
I 

;-J 

i 
I 
I 

i 

l 

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 1 

Published: 3/01/67 
Identification 

user Control of Program-Device Synchronization. 
J. F. Ossanna. 

purpose 

The section describes the method of controlling the degree of 
synchronization between issuance of input/output requests to the 
I/O System (IOS) and the actual performance of physical, 
input/output by the IOs.· Internal synchronization management 
among the modules of the IOS is described in Section BF.2.25. 
Outer calls concerned with program-device synchronization. a.ncl 
defined in this document are: 

readsync· 
writesync 

· resetread 
resetwrite 
worksync 
readwait 

· writewait 
iowait 
abort 

In addition, a special use of the attach call for "emergency" 
attachment is described. An additional mode that can be used 
durinq conventional device attachment to suppress ·certain 
asynchronies is also described. 

Program-Device Synchronization: General 

Following the receipt of a request for input/output from a user 
program, an I/O System begins executing the sequence of steps 
necessary to ultimately accomplish the actual input/output. 
These steps may concern code conversion, intermediate buffering, 
physical record formatting, etc. Typically, control is returned 
to the user program before input/output is physically completed; 
final completion is accomplished or determined to have occurred 
at some subsequent time when the I/O System is again in control. 

·A fruniliar example of c:ielayed physical output occurs when output 
data is buffered until sufficient data has been collected to fill 
a physical record. It is also true that some of the steps 
necessary for satisfying input/output requests can be taken 
before the corresponding request from the user program. A 
familiilr example of this case occurs when a physical record is 
read ahead of the time that all of its data is needed. 

The relationships in time between uscr-prograra requests for 
input/output and the I/O System's efforts to satisfy these 
requests are comple~~. These relationships are usually.determined 
by I/O System design. In contrast, the Multics IOS is designed 
to clarify these relationships and to provide the user with some 

/ 

' . ; i 

i 
I 

I 



,. 

t:/ .. ,,-:t. - ==:-~="---""==--.,.,. ___ .......... ~=1i. .. -~ f .~d.-= .. ==-~•-a:,.,...;.~~"=--'~·-~ L~" ._::: \ ~ 
... , ' \ ,1., • I · l 

r·-_·:.;;.:. . . ~~·- ... · ... : __ ,,::..·. 

Page 2 MULTICS SYSTEH-PROGRAMMER'S MANUAL 

control over them. 

Section BF.1.04 
i' 
I 

Loosely speak;i,ng, if the IOS's wo:i;-k to satisfy.a request is not 
begun until the request is issued and the physical input/output 
is completed before_ control is returned to the user, the user 
program and the device are said to be operating synchroiiously. 
Otherwise, they are operating asynchronously. Rigorous 
definitions are given in later sections of this document. 

The Multics IOS o-ffers user control over three kinds of 
synchronization relationships - · read, write, and workspace 
synchronization. Read s~chronizatiori:control is concerned w-j,.th. 
whether or not read-ahead is performed by the IOS,_and, if it is, 
how much read~ahea.d is performed. Write synchronization control 
is concerned with whether or not the IOS performs write-behind 
buffering OJ;' not, and, if so, how much~ Work.space 
synchronization control .is concerned with whether or not control 
is returned to the user program before the IOS is finished 
copying data from or storing data into the user's workspace. It 
should be observed that read-ahead and write-behind ~ay each fall 
into two classes - avoidable and unavoidable. Some of the latter 
usually occurs during input/output on physical-record-oriented 
devices. User control is applicable only to avoidable read-ahead 
and write-behind. A detailed description of these forms of 
synchronization control including their interrelation is given in 
later sections of this document. 

I ' 

usefulness of £Xnchroniza.tion Control 

Historically, one of the major reasons for providing read-ahead 
and write-behind was the increased overall system efficiency 
resulting from the overlapping ·of program execution and 
input/output transmission. However, system efficiency qould 
suffer when a user's access behavior differed from that assumed 
during buffer strategy design; for example, a user accessing a 
tape alraost randomly needs only the minimum input/output 
buffering. For Multics, the efficiency argument for asynchronous 
input/output applies, but with less force. Instead, the 
reduction of the total elapsed time required for the completion 
of a program with significant input/output becomes the major 
reason for providing and controlling asynchronous input/output on 
noninteractive devices. 

Control of input/output asynchronism is useful on interactive 
devices for additional reasons. For example, read-ahead on a 
typewriter is desirable generally and especially when large 
amounts of typing are involved. On the .other hand, synchronous 
input/output is most important when the user is interacting with 
an undcbugged, strange, or many-branched program. 

