. Identification

& "zﬁ-:"" i -"‘J srwiznadrn il I R .‘{5
-,"’; ‘.‘ . ,_
MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 1

User Control of Program-Device Synchronization.
J. F. Ossanna.

purpose

The section describes the method of controlling the degree of
synchronization between issuance of input/output requests to . the

I/0 System (I0Ss) and the actual performance of physical,

input/output by the IOS.- Internal synchronization management
anong the modules of the IOS is described in Section BF.2.25.
Outer calls concerned with program-devxce synchronization. and
defined in this document are: .

readsync’

writesync

"resetread

resetwrite

worksync

~readwait

writewait

iowait

abort
In addition, & special use of the attach call for "emergency"
attachment is described. An additional mode that can be used

during conventional device attachment to suppress certain
asynchronies is also described. _

pProgram-Device Synchronization: General

Following the receipt of a request for input/output from a ‘user
program, an I/O System begins executing the sequence of steps
necessary to ultimately accomplish the actual input/output.
These steps may concern code conversion, intermediate buffering,
physical record formatting, etc. Typically, control is returned
to the user program before input/output is physically completed;
final completion is accomplished or determined to have occurred
at some subsequent time when the I/O System is again in control.

‘A familiar example of delayed physical output occurs when output

data is buffered until sufficient data has been collected to fill
a physical record. It is also true that some of the steps

necessary for satisfying dinput/output requests can be taken.

before the corresponding request from the user progran. A
familiar example of this case occurs when a physical record is
read ahead of the time that all of its data is needed.

The relationships in time between user-program requests for
input/output and the I/O System's efforts to satisfy these
requests are complex. These relationships are usually .determined
by I/0 System design. In contrast, the Multics I0OS is designed
to clarify these relationships and to provide the user with some

Published: 3/01/67

[25g

N, AN

e
(72 2 .
B

s

-

Page « 2 MULTICS SYSTEM~-PROGRAMMER'S MANUAL

contrxol over them.,

Loosely speaking, if the IOS's work to satisfy a request is not
begun until the request is issued and the physical input/output
is completed before control is returned to the user, the user
program and the device are said to be operating synchronously.
Otherwise, they are operating asynchronously. Rigorous
definitions are given in later sections of this document.

The Multics IOS offers user control over three kinds ofv

synchronization relationships - read, write, and workspace

synchronization. Read synchronization.control 1s concerned waith.

whether or not read-ahead is performed by the IOS, and, if it is,
how much read-ahead is performed. Write synchronization control
is concerned with whether or not the IOS performs write-behind
buffering ox not, and, if so, how much. Workspace
synchronization control is concerned with whether or not control
is returned to the user program before the IOS is finished
copying data from or storing data into the user's workspace. It
should be observed that read-ahead and write-behind may each fall
into two classes - avoidable and unavoidable. Some of the latter
usually occurs during input/output on physical-record-oriented
devices. Usexr control is applicable only to avoidable read-ahead

- and write-behind. A detailed description of these forms of

synchronization control including their interrelation is given in
later sections of this document,
A

Usefulness of Synchronization Control

Historically, one of the major reasons for providing read-ahead
and write-behind was the increased overall system efficiency
resulting from the overlapping of program execution and
input/output transmission. However, system efficiency could
suffer when a user's access behavior differed from that assumed
during buffer strategy design; for example, a user accessing a
tape almost randomly needs only the mininmnum input/output
buffering. For Multics, the efficiency argument for asynchronous
input/output applies, but with 1less force, Instead, the
reduction of the total elapsed time required for the completion
of a program with significant input/output becomes the major
reason for providing and controlling asynchronous input/output on
noninteractive devices.

Control of input/output asynchronism is useful on interactive
devices for additional reasons. For example, read-~ahead on a
typewriter is desirable generally and especially when large
amounts of typing are involved. On the other hand, synchronous
input/output is most important when the user is interacting with
an undebugged, strange, or many-branched program,

Most of the discussion thus far has been concerned with read and

write synchronization. The usefulness of the workspace
synchronization control mentioned earlier stems from additional

considerations. First, a wuser program may need to issue

Section BF,1,.04

e

i
.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 3

1nput/output requests at a rate greater than that possxble with
any ordinarily conceivable read-ahead or write-behind strategy.
If the user program does not insist that its worhspace be emptied
(or filled) before return of control, it can receive control back

-.sooner. An exanple of this need occurs when copying (with one
_pass) a record-gap-less tape using a multiple workspace strategy.

