
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.00

Identification

Published:
(Supersedes: BD.9.00,

Overview of the Multics Protection Mechanism
R. M. Graham, M.A. Padlipsky

Purpose

PAGE 1

06/27/67
03/31/66)

Although it is often taken for granted, one of the most
useful aspects of Multics is the ability the system confers
upon the user to share segments with other users. This
sharing is basic to the approach taken in implementing
the Multics supervisor, whereby each user process contains
many pure-procedure supervisor segments within itself
(that is, in its "address space''). Data segments may
also be shared, and shared supervisor routines frequently
reference system-wide data bases. The advantages of segment­
sharing are explicitly dealt with in the 1965 Fall Joint
Computer Conference papers on Multics and implicitly dealt
with in various portions of the Multics System-Programmers'
Manual, particularly in the area of the Traffic Controller.
As is usually the case with advantages, however, there
is a price which must be paid in order to secure the blessings
of segment-sharing in Multics: In many cases, supervisor
routines perform functions which can only be performed
in behalf of other supervisor routines, particularly when
dealing with data-bases that contain information which
is in some sense "private" - either to a specific user,
or to the system. A mechanism must exist which protects
the supervisor from being called upon to perform forbidden
tasks. In an even more basic sense, consider the problems
which would arise if a user routine were inadvertently
to destroy information (procedure or data) necessary to
the correct execution of the supervisor. A mechanism
must exist which protects the supervisor from being damaged
by a process which is sharing its component segments.
This mechanism, hereinafter called the Multics protection
mechanism, is the means the system ,employs for allowing
secure segment-sharing. The existence of a protection
mechanism also contributes to more reliable system operation
by minimizing the destructive effects of the inevitable,
occasional mistake by the system programmers.

There are benefits which stem from the protection mechanism
beyond the obvious ones of supervisor integrity. Of course,
the protection mechanism is fundamentally intended for
the protection of the supervisor; the design chosen, however,
lends itself to extension in a fashion which affords protection

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 2

to non-supervisor segments as well. A discussion of the
conceptual model of the protection mechanism should clarify
the point of extendability. Before proceeding to that
discussion, though, it would perhaps be worthwhile to
attempt to clarify further the purpose of the mechanism
in general. There isl after all, a sophisticated apparatus
in Multics for assign ng "modes" to segments (see BG.9,
BX.8). Why must there be a mechanism beyond modes? The
answer, perhaps rather cryptically, is that modes are
assigned per user, but shared supervisor segments are
assigned per process. That is, user A can by a suitable
choice of mode allow or prohibit user B's access to segment
x which resides in A's file directory; but if <x> were,
say, a segment of the Basic File System in B's working
process denying access by mode to B would be absurd.
Nor would assigning execute only mode to all supervisor
segments suffice, for there would still exist the possibility
of 9nyone's calling supervisor routines - many of which,
by their very nature, are only to be invoked under certain
circumstances, and frequently only by other supervisor
routines. Without beating the issue to death, then, let
us simply observe that the protection of the supervisor
in Multics requires a mechanism distinct from that of
modes.

The Conceptu9 1 Model

Conceptually, the Multics protection mechanism is quite
straightforward. Picture a series of concentric circles.
Let al 1 the segments in a process II live" somewhere in
the picture, such that each segment is between the boundaries
of some pair of circles, or in the innermost circle.
Now label the areas contained by the circles, starting
with the innermost, from Ro to R53. (The ''R" stands for
"ring", for reasons which probably become obvious after
a glance at Figure 1.) The primary rule is that segments
"in" the same ring have free access to one another, subject
to any limitations prescribed by their modes. In anthropomorphic
terms, you must trust the segments in your own ring.
Access between rings is limited according to rules enunciated
below. The first point to notice, however, is that once
we have established the ring model, we provide for "walling
ofP' ordinary user segments from those segments which
belong to the supervisor by assigning the segments to
different rings. Note, by the way, that at this level
we are speaking of segments in general, without differentiating
between procedure segments and data segments.

1 '

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.00 PAGE 3

The primary rule of access between rings is that segments
in lower-numbered rings have in general unlimited access
to segments in higher-numbered rings, subject of course
to mode restriction on particular segments, whereas segments
in higher-numbered rings have no access to segments in
lower-numbered rings except for cases where access is
specifically granted by means discussed below. "Access"
refers to both the ability to execute a segment and the
ability to read or write it. Thus, from the outside of
the ring structure looking in toward the central supervisor
in ring 0, the ring boundaries are "walls". Recall that
within a ring (which is to say, "between walls") life
goes on unimpeded by the protection mechanism. It is
when a wall must be crossed that the protection mechanism
comes into play.