Most of the discussion thus far has been concerned with read and 
write synchronization. The usefulness of the workspace 
synchronization control mentioned earlier stems from additional 
considerations. First, a user program may need to issue 



( 

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 3 

input/output requests at a rate greater than that possible with 
any ordinarily conceivable read-ahead or write-behind strategy. 
If the user program does not insist that its workspace be emptied 
(or filled) before return of control, it can receive control back 
sooner. An example of this need occurs when copying (with one 
pass) a record-gap-less tape using a multiple workspace strategy. 
Second, a user program r.1ay want to poll a series of devices 
without regard for which ones huve data available. For example, 
a user program may be willing to accept data from either of two 

.typewriter keyboards. If the user program does not insist on its 
workspace being filled before return of control, it can issue a 
read call for the second keyboard before any data is receive~ 
from the first keyboard. 

oevice Dependence of Synchronization Control 

The usefulness, variety, and possible degree of synchronization 
control is, of course, somewhat device- and situation-dependent. 
The raanner and extent to which the IOS can or does coraply with 
user synchronization control requests is necessarily dependent on 
the specific implementation of specific Device Interface Modules 
(DHls) within the IOS. Because flexible and dynamic 
program-device association is a basic tenet of the Multics IOS, 
the response to and behavior following synchronization control 
requests is as uniform and equivalent as possible among the 
various DIMs. These requests are interpreted or tolerated by 
every standard DIM, and can almost always be safely issued. A 
possible exception occurs when workspace synchronization control 
requests are issued to achieve real-time advantages. The reader 
is referred to the various sections of MSPM Section BF describing 
input/output on particular devices. 

oegrecs of Input/Output Request Completion 

To simplify subsequent discussion, certain terms and concepts 
relating to possible degrees of input/output request completion 
are discussed here. To begin with, whenever a user program 
receives control ·back following a read/write call, the request 
can be considered to be at least logicaJJ:y initiated. That is, 
the requested input/output will eventualLy be performed, if at 
all possible, without further intervention by the user program on 
behalf of that specific request. Of course, hardware errors, 
system failure, facilities reservation expirations, and other 
generally unexpected events can conspire to frustrate the 
completion of physical input/output. Also, a detach call is 
required in certain instances to force completion. The least 
amount of work that the IOS can do to achieve logical initiation 
is to place the call in a software queue. 

The next degree of completion is logical completion. When the 
user program receives control.back following a logically 
cor.1pleted read/write cull, tHo things are ·true: (1) the data has 
been transmitted to or from his workspace; and (2) certain status 
bits in the status bit string will reflect their final value (see 



Page 4 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 

Section BF.1.21). A logically completed write call may not'_ be 
physically completed; the output data may merely have been copied 
into an IOS buffer. 

Another degree of 
When this stage is 
queued in the GIOC 
aborted by the IOS 

request completion is physical initiation. 
reached, the input/output has actually been 
hardware, and will proceed unless deliberately 
or by system or hardwar·e failure. 

The final stage of completion is Ehysical completion. 
stage input/output has not only been accomplished 
hardware, but input data has been - delivered to the 
workspace. 

At this 
by the 
user's 

LOgical and physical corapletion are each 
status.bit string (see Section BF.1~21). 
stages are: 

indicated by bits in the 
_ In summary the four 

(A) Logical initiation; (Software queued) 
(B) Logical completion. (Data transmitted to or from the 

workspace) 
(C) Physical initiation. (Hardware queued) 
(D) Physical completion. 

Return of control from a read/write call implies (A). (B) 
implies (A), and in the case of a read call, also implies (C) and 
(D) • And (C) 'im'plies (A) but not necessarily (B) • 

Introduction to Workspace Synchronization 

The subject of workspace synchronization control will be fully 
discussed in detail in a later section of this document. - The 
present introduction is provided to simplify the ·following 
discussions of read and write synchronization control. 

