
MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BD.9.05 PAGE 1

Published: 06/30/67

Identification

Abnormal Returns: The Unwinder
R. M. Graham, M.A. Padlipsky

Purpose

In some fairly basic sense, a Multics process is a sequence
of subroutine calls and returns. Indeed, system-standard
call, save, and return sequences are crucial to the functioning
of the System (see BD.7.02, BD.7.03). Occasionally, however,
it is necessary to exit from a subroutine by transferring
to a label which was furnished as an argument, or which
is available in some known fashion. Such exits, which
do not employ the standard return sequence, are known
as "abnormal returns" (in EPL, "non-local go to's11 are
implemented as abnormal returns). The present section
describes the Multics mechanism for effecting abnormal
returns, 11 the Unwinder" •

Overview

The following discussion assumes the reader is familiar
with Multics condition handling as described in BD.9.04.
There are two basic problems which arise when a abnormal
return is attempted. First, there is the issue of protection:
some provision must be made to prevent transfering off
to a label regardless of what ring the procedure containing
+he label resides in. Second, there is the issue of unfinished
business: for the procedure being left and for the procedures
being bypassed, call-save-return Stack frames must be
released, EPL/PL/1 11 epilogues" must be executed, and,
indeed, whatever tidying up the procedures involved have
to do in general must be provided for as well. The Unwinder,
described herein, undertakes to solve these problems.
Let us, then, consider the design of the "unwinding" scheme
in the abstract, for the solutions to the basic problems
are implicit in it.

Abnormal returns are handled in Multics in a fashion analogous
to that in which conditions and signals are. To prepare
for abnormal returns a procedure invokes the condition
primitive (BD.9.04) 1n order to place a "pseudo-handler"
on a special push-down list (called cleanup) which will
be employed when the abnormal return ls effected; the
pseudo-handler is a procedure which takes care of one
or more items of the unfinished business mentioned above.

MULTICS SYSTEM-PROGRAMMERS' "'1ANUAL SECTION BD.9.05 PAGE 2

To effect an abnormal return., a procedure cal ls the .system
procedure unwinder with the label to be abnormally returned
to as argument; the Unwinder., a ring-a routine., will invoke
procedures which have been placed on cleanup lists before
effecting the abnormal return. Both the preparation and
the effecting deserve and wi 11 receive more detailed discussion;
but in very broad terms., the preceding two sentences are
"a 11 there is" to abnorma 1 returns: put a procedure-to-be­
executed-in-the-event-of-abnorma 1-return in a fixed place.,
and make the abnormal return by means of the Unwinder.

The cleanup "stack" is kept in the signal vector., along
with all the condition-handler lists which are established
by condition. (Note that in actuality there is a signal
vector for each ring., and 11 the" s igna 1 vector is. a II logica 111

entity.) Cleanup may be viewed., as a matter of fact
as Just another condition. However., there are certain
important differences between cleanup and., say., overflow:
Overflow wi 11 .be "signal led'' by an invocation of the signal
primitive (BD.9.04 again)., cleanup wi 11 be "signalled"
by an invocation of unwlnd5r; indeed., signal specifically
rejects II cleanup'' as a con i tion name. More important.,
sign'] wi 11. invoke in turn only the most recently established
hand er for the overflow condition; unwidder., on the other
hand., may invoke several established han lers for the
cleanup 11 condi tion"; at least., it may invoke them provided
that they all terminate in normal returns to it. Obviously.,
placing handlers on the cleanup list cqn leaq to complicated
mistakes; let the user beware. The heaviest use of the
c 1eanup "condition" is expected to come from compilers
which al low a PL/I-like "block" structuring. At any rate.,
to specify that procedure~ is to be executed in the
event of an abnormal return from the current procedure
(or an abnormal return past it., from a ro~tine which it
has cal led)

ca 11 condition (11 c 1 eanup" ., proc) 1

The Unwinder itself plays a role analogous to that of
siqnal/signal_search. It is invoked as follows:

call unwinder (lbl);

where lbl is a label (most probably passed to the invoking
procedure itself as an argument) which if in another
ring., has been established as a ,f door"., in the sense of
BD.9.00 (see also below). The first task of the Unwinder
is to invoke any procedures which are on the cleanup stack
in the signal vector of the ring it was invoked from (say
<signals_n>) and possess the current invocation number.