Those segments which comprise the central supervisor are
in ring o. It is useful to reserve ring 1 for system
routines, lar;Jely administrative in nature, which are
not so sensitive as the central supervisor and which cause
less disastrous results in case of failure. The remainder
of the low-order 32 rings are reserved for the system.
The high-order 32 of the 64 rings provided for in the
model are for user segments, although we will speak of
them in general as being in ring 32. A built-in advantage
of this structure is that users may avail themselves of
"spheres of protection" just as the supervisor does.
For example, an instructor might place his grading program
in, say, ring 32, and invoke student-written procedures
which are placed in, say, ring 33, with the assurance
that his own program is secure from tampering by students.

Conventions end Terminology

The conceptual model just outlined represents the basis
of the Multics protection mechanism for each process in
Multics. Before presenting an overview of the supervisor
procedures necessary to implement the model, it will be
useful to present a list of the assumptions on which those
procedures are predicated. The reminder of this section,
then, may be viewed as a protection mechanism glossary.
(The ordering, however! is not alphabetical; it attempts,
rather, to be progress ve.)

1. Ring,. All the segments of a process in Multics are
dividednto a number of mutually exclusive subsets, called
rings. A segment, <s>, is in one and-only one ring.

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BD.9.00 PAGE 4

Rings are numbered from O (the hard core supervisor-s
ring) to a possible maximum of 63. The lines between
rings are called walls. If <s> is in ring n, its domain
of access is those rings numbered from n to-63; it is
denied access (in general, but see below) to segments
in rings numbered from n-1 too. Thus, the hardcore supervisor
has access to all segments of the process.

2. Wall-crossing. Control must, of course, be able to
pass from ring to ring. After all, the segments which
reside between the various walls do belong to the same
process. The basic problem is how to make the system
cognizant of the fact that a wall-crossing is being attempted,
so that the crossing-s le~ality can be checked. In broad
terms, the solution to this basic problem lies in the
construction of the descriptor segment for the process.
The Basic File System, when producing an entry in a descriptor
segment for a process, takes into account two factors:
the ring in which control was at the time a missing-segment
fault brought the file system into play, to create a descriptor
for the segment in question, is one factor; the other
ls the Access Control List of the segment (see also BG.9).
More on access control in Figure 2 and later; for now,
suffice it to say that the file system produces entries
in a descriptor segment such that, when control of the
process is in a given ring, reference to segments in
higher-numbered rings ("outwards") wi 11 produce an
attempt-to-execute-data fault, and reference to segments
in lower-numbered protection rings (11 inwards") wi 11 produce
a Directed Fault 2. These two faults are the protection,
or wall-crossing, faults. The Fault Interceptor (see BK.3),
on receipt of elther of these faults, invokes the appropriate
system procedure for legality checking and housekeeping.

3. fates. By virtue of the ring structure-s basic definitions,
pass ng control by outward calls is legal. That is, segments
in outer rings are accessible to those in inner rings.
However, by virtue of those same definitions, we have
yet to see a way in which an inward call could be legal.
That is, segments in inner rings are in general inaccessible
to those in outer rings. The means of legitimizing inward
calls is to cause one or more entry points of a given
procedure segment to be treated as "gates" in the protection
wall. A gate, then_ is an entry point to an inner ring
procedure segment which may be called by an outer ring
segment{ using the system-standard call macros (BD.7.02,
BD.7.03JJ gates are subject to certain refinements as

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.00 PAGE 5

to range of rings which may call them., as described below.
Gates are listed in segments' Access Control Lists (see
BG.9., BX.8). For obvious reasons., the supervisor routine
which the Fault Interceptor invokes to process wall-crossing
faults is called the Gatekeeper (see below., and BD.9.01).

4. Doors. ..Normal" returns after subroutine calls (that
is., uses of the system standard return macro) are clearly
in the province of the Gatekeeper. Because descriptor
segments differ in different rings., inter-ring returns
fall under the same faulting rules as do inter-ring calls;
wall-crossing faults occur., the Fault Interceptor invokes
the Gatekeeper., and all proceeds normally. However., not
all returns are normal. Some subroutines must return
to points other than immediately after the point they
were called from. Without adding a great deal of apparatus
which would in most cases be superfluous., the Gatekeeper
cannot be in a position to monitor the legality of "abnormal"
returns. Also., any mechanism for regulating abnormal
returns could be misled by a transfer to a gate if the
gate list were the sole source of access information available
(this point ls expanded upon in BD.9.05). Therefore.,
points at which abnormal inter-ring returns are to be
considered legal must be specified in a similar fashion
to gates., but must be distinguished from gates. As these
points are also portals in the protection walls., they
are cal led "doors". For unobvious reasons., the doorkeeping
routine is called the Unwinder {see BD.9.05).