Second, a user program may want to poll a series of devices
without regard for which ones have data available. For example,

- a user program may be willing to accept data from either of two
typewriter keyboards. If the user program does not insist on its

workspace being filled before return of control, it can issue a
read call for the second keyboard before any data is received
from the flrst keyboard.

pevice Dependence of Synchronization Control

The usefulness, variety, and possible degree of synchronization
control is, of course, somewhat device- and situation-dependent,
The manner and extent to which the IOS can or does comply with
user synchronization control requests is necessarily dependent on
the specific implementation of specific Device Interface Modules
(DIMs) within the I0s. Because flexible and dynamic

. program—-device association is a basic tenet of the Multics 1I0S,

the response to and behavior following synchronization control
requests is as uniform and equivalent as possible among the
various DIMs. These requests are interpreted or tolerated by
every standard DIM, and can almost always be safely issued. A
possible exception occurs when workspace synchronization control
requesLs are issued to achieve real-time advantages. The reader
is referred to the various sections of MSPM Section BF describing
input/output on particular devices.

Degrecs of Input/Output Request Completion

To simplify subsequent discussion, certain terms and concepts
relating to possible degrees of input/output request completion
are discussed here. To begin with, whenever a user program
receives control back following a read/write call, the request
can be considered to be at least logically initiated. That is,
the requested input/output will eventually be performed, if at
all possible, without further intervention by the user program on
behalf of that specific request. Of course, hardware errors,
system failure, facilities reservation expirations, and other
generally unexpected events can conspire to frustrate the
completion of physical input/output. Also, a detach call is
required in certain instances to force completion. The least
amount of work that the IOS can do to achieve logical initiation
is to place the call in a software queuec.

The next degree of completion is logical completion. When the
usexr program receives control back following a logically
completed read/write call, two things are-true: (1) the data has
been transmitted to or from his workspace; and (2) certain status
bits in the status bit string will reflect their final value (see

Page 4 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04

Section BF.1l.21). A logically completed write call may not | be
physically completed; the output data may merely have been copied
into an IOS buffer.

Another degree of request completion is physical initiation.:

When this stage is reached, the input/output nas actually been
queued in the GIOC hardware, and will procced unless deliberately
aborted by the IOS or by system or hardware failure.

The final stage of completion is physical completion. At this
stage input/output has not only been accomplished by the
hardware, but input data has been ~delivered to the user's
workspace., ‘

Logical and physical completion are each indicated by bits in‘the:
status bit string (see Section BF.1.21). _In summary the four

stages are:

(A) Logical initiation. (Software queued)

{(B) Logical completion. (Data transmitted to or from the
workspace) - . .

(C) Physical initiation. (llardware queued)

(D) Physical completion.

Return of control from a read/write call implies (a). ‘(B)
inplies (A), and in the case of a read call, also implies (C) and
(D). And (C) 'implies (A) but not necessarily (B). '

Introduction to Workspace Synchronization

The subject of workspace synchronization control will be fully
discussed in detail in a later section of this document. - The
present introduction is provided to simplify the following
discussions of read and write synchronization control.

When a user program issues a read/write call to the I0S, one of

the arguments specifies the wuser's workspace. This 1s the
location within the user program where either input data is
placed by the IO0S or output data is removed by the IO0S. The

workspace synchronization mode is either synchronous or
asynchronous. This mode is associated with a particular ioname.
Normally the mode propagates down the i/o-path leading from the
ioname (see Sections BF.1.03 and BF.2.25),.

The workspace synchronization mode normally provided by the IOS
is synchronous. The user nmust overtly ask for the mode to be
nade asynchronous by a call to be described in a later section of
this document, In the normally synchronous workspace case, the
user program receives control back after a read call with its
workspace filled with input data or a write call with the output
data copied from its workspace, In other woxds the I0S is
finished with the usexr's workspace. A more rigorous statement is
that control is returned after logical and/or physical
completion, depending on the read and write synchronization

MULTICS SYSTEM-PROGRAMMER'S MANUAL ~ Section BF.1,04 Page 5

il

s

nodes.

If the write synchronization mode 'is asynchronous, the IOS
returns control to the user program as soon as possible after it
arranges for the read/write request to be done. Specifically,
the return. occurs after logical and/or physical initiation,
depending on the read and write synchronization modes. Before
the user can subsequently use his input data or reuse his output
workspace, he mnust overtly determine the condition of the
workspace by interrogating the completion bits in the status bit
string. Alternatively, the user program can issue one of the
"wait" calls described in a later section of this document.

Read Synchronization Control

The read synchronization mode is either synchronous or
asynchronous. This mode is associated directly with the "device"
and not with any intermediate streamnames ‘used to «reach the
device. Specifically, this mode is a property of the device or
frame terminal defined in Section Br.1.0l1, and more specifically
it is a property of the primary device terminal defined in
Section BF.1.03.