MULTICS SYSTEM-PROGRAMMERS' rvtn.NUAL S EC TI ON BO • 9 • 0 5 PAGE 3

Invocation is, of course, from the ring at hand and not
from the Unwinder's own ring. Next, it emulates signal_search
in proceeding to deal with those rings which appear in
the Gatekeeper's <rtn stk> (see BD.9.01) as pending returns.
Say returns to rings T, j, k and 1 are as-yet unsatisfied
on the <rtn stk>; the unwinder will then invoke, from
the approprTate rings, any procedures established with
appropriate invocation number as handlers for cleanup
in <signals_!>, <signalsTj>, <signals_k>, and <signals_i>
again. There is a complication, however, in that it is
not intended to 11 unwind past l.!2..111 • That is, the unwinding
process may be looked upon as a pro~ressing through the
Stack frames of those procedures which will not be returned
to at all, neither by a normal return sequence nor by
an abnormal return, executing procedures on the cleanup
list with the ring number, Stack frame, and invocation
number of the procedures being circumvented and freeing
their Stack frames. (The "abnormal return" may, for that
matter, be viewed as a short-circuiting of the normal
return 11 circuit11 .) At some point in this processing,
hCA.11Jever, the Stack frame of the procedure which contains
the label (lbl) to which the abnormal return is being
taken will be encountered, and at this point unwinding
must cease. So the Unwinder actually checks each Stack
frame it encounters before processing the frame (there
may be many such frames for a given invocation number -
which is to say, for a given period of residence in the
protection ring at hand of the Multics-sense "process"
which invoked the Unwinder): if the Stack frame corresponds
~0 the frame of lli, the Unwinder proceeds directly to
its final task, which is to effect the abnormal return;
otherwise, it continues to 11 unwind11 •

Note, by the way, that PL/I II non- loca 1 go to 's" are not
treated as direct transfers; rather, they are abnormal
returns from a subroutine to a point other than where
it was called from - such returns being effected by an
intermediary subroutine, the Unwinder. Be it further
noted that Multics compilers must not compile direct transfers
to non-local labels, but must instead compile a suitable
call to the Unwinder for something like "go to error;"
when error is external or a parameter.

Essentially, the foregoing discussion has dealt only with
the solution to the "unfinished business" problem of abnormal
returns. Although invocation of cleanup handlers from
the rings they were established in is sound protection
technique, the basic problem of assuring protection for
the abnormal return to lbl itself remains unsolved thus
far. The solution liesin the method of performing the
return to lb 1.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.05

A single step in the logic of the Unwinder serves both
to assure the validity of the proposed abnormal return

PAGE 4

and to prevent any attempted circumvention of the protection
mechanism by a direct transfer. That step is a call to
the get ring entry of the Basic File System (BG.3.01) -
the same entry used by the Gatekeeper (BD.9.01) to verify
gates and to get target-ring numbers. The Unwinder, however,
is not interested in whether lbl is a "gate"; indeed,
lbl must not be a gate, but a"'cioor". BD.9.00 contains
further discussion of gates and doors, but for present
purposes it is sufficient to observe the following: If
the Gatekeeper were invoked on a wall-crossing fault and
determined that the faulting instruction had been a transfer,
it would treat the situation as a call. Then, if the
"call" were inward, the Gatekeeper would invoke get_ring
to verify the target address. Get_ring examines the