s. Bracket~. To this point., the system of rings., gates.,
and doors has implicitly been treated in either-or terms:
a segment is accessible to segments in its own ring and
in inner rings., or it is inaccessible - unless it is a
procedure segment with a gate or a door. In the interests
of flexibility., however., a refinement can now be introduced
which makes the issues somewhat less black and white.
We define an t1access bracket" for a segment to be a range
of ring numbers within which range segments may access
the segment in question as if they were in its own ring.
That is., a segment with access bracket of 5:10 has the
following characteristics: when the process containing
it is "operating in" (that is., executing a procedure segment
in) a ring from 5 to 10., access ls governed only by the
segment's mode; when the process is operating in a ring
with ring number greater than 10., only transfer of control
access may occur., and that only if to a gate or a door .
- with., of course., an inward wall-crossing fault. A further

,,,.....
MULTICS SY STEM-f'ROGRAMMERS - MANUAL SECTION BD.9.00 PAGE 6

useful refinement is to define a "cal 1 bracket" for a
segment to be a range of ring numbers within which segments
may attempt to transfer control to the segment in question,
and beyond which not even the attempt to call is permitted.
That is, calls from outside the call bracket will not
succeed even if directed at a gate. To continue the previous
example, consider a segment with the fol lowing ''protection
list" (see also BG.9):5:10:12. The first two numbers
are the access bracket, as above; the last number is the
upper limit of the call bracket (by definition, the call
bracket begins immediately after the access bracket).
Therefore, in addition to the access considerations already
mentioned, the segment in question may only be called
on an inward call from rings 11 and 12. Note that no
prohibitions are set up against single-ring brackets:
A protection list of O would define a segment accessible
only in ring O (and the failure to define any gates for
the segment would assure that it could only be called
from ring O); a protection list of Oi0:1 would define
a segment accessible in ring O and callable only by ring
1. The conunand setfcl (BX.8) is the user-s means for
making protection 1 sts for hls own segments.

6. <rtn_stl¢,. Throughout the protection mechanism, an
item of particular interest is "the Gatekeeper-s return
stack". The Gatekeeper, recall, is the supervisor routine
which monitors wal 1-crossfngs. In order to be able to
dea 1 with returns without the need for "return gates",
the Gatekeeper preserves return. information each time
it is brought into play for a call in a given process.
The information goes on a push-down stack in a per-process
ring-0 segment called <rtn stk>. A crucial point to note
is that the <rtn_stk> may be pushed-down a number of times
as a result of progressive calls before the corresponding
returns take place. Further, the process may also have ·
performed any number of .io_tra-ring calls (and even intra-ring
returns) between the timesl'nter-ring calls are made which
cause the return stack to be pushed. "Popping" of the
<rtn_stk> occurs when the Gatekeeper is brought into play
on inter-ring returns. (Of course, abnormal returns also
require <rtn_stk> to be popped appropriately; see BD.9.05.)

7. Jnyocation nurrt>er. Clearly, the protection mechanism
must have an index to ·the current top of the <rtn_stk>.
This index is ca 11 ed the II invocation number" • When a
process does make a series of inter-ring calls without
the corresponding inter-ring returns, the invocation number

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BD.9.00 PAGE 7

increases each time. Note that in some sense the invocation
number may be taken to represent a period of residence
of a process in a ring. for as noted above any number
of intra-ring calls and returns may take place between
inter-ring calls and returns - which is to say. between
changes in invocation number. Control remains in the
particular ring. in the sense that the segments which
are executed are all in the ring. This ''period of residence"
aspect is quite important to the condition-handling mechanism
(see below. and BD.9.04). The Gatekeeper maintains the
invocation number for a <rtn stk>~ incrementing and storing
it at <rtn_stl<>IO during calTs and decrementing and storing
it at <rtn_stk>fO during returns •. ,

