
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.10.00 PAGE 1 

Published: 08/07/67 

Identification 

An Overview of Input-Output Code Conversion 
D. L. Stone, E. L. Ivie 

Purpose 

BF. 10.00 provides information about the use and implementa' ., 
of Multics IOS code conversion. This conversion is accomp1ist_d 
by the Code Conversion Module (CCM), an IOS outer module 
located between the user and the Device Interface Module 
(DIM). The input and output functions of the CCM are 
handled separately and driven from separate tables, although 
the two parts constitute a single outer module. Section 
BF.10.01 describes the implementation of input code conversion; 
section BF.10.02 describes the implementation of output 
code conversion; and section BF.10.03 describes the means 
by which the tables used to drive the CCM on both input 
and output can be created, edited and replaced. 

~eneral 

Code conversion ls a necessary concomitant to the use 
of character oriented input-output under Multics. In 
concept, a character string ls simply a sequence of graphic 
symbols. Code conversion concerns the ways in which character 
strings and their Multics representations can be converted 
from one to the other. For each character string which 
is input by some device, there correspond many possible 
internal representations; in Multics only one will appear 
-- the "canonical" form for that character string (see 
ec.2.00). For each canonical representation, there can 
be assigned a single method of causing the associated 
character string to be produced by some output device. 
It is the job of the code conversion module to produce 
the appropriate Multics representation in the former case 
and to produce the proper codes for the output device 
in the latter. In essence, the CCM ls an interpreter 
between the basic language of Multics and the dialects 
and foreign languages spoken by the peripheral devices 
with which Multics converses. 

The following outline shows the role played by the CCM 
in input-output. The flow from top to bottom indicates 
the transformations which occur during Ir "'Ut; the flow 
from bottom to top, during output: 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.10.00 

1 • * * character string * * 
* * ****************************""************** 

transformed by physical 
motion to 

*******1rlr********************************** 
* * * device code in some * 

2. * device buffer * 

3. 

4. 

* * ******************************************* 
moved electrically to 

***********************************'Ir****** 
* * 
* 
* 
* 

device code in the 
store of the 645 

moved under program control 
of the Code Conversion Module 
to 

* 
* 
* 

**********'Ir***************************** 
* * 
* 

canonical ASCII in the 
store of the 645 

* * 
* 

* * ***************************************** 

PAGE 2 

Although there are actually many more complications to 
character string 1/o_ this diagram includes sufficient 
details for understanding the operation of the CCM. Both 
the GIM and the DIM treat the data between steps (2) and 
(3). However_ their ministrations do not affect the character 
string in transit; rather_ they facilitate its movement 
by properly directing the actions of the hardware. Any 
insertions or deletions of data performe~ by them do not 
affect the conceptual character string wt 'ch is being 
transmitted. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.10.00 PAGE 3 

Invocation 

The CCM is automatically included in any iopath which 
the IOS can determine to be aimed at a character oriented 
device. Those devices are: 

Typewriters 
Card Readers and Punches 
Printers 
Character CRT displays. 

In addition, the CCM may be included by the user in any 
iopath which satisfies the restraints of the CCM on data 
format. Typically, the user would splice the CCM in front 
of a Device Strategy Module (DSM). 

The CCM's operation once attached ls affected by the code 
mode specified in the attach or changemode call and by 
the device intended. Using this information, a set of 
driving tables are selected for use by the CCM. For information 
on tables see BF.10.01, BF.10.02, and BF.10.03. 

Outer WJ. Interpretation 

The CCM handles most of those IOS outer 
explicitly accepts in standard fashion. 
the exceptions and areas of interest in 
in response to outer calls. 

Attachment and Initialization 

ca 11 s wh 1 ch it 
Below are listed 

the CCM's actions 

The calls relating to attachment and initialization handled 
by the CCM are 9ttach, ditach, changemode, divert and 
revert. With the except on that the attach call is not 
forwarded, these calls are handled normally by the CCM. 
Diverf and revert are passed on untouched. CCM initialization 
only nvolves obtaining a set of driving tables and using 
the information therein to prepare for future calls. 
Precise specifications of the information in the tables 
is given in BF.10.01 and BF.10.02, and the method in which 
the tables are specified is given in BF.10.03. 

,1ement ~ 

The two outer cal ls which refer to the <:?lement size are 
getsiie and setsize, (see BF .1.08). Tht restrictions 
on al owable element size are that only ine bit characters 
will be allowed -- these being interpret~d in standard 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 10.00 PAGE 4 

Multics fashion. The exception to this rule occurs when 
the II straight" output code mode or II raw' input mode is 
specified in the mode argument of an attach or changemode 
call (see BF.1.02). In this case, six-bit or nine-bit 
will be allowed. Six-bit and nine-bit are the only element 
sizes transferred by the GIOC to character-oriented devices. 