When a user program issues a read/write call to the IOS, one of 
the arguments specifies the user's workspace. This is the 
location within the u$er program where either input data is 
placed by the IOS or output data is removed by the IOS. The 
workspace synchronization mode is either synchronous or 
asynchronous. This mode is associated with a particular ioname. 
Normally the mode propagates down the i/o-path leading from the 
ionarne (see Sections BF .1. 03 and BF. 2. 25) • 

The workspace synchronization mode normally provided by the IOS 
is synchronous. Tho user must overtly ask for the mode to be 
made asynchronous by a call to be described in a later section of 
this docu,aent. In the normally synchronous workspace case, the 
user program receives control back after a read call with its 
workspace filled with input data or a write call with the output 
data copied from its workspace. In other words the IOS is 
finished with the user's workspace. A more rigorous statement is 
that control is returned after logical and/or physical 
s.ompletion, depending on the read and write synchronization 

·.:. 

_l 



~r.·_. f~~"-=~==·~~L-=~==~,--<~r-~;J"-.•~--=ti.::.; ~-~vL.J~.~;~c.:,,:-==:r.,-.,.-,,. ___ Lc..:.., __ ;i 

r"'·· 

-- .~·,:.~... ·•--~:,,• ~' . 

i 
I 
'~ 
l 

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.1.04 Page 5 

modes. 

If the write. synchronization mode is asynchronous, the IOS 
returns control to the user program as soon as possible after it 
arranges for the read/write request to be done. Specifically, 
the return. occurs after logical and/or physical initiation, 
depending on the read and write synchronization modes. Before 
the user can subsequently use his input data or reuse his output 
workspace, he must overtly determine the condition of the 
workspace by interrogating the completion bits in the status bit 
string. Alternatively, the user program can issue one of the 
"wait" calls described in a later section of this document. 

Read Synchronization Control 

The read synchronization mode is either synchronous or 
asynchronous. This mode is associated directly with the .. device" 
and not with any intermediate strear.mames · used to reach the 
device. Specifically, this mode is a property of the device or 
frame terminal defined in Section BF.1.01, and more specifically 
it is a property of the primary device terminal defined in 
Section BF.l.03. 

The call to set the read synchronization mode for a device is: 

call readsync( ioname, rsmode [, limit [,status]]) 
' . 

The brackets, [ ] , indicate optional arguments and sets of 
arguments in the usual way. The first argument, ioname, . is any 
ioname on an i/o-path leading to the desired device. rsmode is a 
one character string specififying the desired read·· 
synchronization mode. rsmode = "A" requests the asynchronous 
mode and rsmode = "S" requests the synchronous mode. limit ,is a 
pointer to a 35 bit signed integer \vhich specifies the maximum 
permitted or recommended amount of read-ahead in terms of 
elements of the current clewent size. If limit is not provided 
or is a null pointer, no limit is specified and the IOS will 
impose a default limit, which is device- and possibly 
situation-dependent. status is a pointer to the status bit 
string (see Section BF.1.21). 

If a read call is issued prior to any readsync call,· the read 
synchrori.Tzation mode is set to asynchronous. 

setting the read synchronization mode to. synchronous prevents 
only 11 avoiciable 11 read-ahead. Unavoidable read-ahead can occur. 
'l'he most common examples of unavoidable read-ahead occur on 
physical-record-oriented devices such as magnetic tape and unit 
record devices. For cxv.mple, a physiczi.l tape record may be read · 
by the IOS to obtain data needed to satisfy a read request; if 
data in only part of the record was needed, the remainder was 
unavoidably read-ahead. 



_,,,......_ 

Page 6 MULTICS SYSTEM-PROGRAI1il-1ER I S MANUAL Section BF.1.04 

In the synchronous read mode, the IOS will not read data from a 
device until·a read call is made. Then, the IOS attempts to read 
only enough data to satisfy the call. For example, if the device 
is a typewriter keyboard, the keyboard is not unlocked to permit 
typing until a read call arrives. Then the IOS typically reads 
until an appropriate break character arrives and locks the 
keyboard again. If the read call does not consume all the data 
read, sone unavoidable read-ahead has occurred. The latter 
haopcns, for example, when the read call requests fewer 
ch~ructers than the number that actually preceded an erase/kill 
delimiter. 