:1,)-;

a. Validation level. With:the pqssibility of inter ... ring
calls open to the user. and inherent to the supervisor.
it is frequently of interest to a procedure writer to
be able to determine what rin~ hi$ procedure was called
from. Further. with the possibility of a procedure-s
being cal led from an outer ring as, an interface to sti 11
another procedure in an inner ring. it could be useful
to be able to specify during the second inward call that
the call is being made in behalf pf a routine in a ring
other than the one from which that call came. Finally.
inner-ring procedures have access to any segment in their
rings; therefore. they must guard against the possibility
that they have been called with atguments that are supposed
to be in outer rings but in reality are in their own rings
- and in order to validate arguments (see below. and BD.9.03).
there must be a ring number to validate against. A 11
these considerations lead to the establishing of a "validation
level" as part of the protection mechanism. The validation
level is a number (kept in a fixes. accessible place.
as described be low) which represents the ring number the
current procedure was called from. or a ring number higher
than that. so as to allow for calls'""Tn behalf of a farther-out
ring. This number is monitored by the Gatekeeper. and
is transmitted during inter-ring calls. (Naturally. a
validation level less than the ring number the call is
coming f rem wi 11 never be passed). ·

9. The Stack. Fundamental 'to Multics operation is the
ca 11-save- return II stack" (see BO. 7). In a ring-structured
environment. the Stack (capitalized to distinguish it
from all the other stacks which abound in Multics) is
actually implemented as one particular segment per ring.
The segment for ring n would be called <stack_n>. For
the user. the illusion is preserved by the protection

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 8

mechanism that there is only one Stack. In actual
implementation, of course, this would not do, because
one can always read and write one's own Stack segment
and inner-ring data in the Stack must be protected - both
from the point of view of privacy of data and from the
point of view of assuring that the supervisor's call-return
chaining in the Stack cannot be damaged by the user.
The protection mechanism reserves certain locations at
the base of each Stack for fixed purposes: sblO contains
a pointer to the last Stack ttf rame" in use prior to a
ring-crossing (this information is solely for th.e Gatekeeper's
use), sbl2 contains the invocation number for the process
the Stack belongs to (this information is primarily for
the condition-handling mechanism's useJ see below and
BD.9.O4), and sbl3 contains the validation level (this
information is primarily for the use of validate argJ
see BD.9.O3). Within a given Stack frame, the presence
of a 1 in the op code portion of spl16 indicates that
the frame is a ring-crossing frame (see BD.9.O1).

An important point to note about the Stack is that as
a normal Multics segment it is in principle sharable,
A consequence of this sharability permeates the implementation
of the protection mechanism: Those components of the
protection mechanism which employ data furnished by user
procedures, par:ticularly argument lists, must in general
copy the data into secure, inner-ring segments. The reason
for this copying is that it ls possible for another process
to acquire control (on a time-slice termination) and to
alter information ttout from undertt the interrupted· protection
mechanism routine if the information resides in a segment
(particularly a Stack segment) which the new process is
sharing with the interrupted process. So when certain
data must be validated, as frequently occurs,. the validation
must be performed on a secure copy, and not on a potentially­
changeable one. We make this point at the ove.rview level
to offer explanation and motivation for what would otherwise
be rather cryptic tactics in the implementation descriptions
in the sections which follow.

Jbe Components of the Protection Mech,anism

The major procedures which comprise the protection mechanism
have been alluded to above. Although the reader who is
interested in their details will of course turn to the
discussions in BD.9.O1 - BD.9.O6, brief overviews of their
functions are presented here, for introductory purposes
and for the benefit of those readers who do not need to
pursue the intricacies of the protection mechanism at
this time.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 9

Central to the protection mechanism is the Gatekeeper
(BD.9 0 O1). Viewable as the fault-handler for the protection
faults, the Gatekeeper has as its primary role the le~ality­
checking of the wall-crossing which caused the fault it
was invoked in response to. For legal wall-crossings,
the Gatekeeper must arrange the threading of frames between
the Stack segments involved, update the <rtn stk> so that
returns correspond to calls properly, and maTntain the
invocation number and the validation level appropriately.
The Gatekeeper is essentially invisible to the user (it
can only be called by the Fault Interceptor, which is
a ring-O routine which, in turn, can only be i.nvoked throu.gh
a fault). For the management of argumentst. the Gatekeeper
employs arg_pull and arg_push (BD.9.O2)0 1he point at
issue here ls that outward calls' arguments must be copied
into the outer, target ring, for they are by definition
inaccessible otherwise; on the corresponding inward returns,
return arguments must be copied from the outer ring where
they were generated into the inner ring where they are
expected. Arg_pull and arg_push themselves have recourse
to a "visible" (user-cal labTe) routine which is also part
of the protection mechanism: validate arg (BD.9.O3) checks
an argument list to determine whether or not all the segments
pointed to by it are accessible from a given ring.