The call to set the read synchronization mode for a device is:

call readsync(ioname , rsmode [, limit [, status]])

The brackets, [1, indicate optional arguments and sets of

arguments in the usual way. The first argument, ioname, is any

ioname on an i/o-path leading to the desired device. rsmode is a

one character string specififying the desired read
synchronization mode. rsmode = "A" requests the asynchronous

rnode and rsmode = "S" requests the synchronous mode. 1limit is a
pointer to a 35 bit signed integer which specifies the maximum
permitted or recommended amount of read-ahead in terms of
elements of the current element size. If limit is not provided
or is a null pointer, no limit is specified and the I0S will
inpose a default linit, which is device~ and possibly
situation-dependent. status is a pointer to the status bit
string (see Section BF.1.21).

If a read call is issued prior to any readsync call, the read
synchronization mode is set to asynchronous.

setting the read synchronization mode to. synchronous prevents
only "avoidable" read-ahead. Unavoidable read-ahead can occur.
The most common examnples of unavoidable read-ahead occur on
physical-record-oriented devices such as magnetic tape and unit

rccord devices. For example, a physical tape recoxrd may be read-

by the I0S to obtain cdata needed to satisfy a read request; if
data in only part of the record was needed, the remainder was
unavoidably read-ahead.

RPN

0w T L T I i i 2 B L el L A

(e
24
g

e 2 e e e s iiad

Page 6 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04

In the synchronous read mode, the I0OS will not read data from a
device until a read call is made. Then, the IOS attempts to read
only enough data to satisfy the call. For example, if the device
is a typewriter keyboard, the keyboard is not unlocked to permit
typing until a read call arrives, Then the IOS typically reads
until an appropriate break character arrives and locks the
keyboard again. If the read call does not consume all the data

read, some unavoidable read-ahead has occurred. The latter
happens, for exanple, when the read call requests fewer

characters than the number that actually preceded an erase/kill
delimiter.

If a readsync call sets the read synchronization mode to
asynchronous, the IOS begins to apply a device dependent
read-ahead strategy. In any case the avoidable read-ahead is
held to less than the current limit; the I0OS actually attempts to

. _hold the total read-ahead to less than the limit. If the device

is a spontaneous provider of data, the IOS attempts to read the
device continuously. ‘A typewriter is an example of a
controllable spontaneous device; the IOS attempts to leave the
keyboard unlocked and collect data continuously except when
output is being printed.

Unused data collected during read~ahead on a sequential,
forward-only device is not discarded following a readsync call
which sets the read synchronization mode to synchronous or which
lowers the redd-ahead limit below the amount read ahead. . Such

" unused data is discarded only upon receipt of a resetread call.

If the workspace synchronization mode is synchronous, return of
control following a read call necessarily implies physical
completion. If the workspace mode 1is asynchronous, return of
control following a read call implies (at least) logical
initiation when the read mode 1is asynchronous, and physical

initiation when the read node is synchronous. These
relationships are depicted in the following table (where A =
Asynchronous, S = Synchronous, P = Physical, L = Logical, I =

Initiation, and C = Completion):

Workspace Sync Mode

A S
Read) A LI PC
sync) :
Mode) S PI PC

A call is provided for discarding existing read-ahead data; it
is:

call resetread(ioname [, status])

R
.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 - Page 7

ioname and status are as defined for the readsync call. Issuing
the resetread call does not affect the read synchronization mode.

write Synchronization Control

The write synchronization mode 1s either synchronous or

asynchionous. This mode, like the read synchronization mode, is

associated with the device. The call to set the write
synchronization mode is: :

call writesync(ioname , wsmode [, limiffl, status]1]) ¥

The first argument, ioname, is any ijoname on an i/o~path leading

to the device. wsmode 1s a one-character string specifying the

desired write synchronization mode., wsmode = YA" requests the
asynchronous nmode, and wsmode = "S" requests the synchronous

mode. limit is a pointer to a 35 bit signed integer which
specifies the maximum pernitted or recommended amount of
write-behind in terms of elements of the current element size.
If limit is not provided or is a null pointer, no linit is
specified and the I0S will impose a default 1limit, which is
device~ and possibly situvation-depencent. status is a pointer to
the status bit string (see Section BF.1l.21).

If a write call is issued to the device prior to any writesync
call, the write synchronization mode is set to asynchronous.