11 protect ion 11 st" (see a 1 so BG. 9. 00, BX. 8. 02) of the segment
containing the target and indicates whether or not the
target is a gate. Here is the crux of the matter, for
if abnormal return labels were treated simply as gates,
the Gatekeeper could be tricked into passing a direct
transfer to such a label, as if it were a call. But such
labels are not "gates", they are "doors", and are indicated
as such in protection lists. Therefore, the Gatekeeper
would reject a direct transfer to a label (accepting,
of course, call-sequence transfers to legitimate entry
points) on the evidence furnished by get_ring. This is
as it should be, from the stand point of protection, because
havoc could result if control were allowed to pass to
a11 abnormal return point of an inner ring without preparations
having been made in terms of stack pointers and frames,
linkage pointers, and the like. Hence, the System enforces
the rule that the Unwinder must be used for abnormal returns
to inner rings. (Intra-ring abnormal returns and abnormal
returns to outer rings also should be performed by Unwinder;
this is impossible to enforce, however - and unnecessary
to enforce, for any chaos resulting from failure to 11 unwind11

stack frames and the like will only reign in the kingdom
of the user who refused to allow the protection mechanism
to protect him from himself.) On the other hand, once
duly invoked, the Unwinder must also contribute to preserving
the integrity of the environment in which an inner ring
procedure will find itself when control returns to it
at an abnormal return point. Therefore, it will reject
any target points which are entry points, and will only
perform its "unwinding" when invoked to effect an abnormal
return to an abnorma 1 return labe 1, or II door". The Unwinder
may, for that matter, be thought of as playing "doorkeeper".
to the Gatekeeper's gatekeeper.

r, MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BD.9.05 PAGE 5

Once verification of the abnormal return has been obtained -
after II unwinding" as discussed above., of course - the
Unwinder can exercise its authority as a part of the protection
mechanism and by subtle modification of Stacks and the
Gatekeeper-s <rtn_stk> cause the abnormal return to take
place in such a way that control ends up in the proper
ring. Details of this rather tricky undertaking are given
in the discussion of Implementation, below. For now,
it is enough merely to claim that the Unwinder does, indeed,
solve the problems of "unfinished business" and of protection
in the event of abnormal returns.

A final general point on the abnormal return mechanism,
procedures which have been placed on a cleanup list by
calls to cyndition may of course be removed by calls to
reversionf it has been determined by a procedure that
its "unfinished business" no longer needs to be transacted.
One can conceive of cases, indeed, where this sort of
thing must be done. For example, consider a PL/I epilogue:
on entry to a block, the epilogue might be placed on the
cleanup list to guard against an abnormal return out of
the block, if no abnormal return occurs., then immediately
before invoking the epilogue at the end of the block the
procedure must remove the entry from the cleanup list
to prevent the epilogue-s being extraneously invoked in
the event of an abnormal return from a subsequent block.

Error Hand Jing

lnere are three error conditions which the Unwinder could
encounter which could be of interest to the user: 1) The
inter-ring label to which the abnormal return is being
attempted is not a "door''. 2) The inter~ring label to
which the abnormal return is being attempted is a door
but does not correspond to any stack frame encountered
while "unwinding" through the return stack (<rtn_stk>)J
that is, the label was not passed by a procedure which
has a pending return active. 3) The intra-ring label
to which the abnormal return is being attempted does not
correspond to any stack frame encountered while "unwinding".
The Unwinder-s general treatment of the conditions is
the same, but, as will be seen, the implications and certain
details are different. The general approach is to place
an appropriate comment in the user-s error file via a
call to seterr (see BY.11 .01), then call sigQal (BD.9.04).
This is., of course, in keeping with the Multics error
policy as enunciated in BY.11. HONever., these errors
require special treatment in the area of how to continue
after they arise. In all cases, default handling must
be as system-defined conditions. That is., the system-wide
default handler for user-defined conditions (unclaimed_signal)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.O5 PAGE 6

cannot be used as the fault handler for Unwinder errors.
The problem is that the standard handler for unclaimed_signal
will ask the user if he wishes to continue, and continuing
is meaningless in these situations (unless prepared for
explicit1y1 see below). Therefore, the default handler
for the Unwinder errors is unclaimed signal~anchor, which
bypasses the continuation question and simply notes the
error and transfers to the anchor point in the Shell (i.e.,
"aborts"). This solves the problem for the cases in which
the signal goes unclaimed. (Actually, the default definition
is a relatively easy matter: only the ring-a signal vector
need be pre-set for unclaimed_signal~anchor as the default
handler, as the Unwinder calls signal from ring O and
takes its default handler from <signals_O> unless there
is an active handler elsewhere.)

