
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.00 PAGE 1

Identificatioo

Overview of the Pseudo-supervisor
D. H. Johnson

Purpose

Published: 10/13/66
(Supersedes: BE.8.00, 05/4/66;
BE.8.00, 06/23/66)

The pseudo-supervisor is a· collection of procedures which
provide basic supervisory functions during the execution
Qf a process in the GE645 simulation system. The pseudo­
supervisor consists of four modules which are described
in detail in the following subsections of this manual:

BE. 8. 01
BE.8.02
BE.8.03
BE. 8. 04

Linker for the Pseudo-supervisor
Page Management for the Pseudo-supervisor
Segment Management for the Pseudo-supervisor .
Linkage building for ordinary slave procedures in
the Pseudo-supervisor

Introduction

The pseudo-supervisor consists of four modules: 1) linker,
2) page management, 3) segment management, and 4) linkage
building.

The linker is the module which establishes intersegment
references at execution time. Page management keeps
track of pages of GE645 simulated memory which are available
for assignment to segments as requested. Segment management
al lovJs a process to create, release, grow, truncate,
or ask questions about a segment. Finally, linkaae building
gives a process the facilities to construct and interrogate
linkage section information.

All ordinary processes using the simulation system will
have intersegment referencing. (See the description
of special segments INIT and .INIT in MSPM Section BE.7.07.,
Loader). There is need then for a standard linker module
which will be automatically invoked \.vhenever a linkage
fault occurs and which will cope with all of the various
possibilities in a linkage section. (See MSPM Section
BD.7.01 ., Linkage Section, for .the detailed structure
of a linka~e section.) The linket module also provides
for dynamic loading of segments when first referenced.
This relieves the programmer from declaring and having
loaded all segments before execution. The linker module
is also the point of departure for debugging programs
(See BE.12.01).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.OO PAGE 2

A process begins in the simulation system with the entire
GE645 memory allocated to it. This is accomplished when
the 645 simulation loader first loads all user specified
segments and then allocates the remaining pages of 645
memory to the stack segment. Since all of physical memory
is then accounted for in the descriptor segment and page
tables, routities may manipulate and have access to all
of 645 simulated memory. During execution a process
may have need to modify itself in one of the following
ways. It may want to create a new segment, as an EPL
procedure will do when the first STATIC storage class
variable is referenced. It may need to grow existing
segments, again as an EPL procedure will do whenever
any unique STATIC storage class variable is first referenced.
It is also desirable to be able to truncate parts of
segments and to re 1 ease en t-i re segments when they a re
no longer useful to a process. This may become very
desirable in the 645 simulation system where a process
is limited to the size of 645 memory. These facilities
are provided by the segment management module of the
pseudo-supervisor. As the above functions are performed
by the segment management module there often arise demands
for additional pages of memory and the disposition of
released pages. These requests are handled by the page
management module, which maintains a pool of free pages
of memory and obtains additional pages from the stack
segment whenever the free page pool is exhausted.

The pseudo-supervisor also provides a module to build
and query linkage section information. Proc~dures in
this module will create linkage section segments, add
linkage blocks to existing linkage section segments,
insert linkage'information into linkage blocks, and see
if specified symbolic references are defined in linkage
sections. Current known users of some of these routines
include the SHELL (see MSPM Section BX.2.OO, the SHELL),
system option setting procedures (see MSPM Section BX.12.O2,
Creation of options), and EPL procedures which use STll.TIC
storage (see EPL Design Journal 6, BOO22, section titled
Data Segments).

Figure 1 is a block diagram of the modules of the pseudo­
supervisor. The solid lines represent flow of control
through the use of formal calling sequences. Calls are
in the direction of the arrows and formal returns are
implied. The circles in the diagram represent the data
bases. Dashed lines indicate the flow of data bet\rJeen
modules and data bases. Figure 2 shows the procedures
within the modules of the pseudo-supervisor and the inter­
relationship between procedures. The procedures themselves

,,,.--.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.00 PAGE 3

are explained_ in the fol lowing four subsections of this
manual. In this paper, procedure entry names are associated
with specific actions wherever possible by including
the procedure entry name within parentheses near the
description of the action.