Setting the write synchronization mode to synchronous prevents
only "avoidable" writc-behind. Unavoidable write-behind commonly
occurs on physical-record-oriented devices. For example, the
writing of a physical tape record is ordinarily delayed until
sufficient output data has been collected to write a complete
rccord of the standard size. :

If the write synchronization mode is asynchronous, the IOS
criiploys a device~dependent write-behind strategy. The avoidable
write-~behind is held to less than the 1limit; the IOS actually

cattempts to hold the total write-behind to less than the limit.

Physically-~initiated output 1is regarded as a . part of the
write-behind data, until completion occurs. ' Before returning
control to the user following a write call, the I0S will have
logically initiated the write request and, if the workspace
synchronization mode ‘is synchronous, copied the output data from

the user's workspace. If output was not already proceeding.

because of previous write calls, the I0S may physically initiate
part or all of the output. If a.write call is received having a
workspace size which would causc - the current quantity of
write~behind to be incremented beyond the current limit, the IOS
responds in cither of two ways, depending on whether or not the
amount by which the linit. would be exceeded 1is less than ox
greater than a device-dependent allowvable extension limit, If
the excess is less than the allowable extension, the only cffect
is that the rcturn of control to the user is delayed until the
write-behind again falls below the current limit. If the excess

Page 8 MULTICS SYSTEM~PROGRAMMER'S MANUAL - Section BF.l.04

exceeds the allowable extension, the write call is rejected. - If
a writesync call lowers the limit to an amount below the current
write-~behind, .and a write call occurs before the write-behind

drops below the new linit, this write call is treated exactly as

though its request had caused the excess.

If the write synchronization mode is synchronous, the IOS returns
control to the user following a wrlgg call after the requested
output is physically completed (except for unavoidazble
write-behind) when the workspace synchronization mode is

synchronous or after the requested output is phys;cally initiated

when the workspace mode is aaynchronou

The relationships between the write and workspace synchronization
nodes are depicted in the following table (where the letters A,
s, P, L, I, and C vwere defined in connection with an earlier
almllar table) : _

Workspace Sync lMode

A S
Write) A LI LC
Sync)
Mode) S PI PC

A call is provided for discarding existing write-behind data; ‘it
is:

call resetwrite(ioname [, status 1)

joname and status are as defined for the writesync call. Issuing
a resctwrite call does not affect the write synchronization mode.
Physically-initiated output is not discarded. The status bit
strings of the affected write calls will reflect the occurrence
of tne resectwrite call; a bit is set indicating that the call was
aborted by user requcgt prior to physical completion (see Section
BF.l.21). A partially-affected write call will have the same bit
set even though part of the data may have been written out.

workspace Synchronization Control

The workspace synchronization mode is normally synchronous. The
call to control this mode is:

call worksync(ioname , wkmode [, status])

The first argument, ioname, is the ioname at which the mode is to
be esLabli shed. Stdu]‘ﬂiu a pointer to the status bit string.
10 o erLDg specifying the desired workspace
“Vnronlaatvon node. wkmode = VA" reguests the asynchlonoua

node, and wkmode = "g* rcguests the synchronous mode. Typically,

i
it

MULTICS SYSTEM~PROGRAMMER'S MANUAL Section BF.l.04 Page 9

the outer module at ionane reissues the worksync call to the next
outer module along the i/o-path; Thus this mode usually
propagates down the entire i/o-path. If a second i/o-path merges
with an i/o-path at an ioname at which the workspace
synchronization mode 1is asynchronous, modules in the second
i/o~path may receive return of control back prematurely after a
read/write call. This occurrence is detectable by examining the
status bit string. It can also be prevented by interpolating a
Monocaster (sce Section Br.2.18), which detects premature returns
and issues iowait calls to reestablish workspace synchronism. If
two merging 1i/o-paths are both workspace asynchronous and one is
set to synchronous, the common portion of the other is affected;
the resulting effective workspace mode of this other path has in
nost instances also become synchronous.

when the worfs@ace synchronization mode is asynchronous, the user
program can get control back following a read/write call before
logical or physical conpletion of the request. The user program
can subsequently determine the request status by interrogating
the completion bits in the status bit string. Alternatively, the
user program can issue one of the following “"wait" calls: ’
call readwait(ioname [, status])

call writewait(ioname t, status)

call 1owa1L(ioname [, transptr [, status]])

ioname and status are as defined for the worksync call. transptr

is a "transaction" pointer used to ldentlfy a previous
transaction (see Section Br.z2.02). tralsptr is literally the
status pointer of the earlier call which is of interest. Fox

transptr to be a meaningful transaction pointer, the "hold" bit
in the corresponding status bit string must’ have been set

