~

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BE.16.01 PAGE 1
Published: 07/17/68

Identification

Return a segment to CTSS from a 6,36 execution activity

write_seg
J. M, Grochow

Purpose

1t is often desirable to retrieve segments created during
a 6.36 execution activity., write_seg provides a simple
interface between an EPL program and 6.36 pseudo-process
output routines,

Usage
write_seg has 3 entry points, Their usage is as follows:
call write_segdinit;

This call should only be made once and should precede
any other calls %o write_seg.

call write_segiwrite (segname, write_name, status_ptr);

where segname= character string representation of segment
to be vritten .
dc1 segname char(*);

write_rame=6 character (or less) name of file to be
returned to CTSS

dcl write_name char(¥*);

status_ptr=pointer to seg_util-like status array
(see BY.2.12),

dc1 status_ptr ptr;

This ca’l should >e made once for each segment to be written
(text, "ink, and symbol sections are written at each call),

call write_segifinal;

This call should e made only after all segments have
been written hy cills to write_segiwrite,

MULTICS SYSTEM-PR/OGRA/MMERS ©~ MANUAL SECTION BE.16.01 PAGE 2

In order for files to be returned to CTSS, it is necessary
to specifically request their return by inclusion of the
following card in the GECOS file used for that run:

FETCH write _name TL

where write_name s the same as above except that "_"
(underscore) has been changed to "-" (hyphen).

Segments thus wriftten may also be punched by including
the following card in the GECOS file:

DECK write_name

Implementation

write_segdinit and write_segdfinal simply make appropriate
calls to pseudo_process_lo and pseudo_process_section_output,

write_segiwrite will first change any "_" in write_name

to "-T, "It will then check the segment pointers in the
status array pointed to by status_ptr. Text, link and
symbol segments will be written by calls to pseudo_process
section_output if their corresponding pointers are non-nulT,
A word count is determined by dividing the bit_count in

the status array by 36.