It is possible for the user to have established a handler
for the Unwinder's error conditions. In such cases, the
Unwinder must be prepared for a return from its call to
sf~na]. At this point, the handling of the error conditions
d fers. In case 1), where the inter-ring label was not
a door, it is safe to return to the caller, for no "unwinding"
will have been performed. (The assumption is that the
user's condition handler will have repaired the situation
in the procedure which cal led UJ?tli nder.) However, in
cases 2) and 3), where the address portion of the label
corresponds to a door or is by definition legal because
in the caller's ring, but the Stack frame pointer portion
is not found on the return stack, it is not safe to return
~o the caller, because unwinding ~ have been performed.
The assumption here is that the users condition handler
can not have repaired the situation in the calling procedure,
for the situation has been irreparably altered by the
Unwinding already performed. Indeed, case 2 is an easy
mistake to make - for example, it would arise if a label
were stored in "static" in EPL and the Stack frame portion
of the label corresponded to a procedure which had already
been returned to; however, we signal anyway because the
original call to unwinder may have been intended to accomplish
a modified abort - that is, one which does not go to the
Shell.) Whatever the reason for such strange user behavior,
in the event of a return from signal in cases 2) and
3), the Unwinder calls unclaimed_signal~anchor directly,
as the calling procedure cannot continue.

Implementation

For the purpose of this discussion suppose A called B
called C called D called E called F called G (where procedures
A, B, E, F, and Gare in ring i and C and Dare in ring
j; see Figure 1) and G wishes to make an abnormal return

,,,,,-,

MULTICS SYSTEM-PROGRAMMERS- ~NUAL SECTION 80.9.05

to abn. G calls unwinder, which is in ring o, with abn
as an argument,

call unwinder (abn);

de 1 abn labe 1;

Abn, bein9 label data, consists of two parts; abnloc,
the location of the abnormal return point, and ybnsp,
the current Stack frame at the time abn was def.ned.

PAGE 7

The task of the Unwinder is to search backward along the
path of control (i.e., G-F-E-D-C-B-A) looking for the
stack frame ybnsp. In the course of this search it executes
cleanup rout nes, "undoes" ring crossings, and releases
Stack frames. For the purpose of searching for abnsp
and executing the cleanup routines it calls on a helper
in each ring, procedure helper_n in ring n. Figure 1
shows a diagram of the Stack frames in rings i, J, and
o afte~ helper_i has been called by the Unwinder. Figure
2 shows the Stacks after the call to the Unwinder and
the contents of <rtn_stk> for the three ring crossings
involved. The frames marked dummy are the dummy frames
which are inserted by the Gatekeeper when a wall crossing
takes place. The helper works down the Stack executing
the cleanup routines deposited in <signals_n> during execution
of the procedure associated with each frame until either
a dummy frame is encountered or frame abnsp is found.
In either case it returns to the Unwinder. If the helper
f~und abnip, the Unwinder releases all frames down to
(but not ncluding) abnsp and returns to abnloc. If the
helper found a ring-crossing dummy instead, the Unwinder
simulates the ring-crossing, resulting in the state dia~ranrned
in Figure 2. After the simulated ring-crossing the Unwinder
cal ls the helper in the new ring. Figure 1 shows the
Stack threading (spl16 and spl18) as single or double
headed arrows along the side of the stacks. In addition
it shows the backward cross-rin9 pointers which are in
spl28 of the ring-crossing dummies.

There are, then, two routines which need to be described:
ull\rlinder, which is a ring-0 procedure, and helper i (all
of the helpers helper_o, ••• , helperT63 are identical,
however helper_i operates only in ring 1). We consider
helper_i first, as an understanding of the actions of
unwinder is dependent upon an understanding of the actions
of helper _i.

r
I

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION B0.9.·os PAGE 8

Ibe Helper
Helper_i is called (by the Unwinder),

call helper_! (abnsp, flag, lastsp, inv)

dcl (abnsp, lastsp) ptr, (flag, inv) fixed bin (17);

where,

abnsp

.f..l.lQ

Jastsp

is the stack frame that helper_i 1s to search for

on return• O if a dunmy frame is found before
~ is found

• 1 IF abnse is found
• 2 if an error occurs in helper_i

is a pointer to the dummy frame if abnsp was
not found

.!Jr£ is the invocation number of that portion of
<stack_i> in which helper_i 1s to search for abnsp.