If a readsync call sets the read synchronization mode to 
asynchronous, the IOS begins to apply a device dependent 
read-ahead strategy. In any case the avoidable read-ahead is 
held to less than the current limit; the IOS actually attempts to 

.. hold the total read-ahead to less than the limit. If the device 
is a spontaneous provider of data, the IOS attempts to read the 
device continuously. 'A typewriter is an example of a 
controllable spontaneous device; the IOS attempts to leave the 
keyboard unlocked and collect data continuously except when 
output is being printed. 

unused data collected during read-ahead on a sequential, 
forward-only device is not discarded following a readsync ca11· 
which sets the read synchronization mode to synchronous or which 
lowers the read-·ahead limit below the amount read ahead. . such 
unused data is discarded only upon receipt of a resetread call.· 

If the workspace synchronization mode is synchronous, return of 
control following a re.:i.d call necessarily implies physical 
completion. If the workspace mode is asynchronous, return of 
control following a read call i~plies (at. least) logical 
initiation when the read mode is asynchronous, and physical 
initiation when the read mode is synchronous. These 
rel~tionships are depicted in the following table (where A = 
Asynchronous, S = Synchronous, P = Physical, L = Logical, I = 
Initiatio~, and C =Completion): 

Workspace Sync Node ----
A s 

Read) A LI PC 
Sync) 
Mode) s PI PC 

A call is provided for discarding existing read-ahead data; it 
is: 

call resetread( ionarne [,status]) 



-.J';· . .'~. \ .·.L,.c;.,::.;::;c;.;.:;:~.;.·c . .:c=o...:.c ... ~ . ..:: •. .;;..····--·-·-- id::·.; ~..;..~.L,;L_.;_ :. _·,-:cc . .:....::;;_ .. _ _,,_... . ....... ,.:': ..•. ·.: .) . • }) 

::-. . ·-..... _.·., 

MULTICS SYSTEM-PROGR.l"\HMER I S MANU1'.L Section DF.l.04 Page 7 

ioname and status. are as defined. for the readsync call. Issuing 
the rcsetread call does not affect the read synchronization mode. 

. . 

write £,Xnchronization Control 

The write synchronization 
asynchronous. This mode, like 
associated with the device. 
synchronization mode is: 

mode is either synchronous or 
the read synchronization mode, is 

The call to set the write 

call writesync( ioname, wsmode [,limit[, status]]) ., 

The first argument, ioname, is any ioname on an i/o-path leading 
to the device. wsmode is a one-character string specifying the 
desired write. synchronization mode. wsr.:iode · = "A" requests the 
asynchronous rn_ode, and wsr,1ode = 11 S 11 requests the synchronous · 
mode. limit is a pointeF to a 35 bit signed integer which 
specifies the maximum permitted or recommended amount of 
write-behind in te1.711s of elements of the current element size. 
If limit is not provided or is a null pointer, no limit is 
specified and the IOS will impose a default limit, which is 
device- and possibly situation-dependent. status is a pointer to 
the status bit string (see Section BF.l.21). 

If a write call is issued to the ·device prior to any writesync 
call, the write synchronization mode is set to asynchronous. 

Setting the· write synchronization ·mode to synchronous prevents 
only "avoidable" writc=behind. Unavo1dable write-behind commonly 
occurs on physical-record-oriented devices. For example, the 
writing of a physical tape record is ordinarily delayed until 
sufficient output data has been collected to write a complete 
record of the standard size. 

If the write synchronization mode is asynchronous, the IOS 
employs a device-dependent write-behind strategy. The avoidable 
write-behind is hel.d to less than the limit; the IOS actually 

,attemnts to hold the t6tal write-behind to less than the limit. 
Physically-initiated output is regardqd. as a. part of the 
write-behind data, until completion occurs. Before returning 
control to the user following a write call, the IOS will have 
logically initiated the write request and, if the woikspace 
synchronization mode is synchronous, copied the output data from 
the user's workspace. If output was not already proceeding. 
because of previous write calls, the IOS may physically initiate 
part or all of the output. If a.write call is r~ceived having a 
workspace size which would cuusc - the current quantity of 
write-bahind to be incremented beyond the current limit, the IOS 
responds iu either of two ways, dcpe:1ding on whether or not the 
amount by which the lir.1it. would be exceeded is less thun or 
g:::-eatcr ti:1un a device-<lependcn t o.J.lowable extension limit. If 
the excess is le;ss thu.n the: allm·10.ble extension, the only effect 
is cl1ut the return of control to the user is delayed untit the 
write-behind again falls below the current limit. If the excess 



-· -· . - . . ,·. -_. ----~- ·-·'--·•--·---··· --·" 

Page 8 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.l.04 

exceeds the allowable extension, the write call is rejected. If 
a writesyi;ic call lowers the limit to an amount below the current 
write-behind, .and a write call occurs before the write-behind 
drops below the new limit, this write call is treated exactly as 
though its request had caused the excess. 

