used by outer modules either to identify a
medium (tape reel, file system file, etc.) or to
specify another ioname to which the current one s
related in a way specified by the type; f;

ttentry_relp - is a pointer to the Type Table entry which
was in effect at the time of attachment of the ioname,

ttentry_table - records the table (local = 1, global = 0)
in which the type table entry was found when ionamel
(above) was attached, This is used to develop a
pointer to the correct type table entry when ionamel is
referenced for the first time by processes other than
the attaching process;

valid_level - is the current value of the validation
level for the ionamel,

iosegname - is the name of the per-ioname sepment for
ionamel, and is formed as follows:

del fosegname char (50),
ionamel char (32), &Y
uniaue_chars ext entry returns (char(15));
iosegname = ionamelunjion"ODuniaue_chars("0"h);

segp - is a pointer to thevper-ioname segment for the
ioname of the current entry;

auxptr - is an auxilliary pointer for the use of the
outer module which recevies control on outer calls for
current joname., |t is null by default;

tbindex - is a relative pointer to the head (most

recently allocated block) of the chain of transaction
blocks associated with the transactions on the ioname
of the current entry;

epvptr - is a pointer to the entry-point vector of the
outer module to which control is forwarded by the 1/0
Switch when it receives outer calls specifying the
ioname of this entry;

entry_mask - Fach bit position corresponds to an outer
call, If "1"h then the outer module of the previous
item has an entry_point for the call; if "0'"h it does
not;

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION RF.2,13 PAGE 4

17)

1b)

20)

21)

22)

dtabN - is a pointer to a segment containing a driving
table for the servicing outer module; :

new_dtab - is turned on (set = to "1"b) when a type
table entry is edited to alter a driving table, When
ionamel is referenced , the on-condition signals the
switching complex that the new driving table must be
made known (by calling the SMM) to the process in which
it is running;

next_vector - is an array of relative pointers to other
entries in the . AT whose ionames bhave followed the
current foname as switchpoints in some iopath, This
item and the next are explained in detail _in the
paragraph on the ATM search Algorithm;

next_vector.size - Is the number of elements of the
next_vector which have been used in contrast to the
number (10) declared;

next_vector.relp - is an array of relative ~pointers to

"probable' next ionames.

"MULTICS sysSTEM PROGRAMMERS' MANUAL SECTION EBF.2.13 PAGF 5

ATM Ipner Calls

The following is a description of all ATM inner calls, that 1is,
ATM calls whose use is not restricted to the Switching Complex. .

1) call atm$get_iosegname(ioname, iosegname,cstatus);

dcl ioname char(*),
iosegname char(x),
cstatus bit(18);

This call returns the (file system) entry name of the per-loname
segment.

2) call atm$get_pibp(ioname,pibp,cstatus);
dcl ioname char (*),

pibp ptr,
cstatus bit (18);

This call returns a pointer to the per-ioname
segment associated with foname.

3) call atm$get_valid_level(ioname,valid_level,cstatus);

dcl ioname char(=*),
valid_level fixed,
cstatus bit(18);

This call returns the validation level number for ioname.
4) call atm$set_loname1(oldname,newname,cstatus);

dcl oldname char(x*),
newname char (*),
cstatus bit(18);

This call changes the’name of the Attach Table
entry oldname to newname.

5) call atm$set_valid_level(ioname,valid_level,cstatus);

dcl ioname char (*),
valid_level fixed,
cstatus bit(18);

This call sets the validation level number for joname to

6) call, atmg$change_dtab(ioname,dtabn,dtabname,dir, copysw,
offset,cstatus);
dcl ioname char(x),

MULTICS SYSTEM PROGRAMMFRS' MANUAL SECTION RF.2.13 PAGE 6

\('

dtabn fixed bin,
dtabname char(=*),
offset fixed bin,
copysw hit(l),
cstatus bit(18);

This call changes the driving table pointer number dtabn used by
ioname jopame to the file named dtabpname with offset offset.

7) call atm$switch_ionames(ionamea,ionameb,cstatus);

dci fonamea char(¥),
ionameb char(*),
cstatus bit(18);

This call exchanges the ionames of the two nodes.
8) call atm$attach_return(ioname,type, ioname2,status);

dcl ifoname char(*),
type char(e),
ioname2 char(x),
status bit(1l4h);

This call establishes an AT entry and a per-ioname segment for

loname, but does not propagate an attach call,

9) call atm$rename_attach_return(oldname,newname,
type,ioname2,status);

dcl oldname char(#),
newname char(*),
type char(¥*),
ioname2 char(x*),
status bit(lul);

This call renames gldname to pewname and then attaches a new node
with name gldname.

10) call atm$group_init;
Called by fo_ctl$init in the Qverseer.

11) call atm$queue_restart(ioname,cstatus);
dcl ioname char(+), cstatus bit(18);

There is a delayed_restart bit in the per-1/0 segment header,
When this call is made, the ATM calls the lLocker to try to lock
the 1/0 segment, If the lock attempt succeeds, the ATM passes a
restart outer call, Otherwise, it sets the delayed_restart bit
in the header (ignoring the lock)., When a return is made to the
switch, the I0SW checks the bit and, if it is ON, restart.

MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTION BF,2,13 PAGE 7

12) call atm$delete_ioname(ioname,delay_sw,cstatus);

dc1 ioname char(*),
delay_sw bit(1l),
cstatus bit(18);

This call deletes the AT entry for Jopame as well as the
per-ioname segment,

As described in Section RF,.2,10, the I0SW knows the outer module
to be called by meansof the I1oname/outer-module correspondence
embedded in the AT. That is, each time the I0SW receives an
outer call referencing a given ioname, the I10SW must have access
to certain items of the AT entry corresponding to the referenced
ioname. One way to obtain these items is by a search of the AT
(by the ATM) using the ioname as a key. But this does not avail
itself of vital information which all but makes a search, as
such, unnecessary. The key observations to make are:

1) generally, the number of switch points (ionames) which
follow a given ioname in the iopath is small;

2) the predecessor/small-number-of=-successor switchpoint
relations may be discovered dynamically and embedded in
the AT;

3) the proper relation may be made available to the ATM at
the time the ATM has to search the AT, and therefore
the standard search need only be invoke as a kind of
joname-not~-in-next-1list faultcatcher.

Consider Figure 3, with the following definitions:
NXTV(X) (the next vector associated with the ioname X) is an
array of (relative) pointers In the AT(X) (the attach
table entry for X);

MXTVP (next vector pointer) is an Internal static pointer
varfiable of the I10SW; ‘

SNXTVP (save next vector pointer) is an automatlic pointer
variable of the I10SW;

Assume the I0SW is in control at a point after the ATM bas found
the AT(A) and returned the values of the required items. Hence,
the I10SW may set NXTVP equal to the address of NXTV(A). At some
point after this, the I0SW calls the target outer module OM(A).
Let OM(A) now issue an outer call referencing the ioname B,
Receiving control, the I0SW saves NXTVP in SNXTVP and Iissues a
call to the ATM passing NXTVP and the ioname (B) as arguments.
The ATM attempts to find a match for B by comparing it with the
ionames of the AT entries whose addresses are contalned in the
NXTV pointed to by NXTVP, Assume this attempt fails, then the
ATM invokes an exhaustive search of the AT to find the AT entry
for B, Assuming there is no error, the exhaustive search must
succede The ATM then updates the NXTV pointed to by NXTVP with a

]

MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTION BF,2,13 PACF 8

pointer to the found AT entry for R, (On future calls
referencing B by OM(A), the MXTV(A) will contain a pointer to B,
hence the exhaustive search will not be necessary,) At this
point, whether or not the exhaustive search was invoked, the ATM
sets NXTVP equal to the address of NXTV(E) and sets the other
return values required by the I0SW and returns, When the 10SW
receives the return from the ATM it, it saves NXTVP in SNXTVP (as
above) and calls OM(B), When the I0SW receives the return from
OM(B) it sets NXTVP equal to SNXTVP and returns. Because of the
saving and restoring of NXTVP, the value of NXTVP Is correct no
matter how complex the lopath, Finally, note that 1{if NXTVP s
initialized to point to a NXTV not associated with any ioname,
then that NXTV will build up to the list of ionames defined by
the user, and not contain any fonames created by the 10S in
setting up fopaths, This will improve the search time even In
the case in which a next vector does not at first seem
appropriate, that is, at the user/I0OSW interface.

MULTICS SYSTEM PROGRAMMERS' MANUAL

d

NN NR

RRONRRRNORNN R RN

—

1 at_entry based (p),
right_relp bit(18),
down_relp bit (18),
up_relp bit (18),
ionamel char (32),
proc_id bit (36),
type char (32),
ioname2 char (32),
ttentryﬁrelp hbit(18),

ttent_table bit(1),

valid_level fixed,
iosegnam char (50),

segp ptr, .

auxptr ptr,

tbindex bit (18),

epvp ptr,

entry_mask bit (72),

dtabpl ptr,

dtabp2 ptr,

dtabp3 ptr,
new_dtab bit (1),

next_veﬁtor,

3 size fsxed,
]

3 relp (10) bit (18),

2 flags,

3 noattach bit (1),
3 screen bit (1);

SECTION BF.2.13 PAGE 9

/*AT entryx/

/*P1G, relp to next entry at this levelx/
/*1G, relp to first lower level entry*/
/*PI1G, relp to higher level entry«/

{*!, primary ionamex*/

/*P, process idx/ '

/*1, attachment type namex/

/*1, secondary ionamex*/

/*!, relp to type tahle entry active

at time of attach*/
/*"1"h if ttentry is
/*validation levelx/ _
/*! name of per-ioname segmentx/
/*P, ptr to per-ioname segment*/
/*P, outer module auxiliary ptr+/
/*P, index of last allocated TBx/
/*P, ptr to entry point vector#/
/*Pl, entry point maskx*/
/*P, driving table pointers+/

local, else "0"bhwx/

/*P, new driving table flagx/

/*1, data base for predictive search
of next AT entry*/

/*1, number of AT entries for all
known next ionames*/

/*1, relative pointers to AT entries*/

/*!, noattach/local flags«*/

Jable 1 - Attach Table DPeclaration

MULTICS SYSTEM-PROGRAMMERS ©* MANUAL SECTION BF.2.13 PAGE 10

Process 1
ATM ATM
‘ «-—
AT
Template AT To AT Templatie
e ——
ATM ATM
Process 3 Process &

Group X

Attach Table Location
Figure 1

MULTICS SYSTEM-PROGRAMMERS “ MANUAL

SECTION BF.2,13

Attach Table Structure

Figure 2

PAGE 11

root
level

ioname
level

process
level

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.2.13 PAGE 12

OM(X)
/)' AT (A)
A 7
NXTV (A)
(—//—.
/
/
/
yﬁ(p)
OM(A)
/
/
, / AT(B)
NXTV(B)
OM(B)

Attach Table Search Algorithm

Figure 3