Upon entry, helper_i initializes itself by setting cursp
to point to the second frame before its own (e.g. £Qg
in Figure 1). In addition, it obtains pointers (by calls
to generate ptr) to <signals i>fO (call it !.!,g) and
<signals_i>T[cleanup] (call Tt £W2.). The following steps
are then repeated until one of the termination conditions
is satisfied.
• I •

2.

Have we found abnsp? If cursp • abnsp, set .f.lA9. equal
to 1 and return.
Exec~te any pending cleanup routines for this frame.
(Notes this step is skipped if generate_ptr returned
a nul 1 pointer.) For this purpose the fol lowing steps
are repeated until all applicable cleanup routines
have been executed.

a, Examine the first item on cleanup stack. 9J.P. contains
a relative pointer (call it fst) to the first item on
the cleanup stack, i.e., sigTfst is the first item.
It has the format,

sigjfst.-.

+l

+2

+4

pointer to 2nd item

invocation /I at time
this item was added

sp at time this
item was added

cleanup routine
entry data

itminv

itmsp

cupntry

MULTICS SYSTEM-PROGRAMMERS .. ~NUAL SECTION BD.9.05 PAGE 9

If both itminv • .!ml and itmsp = cursp (that is,
if the invocation number and the Stack frame are
appropriate) then this item is a cleanup routine
which should now be executed. If either equality
fails, go to step 3.

b. Set up to call cupntry. The call is to be made
with zero arguments1 however, if the sp portion
of the cupntry entry data is non-zero, the argument
list must be supplemented in the proper manner
(see BO • 7 • 02) •

c. Call reversion ("cleanup") to remove the cupntry item
from the cleanup stack.

d. Finally•, call cupntry .. When it returns go to step 2a.

3. A 11 cleanup routines for the current frame have now been
executed. If the op field of curspf16 = 1 this frame
is a dunmy which resulted from a ring crossing at this
point. In this case, set fla~ equal too, lastsp equal
to cursp. and return to unw n er.

4. Otherwise; curspf 16 should point to the previous frame.
If curspf 6 ~ cursp set flag equal to 2 and return.
Update £Y.!'.:.1Q. to equal the contents of· curspf16 and go
to stepT. __ _

Unwinder

When unwinder is entered the following initializing steps
are executed.

a. Verify the target label, abn. First obtain the ring
of the caller. If spf16 points back to a durrmy frame
then the ring number of the caller is in <rtn_stk>.
(If spf16 does not point to a dummy frame, then the
caller is ring 01 the logic of ring O cases is discussed
separately, below). <rtn_stk>JO points to the last item
in <rtn_stk> which has the format (where inv:=<rtn_stk>IO),

(rtn_stk) jinv - length last -
+1 ring of validatio11

caller level

+2 I its

sp of caller
-+4 l.i;!! __

return location - -

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BD.9.05 PAGE 10

Set 1 equal to ring# and

call get_ring (abn, i, target_ring, type, err_code)

After this call, errlcode is non-zero if abn is not
accessible to the ca ler. If err code is zero and
~ indicates that a.e.o. is a gate-rather than a·door,
the abnormal return ls also invalid. In both cases
11 unwinder _err" ls signalled with an error code of 1 •
If a.e.o. is a door for the caller (or is in his ring)
the target label is valid.

b. Set abnsp equal to the sp part of sen.
e. Information pertaining to the Stack frames of interest

to the unwinder is found in the second item in <rtn stk>
rather than the first. Accessing of this information
is via the invocation number, .!m!. Initialize by,

1nv:•rlghthalf (<rtn_stk>f(<rtn_stk>fO))

e.g., set~ equal to b2 in Figure 2.

The following loop ls then entered:

1. Cal 1 helper _1 (abnsp, flag, las tsp, lnv).

2. Upon return, if .f.lAg = 1 then abnsp was found; go to step a.
If flag• 2 generate a terminate process fault. Otherwise,
a r ng crossing has been encountered and Stacks must be
switched.