If the write synchronization raode is synchronous, the IOS returns 
control to the user following a \,rrj_ i:e call after the requ8sted 
output is physically completed- (except for unavoicl2ible 
wri te-nehind) when the \wrkspace syr1chronization mode is 
synchronous or after the requested output is physically initiated 
when the workspace mode is asynchronous. 

The relationships between the write 
codes are depicted in the following 
s, P, L, I, a~d C were defined in 
similar table}: 

Write} 
Sync} 
Hode} 

A 

s 

Workspace Sync Mode 

A 

LI 

PI 

s 

LC 

PC 

and workspace synchronization 
table (where the letters A, 
connection with an earlier 

A call is provided for discarding existing write-behind datai ·it 
is: .1 

call resetwrite( ioname [,status]) 

ionar:te and status are as defined for the wri tesync call. Issuing 
a resetv,ri te calT does not affect the write synchronization mode. 
Physically-initiated output is not discarded. The status bit 
strings of the affected write calls will reflect the occurrence 
of the resctwrite' call; a bit is set indicating that the call was 
aborted by user request prior to physical completion (see Section 
BF.1.21}. A partially-affected write call will have the same bit 
set even though part of the data may have been written out. 

workspace Synchronization Control 

The workspace synchronization mode is normally synchronous. The 
call to control this mode is: 

call worksync( ioname, wkmouc [,status]) 

'rhe first argument, ionar«e, is the ion2.r,w at which the r:.ocle is to 
be est.a.bli~;hcd. stc1Ii.1s--:rs a pointer to the status bit string. 
v,kr.,odrJ is a one--d-izi-ra.6Ec::: string specifying the desired wo:ckspc::.ce 
sy1~tcE:c.onization r«od,2. wknodc == 11 A11 requests the asynchronous 
mocle I and wkrnoc1:?, :::;: 11 S II n~ucsts the synchronous mod€!. Typic2.lly, 



;,-,.. 

MULTICS SYB'I'EM-PROGRAMHER' S MANUAL Section BF.l.04 Page 9 

the outer module at ionar,,e reissues the worksync call to the next 
outer module along· the i/o-path; thus this mode usually 
propagates ~own the entire i/o-path. If a second i/o-path merges 
with an i/o-path at an ioname at which the workspace 
synchronization mode is asynchronous, modules in the second 
i/o-path may receive return of control bnck prematurely after a 
read/write call. This occurrence is detectable by exumining the 
status bit string. It can also be prevented by interpolating a 
Monocaster (sec Section BF.2.18), which detects premature returns 
and issues iowai t calls to reestablish y19rkspace synchronism. If 
two merging i/o-paths are both workspnce· asynchronous and one is. 
set to synchronous, the common portion of the other is affected; 
the resulting effective workspace mode ·of this other path has in 
most instances also become synchronous.· 

\'i'hcn the workspace synchronization mode is asynchronous, the user · 
program can get control back following a read/write call before 
logicul or physical cor,1pletion of the request. The user program 
can subsequently determine the request status by interrogating 
the completion bits in the status bit string. Alternatively, the 
user program can issue one of the following "wait" calls: 

call rea<lwai t ( ionar,1e [, status ] ) 

call writewait( ioname [, status ·1) 

call iowai t ( iona.'1\e [, transptr [, · status ) ) ) 

ionar:le and status are as defined for t:he worksync call. transptr 
is a "transaction" pointer usea to identify a previous 
transaction (see Section BF.2.02). transptr is literally the 
status pointer bf the earlier call which is of interest. For 
transptr to be a meaningful transaction pointer, the "hold" bit 
in the corresponding status bit string must· have ·been set 
following the return from the call of interest (see Sections 
BF.1.21 and BF.2.02). A nonmeaningful transaction pointer causes 
an error indicatio~ in the status bit string of the "wait" call. 
The rendwait and writewait calls implicitly refer to the most 
recent reaa. and write transactions respectively. Return of 
-control to the user program following a readwai t, wri tewai t, or 
iowait call occurs when ~he referenced transaction has been 
completed to the degree required to enable a return had the 
workspace synchronization mode been synchronous. If transptr is 
absent or is a null pointerr the transaction referenced in the 
iowait call is the most recent read or write call. These "wait" 
calls are inappropriate ·when the workspace synchronization mode 
is synchronous, and their use will cause an error indication in 
the status bit string of the "wait" call. 