Syncbronization Calls 

The module responsible for synchronization management 
in the IOS is the device strategy module (OMS). The DSM 
controls both the amount of read-ahead and the amount 
of write-behind that takes place. The CCM normally occurs 
in the iopath between the user and the DSM. It must therefore 
forward to the DSM all calls dealing with synchronization. 
These include: readsync, writesync, resetread, resetwrite, 
worksync, iowait, and abort. (See Section BF.1.04 for 
a description of these calls.) 

The only synchronization calls that initiate special action 
in the CCM as they pass through are resetread, ilb.Q.r.1, 
and iowait. There is a certain amount of unavo1da6Te 
read-ahead that may take place in the CCM. This is due 
to the fact that no canonicalization or erase-kill processing 
can be performed until the appropriate delimiter has been 
found. Thus, the CCM may process a whole line at a time 
but only return to the user that part of the line requested 
by the user. The remaining portion of the line is unavoidably 
read-ahead data. It is kept in a buffer and used to satisfy 
future ..rggg requests or is deleted if a resetread or abort 
call is7ssued to the CCM. 

The CCM may also have to transform the oldstatus argument 
in the ..ab.Qr1 and iowait calls it receives to the corresponding 
transactl'orlpointers in the calls it has issued to the 
DSM. 

Delimiters and Pointers 

The CCM always stores the list(s) specified by a setdelim 
call and usually passes the call on. For a getdelim call 
the CCM sets the appropriate arguments and returns to 
the caller. There is no need for passing this call on. 
(See Section BF.10.01 for further discussion on these 
ca 11 s.) 

Seek and 1e.!l calls issued by a user to he IOS are in 
terms of the nunt>er of items which he r€Ads or writes. 
In general the CCM will be the only modu 1e which will 



I"'"' 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.10.00 

be able to keep such counts. because code conversion is 
not a one-to-one process. Therefore. the CCM sets the 
offset argument of a tell call based on the number of 
ASCII characters which have been translated and returns 
to the caller. 

PAGE 5 

The CCM rejects the~ call because it is not in general 
possible to transform the ASCII-oriented seek into a meaningful 
call to lower modules in terms of the elements with which 
they deal. Further, when the CCM is sending blocks of 
calls to lower modu1es. the meaning of the seek changes 
in a way which prevents any useful transformation of the 
user's seek. 

Functions Perfprmed .bl!,~ CCM 2!l Output 

There are three basic actions performed by the CCM on a 
character string specified by a write calls 

1 • Ordering the characters as per device strategy. 
Reordering the characters is required only for devices 
which must simulate certain control characters as. 
for instance. the printer simulating a backspace. 

2. Editing the string according to the character disposition 
tables specified. The character disposition tables are 
explained in BF.10.02. 

3. Converting ASCII codes to device codes. 

All three of these actions are controlled by the type 
of device to which the output ls directed. The editing 
function ls the only one influenced by the user's code 
modes. 

Per-call~ Reordering 

For the purpose determining the optimal way to order an 
output string of characters. we may classify the output 
devices into two types -- those which must simulate a 
backspace and those which need not do so. The former 
type comprises line printers. certain typewriters and 
other devices which have a carriage return capability 
but cannot backspace. In order to overstrike on the backspace­
less devices. additional lines must be printed over the 
firstJ hence. these devices must sort the·r data by depth 
of overstrike and then by horizontal posi ton as opposed 
to backspaceable devices which normally p lnt data sorted 
first on horizontal position and then on ~verstrike depth. 
Accordingly. the CCM orders the data passir,~ through it 
in whichever way the code table indicates is the desired 
method for the class of device which will receive the 
data. 



r 

r 
I 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 10.00 PAGE 6 

~ditlng 

The editing functions of the CCM are controlled by the 
code modes specified by the user. In editing the data 
written by the user. the CCM divides the ASCII character 
set into six categories. The characters In each category 
are placed there by the character disposition table specified 
in the driving tables. The categories are: 

1. The character ls precisely the bit pattern which 
should be sent to the device. Clearly. this category 
is only open to devices which can cope with the ASCII 
set. or at least some part thereof. No conversion is 
necessary. 

2. The character is a graphic in the device character set 
which is to be printed; or the character is a control 
character whose function is available on the device (e.g. 
-- backspace on a 1050 but not half-line feed). and 
which function is to be performed. 

3. The character is to be deleted from the data. 

4. The character is to be printed as the shortest escape 
sequence which defines it (e.g. -- left parenthesis 
overstruck by minus sign for a left brace on a 1050 
with a 938 ball). 

5. The character ls to be replaced by a blank in the data. 

6. The character ls a control character which must be 
simulated. Such a character is backspace on 
non-backspaceable devices. 

The default tables used by the CCM place as many characters 
as possible In categories (1). (2) and (6) and all others 
In category (4). This corresponds to the "normal" code 
sub-mode. Two other sub-modes are available. if specified 
by the user's code mode. the II straight" mode. in which 
all characters are treated as if they were in category 
(1 ). and the "edited" mode. in which al 1 characters normally 
in category (4) are distributed between categories (3) 
and (5) depending upon whether they are controls or graphics. 
respectively. Non-ASCII characters remain in category 
(4). The default tables for the 11 edited" mode implement 
this distribution for each device. For 1 ~re detailed 
control of the editing capabi 1 ities of ti. CCM 1 the user 
must create his own output code conversic tab1es and 
specify that they should be used. See BF. 10.03 for details. 



