MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BD.9.02 PAGE 1
' Published: 05/03/67

Identification

Outward call argumznt management: arg_pull, arg_push
R. M. Graham, M, A, Padlipsky

Purpose

Arg_pull is a ring-0, slave procedure used only by the
protection mechanism, Its function. is the validation

and copying of arguments for calls from an inner ring

to an outer ring. The entire argument list {suitably
modified) and all arguments must be copied into the stack
of the called procedure, as data in the caller”s ring

are by definition inaccessible to outer ring procedures,

Arg_push is also a ring-0, slave procedure used only by
the protection mechanism, 1Its function is the copying
of return arguments back into the inner-ring areas where
they are expected to be found on returns from an outer
ring to an inner ring. That is, it is the converse of
arg_pull,

Restrictions

Arg_pull and arg_push are predicated on the assumption

that procedures making outward calls possess appropriately
stiructured argument lists = specifically, "data descriptions"
must be present., EPL/PL/1 procedures may insure this

by use of the "callback" option; see BP.0,02. Non-PL
procedures must be coded so as to produce the equivalent

of what PL ones do; see BD.1, BD.7.01, and Figure 1, below.

In the initial implementation, varying strings may not
be passed as arguments on outward calls, A1l other data
types mentioned in section BB.2 (System Interfaces) are
acceptable,
Use
The Gatekeeper calls arg_pull as follows:

arg_pull (oldap, newsp, nextsp, ring, err_code);

with arguments declared

del (é]dap, newsp, nextsp)ptr, (ring, err_code)
fixed bin (17); o

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BD.C.02 PAGE 2

where oldap is equal to the argument pointer of the faulting
procedure, newsp is equal to the stack pointer of the

target procedure, ring is the ring number of the procedure
for which the Gatekeeper is processing a call, Upon return
from arg_pull, nextsp contains a pointer to a "newer"

stack frame (which the Gatekeeper will place into newsp|18
using the terminology of Figure 2, BD.9.01), and err_code
(if non-zero) coniains a code indicating the type of error
which occurred in attempting to "pull' the argumants,

The Gatekeeper calls arg_push as follows:
call arg_push (oldap, newap, ring, err_code);
with declarations
dcl (61dap, newap)ptr, (ring, err_code) fixed bin (17);

where oldap is the argument pointer for the procedure
being returned to, newap is the argument pointer for the
procedure being returned from, ring is the ring number
of the procedure the Gatekeeper 1s processing a return
from, and err_code is as above,

Method
1. Arg_pull

Figure 1 presents the format of a "callback'-type argumznt
list., Figure 2 presents a block diagram of arg_pull,

The Togic is as follows: If there are no arguments (left
half of first word of argument 1list equals zero), nextsp

is set to point to pewsp + 32, err_code is set to zero
(indicating successful completion) and the routine returns.
If there are no data descriptions (left half of second
word of argument list is zero) and there exist arguments
("n" is not zero), an error condition exists and the routine
returns, after-setting err_codz to 1. Next, check that

none of the argumznts is of illegal data type; if there

is an illegal data type, set err_code to 2 and return,

The final validity check which must be performed is the
determination that each argument pointed to is indeed
accessible to the routine whose argunent list it appears

in. (This step must be taken to prevent arg_pull from
becoming an unwilling accomplice to an illegal act by
exercising its reading privileges indiscriminately; it

is not, of course, taken when arg_pull is operating in
behalf of a ring-0 routine,) Call validate_arg (BD.9.03)

MULTICS SYSTEM~PRCGRAMMERS © MANUAL SECTION BD.9.02 PAGL 3

for the arguments and ring; if any argument is not accessible,

set err_code to 3 and return. (To guard against possible
alteration of the pointers on an interrupt, the validation

is performed on arg_push’s own copy of the argument 1list;

the problem here is a consequence of the fact that segment-sharing
allows for the possibility of some other user’s altering

the segment containing the argument list after validation -
cf.BD.9.01). Otherwise, all of the argument list except

the individual argument pointers can be copied directly

into the new list, beginning at newsp+32.

The arguments themselves must be handled with some care,
Scalars can be copied into the new stack in locations
subsequent to the last data description with their corresponding
argumant pointer entries set to point to them, 1In the

case of strings and one-dimensional arrays, the dope and

data are copied without alteration into locations subsequent
to p; new specifiers, to which the argument pointers are

made to point, are created, taking into account the locations
of the copies of the dope and data, (Specifiers and dope

are discussed in section BP.2.02.) The final length of

the area containing the argument list and the copied argumznts
is added to newsp+32 to determine the origin of the next
available stack frame in the new stack; this value is

returned to the Gatskeeper, Err_code 1s set to zero,
indicating successful completion,

Iin the initial implementation, all arguments will be copied;
that is, no attempt will be made to avoid dealing with
argumants wnich may be accessible from the new ring without
copying.