‘following the return from the call of interest (see Sections
BF.,1.21 and BF.2,02). A nonmeaningful transaction pointer causes

an crror indication. in the status bit string of the "wait" call,

The readwait and writewait calls implicitly refer to the most
recent read and write transactions respectively. Return of
control to the user progran following a readwait, writewait, or
jowait call occurs when ‘the referenced Etransaction has been
conpleted to the degree required to enable a return had the
workspace synchronization mode been synchronous. If transptr is
absent or is a null pointer, the transaction referenced in the

“iowait 11t call is the most recent read or write call. These “wait®

Calls are inappropriate when the workspace synchronization mode
is synchronous, and their use will cauvse an error indication in
the status bit string of the “wait" call.

method for Aborting T -ansactions

A nechanism is provided for cancelling oxr aborting
s>reviously-issued read and write 1reguests and can be used
irrespective of the workspace synchronization mode. - Only read

page 10 MULTICS SYSTEM~PROGRAMMER'S MANUAL "~ Section BF.1,04

and write calls are affected and any interpolated non-read/write
calls have their normal effect. The call for aborting
transactions is:

call abort(ioname [, transptr [, status 1))

ioname is any appropriate ioname, and status is a pointer to the
‘status bit string. transptr is a transaction pointer as

described earlier in connection with the iowait call. The abort
call requests cancellation of the read/write call to which
transptr refers and of all subsequent read/write calls preceding

the abort call, If transptr is missing or is a null pointex, the
I0S attempts to abort all existing read/write- calls which are
physically inconplete. If - transptr refers to a
physically-conpleted request, the I0S still attempts to abort the
subsequent requests. Successfully-aborted read/write calls have
a status bit set indicating that the .call was user-aborted.,

Unsuccessfully-aborted calls are nerely indicated to be
physically complete, Partially-aborted write «calls are’
considered to be aborted. The status of the abort call contains
an "unsuccessful" indication, if and only if the IOS was unable

to cancel any outstanding requests. o

Read/Write Asynchrony Prevention

Under certain circumstances it may be useful to operate a
particular device with a synchronous read and/or write mode while
using a program written to specify or permit asynchronous read
and/oxr write mocdes. This may be achieved at device-attachment
time by including a special mode character in the mcde argument
of the attach call or at any time by wuse of the mnode in a
changenode call (see Section BF.1.01). - '

The special asynchrony prevention character is "Y". The presence
of the sequence "RY" in mnode sets the read sync mode to
synchronous and causes future readsync calls to be - ignored;:
similarly "WY" sets the write syncnronization moce to synchronous
and causes future writesync calls to be ignored; "Y" -unpreccded
by "R" or "w" forces both modes to be synchronous. The
subsequent use of "not¥Y" in thesec same contexts causes future
readsync and/or writesync calls to have their normal effect,
although the modes are not changed at the time of the changemode
call. The "not" is used here as a representation of the PL/I
"not" symnbol (ASCII "overline").

No mechanism is provided for -‘advance prevention of workspace
asynchrony, inasnuch as programs use the asynchronous worksvace
node for purposes (outlined earlier) likely to be more or less
incompatible with synchronous workspace operation.

Emcexrgency Device Attachnent

Under certain conditions it may be desirable or necessary to
suspend in a restartable way previously-reguested input/output

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 11

which is currently in progress on a particular device., . For -

exanple, the Supervisor may need to write an emergency message on
a typewriter, advising of an automatic logout or other imminent
happening. A special use of the attach call is provided for this
purpose. An ‘"emergency" device attachment may be made by
including the node character "IBE" in the mnode argument of the
attach call., Such an attachment overrides the existing device
attachment and causes suspension of any current input/output ‘on
the device. A new independent series of input/output
transactions may now be undertaken. Subsequently, a detach call
with disposal containing "E" will end the emergency attachment

and reinstate the previously-suspended input/output.

An emcrgency attachment-detachment sequence effectively permité'

the instant interpolation of an independent series of
input/output transactions during the course of existing
input/output. Such emergency scquences may be nested to any
depth. The IOS accomplishes this independent input/output by
using a new and separate i/o-path and attachment graph below the

device terminal within the I0OS (see - Section BF.1.03). ‘The
separate, = independent attachment’ and transaction graph is
normally obtained by creating a new Device Manager Process, The

previous Device Manager halts wupon reéceiving a please-qguit
request from the IOS in the process in which the emergency
attachnent was reguested,

Possibly the most common example of emergency attachment that
will occur results from the receipt of a valid "quit" signal from
a -device which is also the current comamand source (see Section
BF.3.01). An emergency attachment is made to this source to
accomplish the command input/output. ‘