I'"" 
i' 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.10.00 PAGE 7 

Conv~rsion .l2 Device Codes 

The CCM's final task on output is to convert the result 
of ordering and editing the characters into device codes 
suitable for the specified device. This conversion is 
accomplished by the code tables associated with each device 
class and obtained from the output code conversion tables 
in the driving tables. These output code conversion tables 
are not alterable by the CCM. The specifications contain, 
in these tables enable the insertion of case shift characters 
and other controls specific to each device. No timing 
considerations or tabbing strategies are incorporated; 
these functions are performed by the DCM's. 

Buff~ring 

On output the CCM passes the data which it receives from 
a write call by means of writerec calls. The number of 
records (print lines) passed in each writerec call is 
a variable bound by the driving tables selected for a 
particular attachment of the CCM. The CCM issues as many 
writerec calls as are necessary to the DSM, but always 
processes all of the data before returning control to 
its caller. The CCM always retains its processed data 
until physical completion of the transactions involving 
it has been signalled from the modules below. 

Functions Performed on Reading 

The functions performed by the CCM on input are all associated 
with the cgnonicfl code conversion mode. They are briefly 
described elow n the order in which they are performed 
by the CCM. 

1, Conversion from Device Code to ASCII 

There is a device code-to-ASCII table for each type of 
input device available to Multics. The general layout 
of the tables is given in BF.10.01. The precise contents 
of these tables are given in the Sections dealing with 
each device in question. 

In general these tables map each device character into 
the ASCII character which most closely resembles it. 
See Section BC.2.01 for a description of the ASCII character 
set, the Multics standard control charac ·ers, and methods 
of dealing with non-ASCII characters. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SEC TI ON BF • 1 0 • 00 PAGE 8 

2, Hidden Characters 

Occasionally one may wish to type a character on his console 
which is to have only a local effect and is not to appear 
in the final character string or to initiate any action 
in the IOS. An example of where this might be useful 
is when one has reached the physical end of a line but 
has not completed the II loglcal 1 ine". In this case he 
could type a "hidden" newline character by the sequence 
"(escape-character)C (new-1 ine )". A 11 three of these charac ... ~ , 
would be deleted from the input string on this step. 

Note that erase and kill characters cannot be hidden. See 
Section ac.2.02 for a description of hidden characters. 

3, Print Position Alignment 

The third step performed by the CCM is the interpretation 
of the character string as a printed line. Characters 
are grouped together according to the horizontal print 
position and vertical character position which they occupy. 
The objective of this step ls to create an internal "line 
image" which represents the actual appearance of the line 
as printed at the console and ls Independent of the order 
in which the Individual characters were typed. Thus., 
the sequence 11 abc(bs)(bs)_11 ., would be made equivalent 
to the sequence., "ab(bs) cu. (Here 11 (bs)" means backspace.) 
Note that the internal 1Tne Image ls not exactly equivalent 
to the line printed at the console if hidden characters 
are present. Section BC.2.00 provides further information 
on this step. 

4, Erase and Kill Processing 

This step makes use of two reserved characters: the erase 
character and the kill character. The erase character 
provides the ability to erase all characters which have 
been typed In the horizontal print position in which the 
erase is found and also all characters in the previous 
print position. A kill character erases all characters 
ln horizontal print positions to the left of (and including) 
the print position occupied by the kill character. Vertical 
motion and ribbon shifts are not erased. See Section 
BC.2.03 for a more complete explanation. At the same 
time the CCM processes erase and kill characters it interprets 
those escape sequences which change the e·ase or kill 
character. These sequences are described !n Section BC.2.04. 



MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BF.10.00 PAGE 9 

5, Interpretation of '1,JLTICS ~scape Conventions 

The next function perfonned by the CCM is to replace all 
valid escape sequences with their equivalent character. 
What constitutes a valid sequence of each type of input 
device is described ln BC.2.04. The basic purpose for 
having escape sequences is to allow the user to generate 
the full ASCII character set even on deficient input devices. 

Universal octal escape sequences can be used on any input 
device. Any 9-bit code can be inserted by this mechanism. 
In addition to octal escape sequences there are specialized 
escape sequences for each device which.are designed to 
be easy to remember and which insert certain unavailable 
characters. 

§, Canonlcaliiation 

Canonicalization arranges the characters within a line 
in a fixed order so that subsequent processing and interpretation 
does not require checking for alternate equivalent orders. 
Characters within a line are first ordered from left to 
right. Characters within a given horizontal print position 
are ordered from top to bottom. Overstruck characters 
are ordered according to ascending code number and interleaved 
with backspaces. A full description of canonicalization 
is found in Section Bc.2.02. 