2. Arg_push

Figure 3 presents a block diagram of arg_push. The logic

is as follows: If there are no arguments (left half of

first word of argument list pointed to by oldap equals

zero), set err_code to zero (indicating successful completion)
and return, Otherwise, search the data descriptions associated
with oldap, recording the number (i.e., position in argument
list) and data type of any which are return arguments,

I1f there are no return arguments, set err_code to zero

and return, Next, call validate_arg (BD.2.03) for any

return argumants found and ring, using copies of the argument
pointers found in pewap’s list. Copying pointers and
validating argument accessibility are done for the same
reasons here as they are in arg_pull: possible alteration

MULTICS SYSTEM-PRCGRAMMERS © MANUAL ~ SECTION BD.9.02 PAGE L

in the pointers case, and possible fabrication in the
accessibility case. (Note that ring is the ring number
of the procedure being returned from.) If any return
argument is not accessible from ring, set error_code to

1 and return. Otherwise, copy the data pointed to by

the return argument pointers in the copy of the argument
l1ist pointed to by newap into the locations indicated

by the corresponding argument pointers in the argument

list pointed to by oldap. (Unlike the arg_pull case,
arg_push need only copy data: for the data types permitted
to be passed on inter-ring calls, dope and specifiers
cannot have changed as a result of the call being returned
from.) After copying the data, set error_code to zero

and return.

MULTICS _YSTEM PRC"MAMMERS © MANUAL SECTION BD.9.02 PAGE 5

‘Ar\
Figure 1. Argument Lists
la. 1In the calling procedure (general form):
0
oldap P> If 2, there are 2 words after the
2%n 0 or 2 argument pointers representing the
1 stack poi for 1 -
. pointer for last storage
If 2%n, there are . .
) generation of procedure being called
n pointers to 0 or 2%n
. e e 2 (see BD.7.02)
argument discriptions
IITS}
4 a1
| 118
a 2 T
sPointers to arguments (ai); occupy
. 2%n words.
f\ .
z1s
4
lzzs
May not be present stack pointer
Py |
. Pointers to data descriptions (P;);
occupy 2%*n words.
Py

MULTICS SYSTEM PROGRAMMERS “ MANUAL SECTION BD,9.02 PAGE "6

SN
Figure 1, continued.
1b. Example of arg pull-produced argument list:
newsp + 32 0O .
1 4 0
2 4
4 (a1)
(ap)
6 2
(e
8 1
P2)
10 (2
Value of lst arg
12 Yl L LI i L i
specifier for
o 2nd arg
Dope for 2nd arg
7 Value of 2nd arg

Assume that the first argument (of 2) is a single precision scalar

and the second a non-varying string.

MULTICS SYSTEM=-PROGRAMMERS © MANUAL ~ SECTION BD.S.02 PAGE 7

,',.\
nextsp =
newsp+32; |— =
err_code=0
err_code
=1 >
Figure 2.
err code
= 2 >
err_code
3 = 3
Set up C for
nextsp compu-
tation,_ accord-
ing to length
of arg. list.
7~
Copy fixed
portions
ints new 1rst
I 2
Set up for
n iterations;
j=1
Copy arg. into i = .
J%t logatlon 1 = 3 + %’
arter rn; new - Odd word ig-
a(i) points [=®yoreq if 51§g1e
to it precision)
Make new specf
ifier, pointihg
to dope’ at % th
locatlon after -
Pn, data at j|+ 2nd
I
a(i) = new
specifier
T
copy new
dope, data
o "_~"”#L—"—*W
i=1+4 13
update j
approprlately
rﬁextsp =
No i n? Yes P HE\CSp—.‘-C-i- —_—s R

MULTICS SYSTEM~-PROGRAMMERS © MANUAL ~ SECTION BD,9.02 PAGE 8

err_code | __p»
=0

Copy
newap

arglist

,

Record re-

Figure 3. turn args'
positions

—

Call .

validate
arg for
return argsg

Legal “S\No..| err_code -—m,/;;turn
? : =1

Yes

Set up
loop for
number of
return

L_a.rgf_’m__---_

oldapwoldarg({j
= newap -—
returnarg(i)

R -_m_er£_80de aYes oop don&y_No