3. Update base of Stack being left, lastsbf0:=lastpf16.

4. Update the target Stack. Obtain a pointer (call it n!!Wsp)
to the correct frame of the target Stack. This is found
in <rtn stk>linv +2, e.g •• in <rtn_stk>fb2 + 2 in
Figure~. Then set the invocation number, newsbf2, with
the number of the previous invocation which is found in
the right half of <rtn_stk>rinv, e.g., b3 in Figure 2.
The new validation level is found in the right half of
<rtn_stk>rinv+1 and is put into newsbf3.

5. Finally, the second item in <rtn_stk> is removed by,

a) new_inv:•rlghthalf (<rtn_stk>rinv)

b) righthalf (<rtn_stk>f(<rtn_stk>IO)):=new_inv

which deletes the record of this crossing by detaching
the first item from the second and attaching it to the
th i rd i tern (see F i gu res 2 and 3) • ,

MULTICS SYSTEM-PROGRAMMERS' t'ANUAL SECTION BO .9.05 PAGE 11

6. One task still remains. Refering to Figures 2 and 3.
we have simulated a crossing from ring i to ring J by
updating the bases of these Stacks and deleting the
Gatekeeper's record of the original crossing from
ring J to ring 1. H~ever. the control thread still
remains unchanged and includes frames E. F. Gin ring i.
The processes frames in ring i are deleted by detaching
the Unwinder's frame (and its dummy) from frame Gin
ring i and reattachin~ it to the last frame in ring j.
myspf16 contains a pointer to the dummy frame. dumsp.

a) Update the cross ring pointer: dumspf28:=newsp;
e.g •• set dumspf28 equal to !129, in Figure 3.

b) Update the first item on <rtn stk> so the
thinks it was called from the-new ring;

k:=<rtn_stk>fO

<rtn_stk>fk+1:•<rtn_stk>finv +1

<rtn_stk>fk+2:=<rtn_stk>finv +2

<rtn_stk>fk+4:•<rtn_stk>finv +4

Unwinder

It should be pointed out that the apove method of
abandoning the processed Stack frames leaves the frames
in the last invocation of each rin~ intact and preserves
the threads (spf16 and spf18) within the ring. This
gives the debugging routines something to work with
in case the Unwinder is unable to find abnsp and aborts
by a terminate process fault.

7. Finally set up for the new call to a helper

a.

a) get new ring#; i:=lefthalf(<rtn_stk>finv+1>)

b) inv:=new_inv

Go to step 1.

If the helper found frame abnsp~ the target has been
reached and a return to abnloc must be simulated.

a) Update the first item on <rtn_stk> so that it looks
like the Unwinder was called from abn

MULTICS SYSTEM-PROGRAt+1ERS' ~NUAL SECTION BO .9.05

ka•<rtn_stk>IO

<rtn_stk>lk+4:•abnloc

<rtn_stk>lk+2:•abnsp

PAGE 12

b) Update the dunmy frame so that the Unwinder will go
to abnloc when it executes the return sequence.

dumspf20:•abnloc

dumspfO •••• ,dumspfSs•abnspfo ••••• abnsprs

The contents of dumspf6 and dumspf7 must remain
unchanged in order for the return to function correctly.

The Unwinder now executes the standard return sequence.

We have not considered what happens if the Unwinder is
called from ring o. Helper_o is the same as all the other
helpers since its Stack frame is in the same relative
pcsition to the frame of the caller of unwinder as it
is with any other helper (compare Figures 1 and 4). There
are minor modifications in the initialization of the Unwinder.
In step a) the ring # 1 i, is zero. In step c) inv:=<rtn_stklO>.

In the main loop of the Unwinder two cases have not been
considered: I) the ring being switched to is ring o.
and 11) the ring being switched from is ring o.
Case Is (see Figure 5) Steps 1 through 4 remain the same.
We now remove the top two items in <rtn stk>. In addition
the dunmy frame preceeding the Unwinder~s frame ls eliminated
by absorption into the frame preceeding it. Hence we
have new steps 5-7.

s'. Absorb dunmy frame.

dumsp:• myspf16

prespa• dumspf16

prespf18:• dumspf18

myspl16s• dumspf16

6 1 • Delete top two items in <rtn_stk>.