A mechanism is proviued for cancelling 
previously-issued read anJ write reauests and 
irrespective of the workspace synchroniiation mode. 

or aborting 
can be used 

Only read 



Page 10 MULTICS SYSTEl1-PROGRAHI-1ER'S !-lANUJIL · Section BF.1.04 

• 
and write calls are affected and any interpolated 
calls have their normal effect. ~he call 
transactions is: 

call abort( ioname [, transptr [, status]]) 

non-read/write 
for aborting 

ioname is any appropriate ionar;\e, and status is a pointer to the 
status bit string. transpir is a transaction pointer as 
described earlier in connection with the iowai t call~ 'l'he abort 
call requests ca11cellation of the read/write call to which 
transptr_ refers and of all subsequent read/write calls preceding 
the ubor·t call. If transetr is missing or is a null_ pointer, the 
IOS atteLlpts to abort all existing read/write· calls which are 
physically incomplete. If· transptr refers to a 
physically-completed request, the IOS still attempts to abort the 
subsequent requests. Successfully~aborted read/write calls have 
a status bit set indicating that the -call was user-aborted. 
unsuccessfully-aborted calls are merely indicated to be 
physi.cally complete. Partially-aborted write calls are· 
considered to be aborted. The status of the abort call contains 
an "unsuccessful 11 indication, if and only if the IOS was unable 
to cancel any outstanding requests.· 

Read/Write Asynchrony Prevention ---
Under certain circunstances · it may be useful to· operate a 
particular de~ice with a synchronous read and/or write mode while 
using a program written to specify or permit asynchronous read 
and/or write modes. This may be achieved at device-attathraent 
time by including a special r.iode character in the mode argument 
of the attach call or at any time by use of theriode · in a 
changeraode call (see Section BF.1.01). 

The special asynchrony prevention character is "Y". The presence 
of the sequence 11 RY" in mode sets the read sync mode to 
synchronous and causes futu~readsync calls to be· ignored;· 
similarly "WY" sets the.write synchronization mode to syhchronous 
and causes future writesync calls to be ignored; "Y" ·unprecedcd 
by "R" or "W" forces both modes to be syrichroncius. The 
subsequent use of "notY" in these same contexts causes future 
reac1sync and/or wri tesync calls to have . their norr,1u.l ef feet, 
although the modes ure not changed at the time of the changer,10c1c 
call. The "not" is used here as a representation of the PL/I 
"not" syE1bol (ASCII "overline") • 

No mechunisr:\ is provided for · advance prevention of 
asynchrony, inasmuch as prograras use the asynchronous 
mode for purposes (outlined earlier} likely to be more 
incompatible with synchronous workspace operation. 

Er:1ergency_ Device Attaclment 

workspace 
workspace 
or less 

Under certain conditions 
suspend in a restartable 

it may be desirable or 
way previously-requested 

necessary to 
input/output 



,,,,........ 

MUL'l'ICS SYS'l1EH-PROGRNH-1ER' S MANUAL Section BF.1.04 Page 11 

which is currently in progress on a particular device. For 
exar,tple, the Supervisor 1:1ay need to write an eraergency r,1essage on· 
a typewriter, advising of an automatic logoµt or other imr,1inent 
happening. A special use of the attach call is provided .for this 
purpose. An "emergency" device attachment nay be made by 
including the raode character "E 11 in the r,10de arguraent of the 
atta,ch call. Such an attachment overrides~e existing· device 
attachment and causes suspension of any current input/output on 
the device. A new independent series of input/output 
transactions raay now be undertaken. Subsequently, a detach call 
with <lisp·osal containing "E" will end the emergency attachment 
ancl reinstate the previously-suspended input/output. 

An emergency attachrncnt-detachr.1ent · sequence .effectively permits 
the instant interpolation of an independent series of 
input/output transactions during the course of existing 
input/output. Such emergency sequences may be nested to any 
depth. The IOS Qccomplishes this independent input/output by 
using a new and separate i/o-path and attachment graph below the 
device terminal ,..,i thin the IOS (see · Section DF .1. 03) • -The 
separate, independent attachme~t' and transaction graph is 
normally obtained by creating a new Device Manager Process. The 
previous Devi?e M~na~er halts upon ~bceiv~ng a please-quit 
request from tne IOS in the process in which the emergency 
attachment was requested. · 

Possibly the most coi-runon example of emergency attachment that 
will occur results from the receipt of a valid "quit" signal ·from 
a device which is also the current cornmo.nd source (see Section 
BF.3.01). An emergency attachment is made to· this source to 
accomplish the command input/output. 