Usage
The part of the pseudo-supervisor necessary for handling
linkage faults and dynamic segment loading will be included
in all processes. This is done by the special inclusion
policy of the MRGEDT command in the 6.36 system and the
64.5 Driver in the 64.5 system. Other pseudo-supervisor
procedures may be loaded in one of two ways. They may
be loaded before execution by explicitly telling the
loader to load them or they will be loaded dynamically
when first referenced during execution. The pseudo-supervisor
procedures all exist on the 645 segment library tape.
The pseudo-supervisor consists of many segments. There
is one segment, pseudo_ supervisor, which contains entries
for all of the procedures. This segment provides the
interface between EPL compiled procedures and the pseudo-­
supervisor. It must be used by EPL compiled programs
to insure argument compatibility. The actual pseudo-supervisor
procedures exist in separate segments. See the summary
of the pseudo-supervisor segments at the end of this
section.

Linker

The linker module provides automatic linking of symbolic
intersegment referencis during execution. A linkage
fault will occur upon the first execution of an instruction
whose address points to another segment indirectly through
the linkage section. At this time the linker module
is invoked and takes the following steps to accomplish
the linking of the reference:

1 •

2.

3.

4.

5.

6.

Save the state of the process when the fault occurred.
(f2catc)
Determine where the fault occurred from the saved machine
conditions. (linker)
Determine what type of intersegment reference is being
attempted. (linker)
If requested, trap to a user specified procedure before
completing the link (linker)
If necessary, call the segment management module (segman)
to obtain the number of the referenced segment. (linker)
If the segment is not in the segment name table, dynamically
load the segment from the 645 segment library tape.
(search) .

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.00 PAGE 4

7. If an external symbol is referenced, call the segment
management module (segman) to obtain the number of
the linkage section segment containing the external
symbol definition. (linker)

8. Search the linkage section for the definition of the
external symbol. (linker)

9. Change the fault to the desired address. (linker)
10. Modify enough of the machine conditions so that the fault

will not occur again. (linker)
11. Restore the process to the state it was in before the

fault happened. (f2catc)

The entry search scans the library dictionary for a given
segment name and if present, creates the segment, allocates
memory to the segment, and causes it to be read into
memory from the 645 segment library. If present, the
linka~e section and symbol table segments will also be
read into memory from the library. In addition to the
functions described previously, the linker module contains
an entry (link_) through which a user may force the linking
of an intersegment reference. This entry was provided
for implementation of the INITIAL attribute of EPL.

Page Management

The page management module provides primitive tools for
manipulating pages in the simulation system. It is usually
called by the segment management module to obtain a new
page (newpag) or to release a page (relpag) no longer
needed by a segment. Page management has two sources
for satisfying requests for a page. The primary source
is the free page pool which contains lists of absolute
645 addresses·of 64 and 1024 word pages that are not
currently assigned to any segment in the process. If
the free page pool is exhausted, page management examines
the stack segment to see if it has unused pa~es that
will satisfy the reque~t. If so, the stack 1s truncated
and the trunated page(s) are placed in the free page
pool. The operation on the stack and the number and
type of resultant additions to the free page pool depend
on the page sizes of the stack and the request. It is
possible to remove from 1 to 31 pages of the stack to
satisfy the request for 1 page. A page released from
a segment is simply appended to the appropriate list
in the free page pool.

Se9ment Management
Segment management provides the tools necessary for manipu­
lating segments in the simulation system. It is called
by the other modules of the pseudo-supervisor and may
also be called by user procedures. Segment management

MULTICS SYSTEM-PROGRAMMERS I MANUAL SECTION BE.8.OO PAGE 5

provides the following functions:

1 •
2.

3.

4.

5.

6.

7.

Return the number of a segment specified by name. (segman)
Determine whether a segment is known to the process, i.e.,
if the segment name exists in the segment name table.
(segpr_)
Return the current and maximum lengths of a segment.
The current length is the offset of the last word in the
segment actually used. It may vary as the segment grows
or truncates words. The maximum length is the offset
of the last word possible for the segment. It must not
be greater than the largest offset allowed by the total
number of entries in the page table. (length)
Create a new segment in the process. This creates entries
in the segment name table, segment length table, and
descriptor segment but does not allocate any pages to the
segment. If a paged se~ment is created, its page table
is also created automatically. The descriptor segment,
segment name table, and segment length table may ha~e to
be given more pages when new entries are added. (newseg)
Add a fixed number of words to a segment in the process.
This· request may add pages to the segment. (grow)
Release a segment, indicating that it is no longer known
to the process. (relseg)
This request releases all pages allocated to the segment
and its page table. References to the segment in various
system tables are removed.
Truncate a segment by a fixed number of words. If any
pages are released they are returned to the free page
pool. (trunct)

Linkage building

There are instances where 1 inkage information .is generated
during execution. The SHELL must generate linkage during
execution because it does not know until then what references
it has to make. Linkage for STATIC variables in EPL
procedures is created when the variable is first referenced.
The 1 inkage building module performs the fol lov•.1ing functions:

1. Determine whether a particular symbol is defined in the
linkage section of a specified segment. (sympr_)

2. Generate a normal link pair and link definition in the
linkage section of a specified segment and return a
pointer so that the user can complete the reference at
a later time through the normal linking mechanism of
the linker module. (linkmk)

3. In addition to generating a normal 1 ink pair and 1 ink
definition, also generate the necessary information in
a linkage section which will cause a trap to a specified
procedure to occur when the reference is linked later.
(trapmk)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.00 PAGE 6

4. Add the necessary external symbol definition to a
specified linkage section so that other segments may
successfully reference the symbol name. (defmak)

5. Add a fixed numper of words to a segment and then generate
an external symbol definition for a given symbol so that
intersegment references to the symbol will point to the
first word added to the segment. (symmk_)

In performing functions 2-5 it may be necessary for the
linkage building module to create linkage section segments.,
add linkage blocks to existing linkage section segments.,
and add words to existing linkage blocks.

Summary of Pseudo-supervisor segments

segment name

1. f2catc
2. 1 inker
3. 1 ink_
4. 1 i nkmk
5. trapmk
6. defmak
7. symmk_
8. sympr_
9. newseg
1 0. re 1 seg
11. grow
12. trunct
13. segpr _
14. segman
15. length
16. newpag
17. rel pag
18. free_pa~e_pool**
19. get_put~,;'d,
20. search
21. pseudo_supervisor

* descriptor class code
MP master procedure
SP - slave procedure
SA - slave access
D data
WP write permit

descriptor class*

MP.,SA
SP., SA­
SP., SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA
SP.,SA

D.,SA.,\'JP
MP.,SA
SP.,SA
SP.,SA

-Id, free page pool and stack in format ion
*** used by pseudo-supervisor procedures to read and write

any segment., e.g • ., page tables and descriptor segment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.OO PAGE 7

Lt tJ l(.Elt..

' I
I

'
' I
' I
'

SEGME:,-.lT

MAN'1C.EMENT

Figure 1. Pseudo-supervisor Modules

\
\ ,,

\
\

I
I
I
I
I
I
I

I
I

(X)

IJ.J

~
D..

0 "'
r- - 1
J~- I

PSEUt)O_

Sv9G.fl,.'/\~OP.,

-r
- ,- - - - -'f- -

I ,
j

- ~- -1-· -
I

-4
I

0
• I f).<:A,t..

I
\..tN~- I)

SYMMK- iRAPMK-- I ~ t..lNKMK K ---ft>EFMA.K I)I SYMfR-
(X)

•
IJ.J / ~ - ~- "" :;i,-
ca 7: z
0 -I-u
L&J
l/')

~/

/

/
I '1t "" /

,11

,-tr\-, t - .
I \.:I ~ 1 ~~--~~ I f ' J
I I lt° ,,,

L\Nl"Efl- 1--©
<i
::)

~ I ~"TE,V.. ~

-l/') S~Atc ~ ~ f)f-si;6fv\E.\jT
Pl:.~()G,ll(t

oc ,------,
L&J / I

~ I I

!© ® g
oc
D..

I

~
L&J
I­
ll')

~
l/')

u -1-
...J
::)

~

.......

"'

~ fl-E.LScG ~---1-L©.J~~1NcW~E G 1

"'

,> ..
'®

~, l

Tfl..uwcr

,,~
-©
''®

,! ,

~~· ~ ~ 1
~EGPtt-1 ©-J CA.ow H

. ®'~t ~ ~
\t . I

"" t J, VI , ~
. 0©

€)--1 LEi-lG'T~

"' ~

\V

Figure 2. ~ st!!"
~GMAU " I p,seudo-supervisor -Procedure 7

\ . ~

\t/

-.......

I

DA"t'A' ~t\.SE''S

A. Lu•iKA&G: s.i;cT1o~s.

e., GEGt-'\ENT LGN-G-··n4. .:-"~ l.5

C,, SEGMel'l1' ~AM~ TA<;lE

0, ._;,AC.l'- IMFo~MATioi-.)

e:. f)~6E Tl\~LE"S

F. Dl;"SCfa_ \ r-,0'2- S€C,ME~

G, f~ES' fAGE PooL

H, Te..N:.Gll. 'QA1A f>hSE.

I, ll&~lt.'l D\C..1'1or-JAR.. V

j" • ~~ ME:tJT L1eRAf!.'f

\