<rtn_stk>IO:= righthalf (<rtn_stk>linv)

MULTICS SYSTEM-PROGRAt+1ERS' Ml\NUAL SECTION 80.9.05 PAGE 13

7'. Setup to call helper.

a) Get new ring#; is•0

b) inva• <rtn_stk>f0

Case II, (see Figure 6) Steps 1, 2, and 7 remain the
same. None of the items are deleted from <rtn stk>.
All of the frames in ring 0 between the Unwinder and the
dunmy which helper_o found are absorbed into the dummy.

The new versions of steps 3-6 are,

3". Nothing (the Gatekeeper wi 11 do this and the next
step when helper_J is called).

411 • Nothing.

5". Nothing is removed from <rtn_stk>; however, in
preparation for step 71 new_inva• righthalf
(<rtn_stk>f inv).

e•. Absorb frames;

1astspf18s• mysp

myspf16a• lastsp

Finally, step 8 requires modification if the target, abnloc,
ls in ring a. Since the Unwinder is also in ring 0, modification
of <rtn_stk> is unnecessary as no ring crossing will occur
when the return to abn)oc is simulated.

8'. Simulate return to abnloc, update the unwinder's
frame,

myspf 161• abnsp

abnspf20a• abnloc

and execute the standard return sequence.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.05 PAGE 14

Ring i Ring j

A dU11111y

B C

dUDllly

D
E

F

G

dunmy

I,...,
helper_i

Ring 0

dummy

unwinder

After the unwinder has called a helper

Figure 1.

0 - ~

spb

----spg

• • •

B

dumpiy

E

F

G

•••

MULTI CS SYS TEM•PROGRAMMERS - ~NUA L SECTION BO. 9. 05

0

•••
~

(j)
- dummy

® C

- ~
spd I

D
-
~

©

<stack_O>

new_inv+b3

newsp

inv*2

<rtn. stk> -
• ••

n3 b4
i v13

rtn3

•••
0 n b3

+l 1 V

+2 .(stack_j)f s

+4

•••

PAGE 15

dumsp_.. ... bl nl b2

mysp

- dummy

►

:L

unwinder
(stack_i)/spg

rtnl

...

Circled numbers on the left correspond to like-numbered
entries in the <rtn_stk>; i.e ••

(i)is the ring crossing ;recorded in <rtn stk> fbi
before the unwinder simulates a ring crossing

Figure 2

nJ

n2

nl

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BO .9.05 PAGE 16

<stack_l> <stack..J> <rtn stk> -
0 - o-.. ...

• • • • •• . ..

.@ dumy
A I - b3 n3 b4

i
spb --- '"'\ -

B C n3

••
dummy © spd. D rtn3

E •••
b2

F Q.') ••• lost

G
-"• bl nl b3

j vl2
ts

<stack_O>
stack_~jspd nl

its
rtnl

-~ dummy •••

unwinder

After the unwinder simulates a ring crossing

Figure 3.

MULTICS SYSTEM-PROGRAMMERS' fJANUAL SECTION BD.9.05 PAGE 17

<stack_O> <stack_)>

'

-dummy ..
@l ...

E D

F

G

unwinder

helper_O

The unwinder has been called from ring O and has called helper_O.

Figure 4.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BO .Y .,05 PAGE 18

<stack l> - <stack_O> <rtn_stk>

•••

b3 n3 b4

dummy n3
•••

lasts dummy p
(y b2

n2
R Q •••

s dunmy bl nl b2
nl

unwinder •••

Before

<stack_O> <rtn_stk>

•••

0 ~ - b3 n3 b4
dununy - .

• ••
p

Q

unwinder

After

Ring being switched to is ri.ng O

Figures.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.O5

<s~ack..J>

p
--

Q

<stack..J>

R

-....
Q

<stack O> -

i+-1 - durmny -

R

@ s ..._
unwinder

Before
<stack_O>

-- dunmyi.

0

unwinder

After

Ring being switched from is ring O

Figure 6.,

ast sp

mysp

PAGE 19