A second large area of the protection mechanism is that
which deals with the Multics primitives for "condition-handling".
The notions of conditions and signals are similar to those
in PL/I. BD.9.O4, on the condition, reversjon, and signal
routines, offers more detail, but at this level suffice
it to say that during the course of a process a condition
may be encountered which requires special handling, outside
the normal flow of control. Calls to condition establish
handlers for invocation if and when named conditions occur.
Calls to signal declare that named conditions have occurred
and cause the most recently established handler to be
invokedo (Calls to reversion cause the disestablishing
of a condition handler.) It is important to note that
fault-handling in Multics (see also BK.3) has been subsumed
under condition-handling. That is, most hardware faults
are turned by the Fault Interceptor into signals of appropriately­
named conditions. Because of this policy, and because
the invocation of condition handler procedures for conditions
which do not arise from faults can also become involved
with ring-crossing considerations, the condition-handling
mechanism must be part of the protection mechanism. To
anticipate the detailed discussion of condition handling
a bit, it is perhaps interesting to note at the overview
level that the importance of the invocation number lies

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 10

in the area of determining which condition handler was
established most recently: Handlers are stacked on push-down
stacks on a per-ring basis. Therefore, when the most
recently established handler is being searched for, the
entry on the top of the push-down stack for the ring at
hand (which entry contains the invocation number which
applied when the handler was established) must be investigated.
If the invocation number in the top entry does not agree
with the invocation number at the time of the signal, .
the invocation number at the time of the signal is progressively
decremented (once for each ring crossing in the as-yet­
unsatisfied returns indicated in the <rtn stk>) until
the invocation number of a handler at the-top of a stack
matches it. The privitives, being callable from any ring,
must be able to determine which ring they are operating
in during an invocation; to this end, procedure get_ring_no
(BD.9.O6) is furnishedo

The last major part of the protection mechanism is the
Unwinder (BD.9.O5). This routine is invoked by the user
to perform "abnormal returns'' (exit from a subroutine
to a point other than where it was called from). From
the point of view of the protection mechanism the primary
roles of the Unwinder are to adjust the <rtn_stk> properly
(for normal inter-ring returns may be bypassed during
an abnormal return) and to release the Stack frames which
are being bypassed. From the point of view of the user
the role of the Unwinder is to invoke any procedures wh1ch
he has specified to be executed in the event of an abnormal
return past a procedure. That is, a procedure, say .Q,
may call another procedure, which in turn calls others,
and sometime before the normal return to the first procedure
in the sub-chain an abnormal return may be taken to a
point in a procedure which is an "ancestor" of .Q in the
call-chain; in such a case, ,e's storage mi9ht need to
be freed, or the like. The condition primitive is used
to place these "unfinished business" procedures in a known
place, under the reserved condition name "cleanup".

' 1 I I

/"',

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 1'1

(

\

R32
user -
"' I R2 \

Rl

\
I <z>

<stack <h> 1> I

"
<stack_2>

/ <d>

'
/

<stack_32> ..___ __..,...

Figure 11 Division of the Segments in
a Process Into Subsets, Called
Rings

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.OO PAGE 12

Figure 2: Access Controls in the D(i) for Figure 1.

0

0(32) 0(2) b(1)
C)

Rings
proc data data

<¢, slave access slave access slave access

proc . data data
R(32) <h> slave access slave access slave access

data : data data
<z> slave access

~
slave access slave access

proc data
<a> directed slave access slave access

fault

 directed proc data
fault slave access slave access

R(2) <Y> master data data
access only slave access slave access

<» master data data
access only o slave access slave access

R(1) <g> directed directed proc
fault fault slave access

There is a distinct descriptor segment, D(i), associated
with each ri"g, R(i). The contents of all the descriptor

· segments are identical, except possibly the access control
bits, i.e., the kth descriptor in each D(i) refers to

D
s

the same· segment. When control is in R(i) the descriptor
base register1 DBR, points to D(i). The domain of access
of a segment 1n R(i) is defined by the access control
bits of the descriptors in D(i). Figure 2 shows the access
control of the D(i) for the example in Figure 1. When
control is in R(i) only those procedures which are in
R(i) are marked procedure in D(i). Any attempt to transfer
control to a procedure not in R(i) results in a fault.
In this fashion all crossings of a wall are detected.

escriptor
egments

Inward crossings are detected by a directed fault and
outward crossings are detected by an attempt-to-execute-data
fault. When a wall 0 is crossed and control passes to R(i)
the stack is switched by the Gatekeeper and the DBR is
set by the Basic File System to point to D(i). This changing
of effective descriptor segment accomplishes the locking
or unlocking of the appropriate segmehts.

