
I

i ,,-._
I

TO:
FROM:
SUBJ:
DATE:

MS PM D is tr i but ion
R. M. Graham
BD. 7 .03
07 /14/67

The attached revision of BD.7.03 contains the following
changes.

1. The use of passwords has been dropped.
They provide little security beyond
minimizing the chances of accidental
returns out of phase with calls. A simple
scheme using a linear index has been substituted.

2. A master mode, slave access procedure must
have a slave procedure linkage section in
order to be called by a slave procedure.
On the other hand a master mode, master access
procedure cannot be called by a transfer
instruction in such a linkage section. Thus
the transfer instruction must actually be in
the master mode procedure.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.03 PAGE 1

Published: 07/14/67
(Supersedes: BD.7.03, 01/20/66<

BDo?.03, 09/20/66;

I dent if iq~tion

CALL, SAVE, and RETURN Sequences for Execute-Only and Master
Mode Procedures.
R. Montrose Graham

Purpose

Arbitrary entries to a procedure may cause it to become
an unwitting accomplice to a disastrous act. In addition
it is desirable that the renter of a private procedure
be prevented from reading the code - else he could make
a copy to use free of rent. To prevent this the GE 645
hardware recognizes two special types of procedure segments:
execute-only, (E0), and Master Mode (MM). These segments
can be referenced externally only by a transfer of control
to the first word of the segment. Once inside the segment,
valid internal references are determined by the other
access controls (e.g., read/write, slave/master). It
is desirable that the caller need not know the type of
the called procedure and inversely that the called procedure
need not know the type of the caller. To achieve these
goals, standard call and save sequences have been adopted.
The return sequence is identical to that for ordinary
slave (~S) procedures; see section BD.7.02. The standard
sequences defined herein permit an E0 or MM procedure
to have multiple entry points.

Stack Usage and Argument Lists

Stack usage is identical to that of 0S procedures except
that spl22 is used to store an index which verifies the
return when calling out of an E0 or MM procedure. The
format of argument lists is the same as it is for 0S procedures.
However, since an E0 or MM procedure may not be referred
to from outside as data, the writer must arrange that
neither the argument list nor any of the arguments of
a call out are located in the E~ or MM procedure.

Ibe Save Sequence (Entry Points)

Just as in 0S procedures, the save sequence is distributed
between the procedure and its linkage section. However,
since entry to the £0 or MM procedure must be at its physically
first location, multiple entry points are achieved by
setting an index in that portion of the save sequence

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.03 PAGE 2

which is in the linkage section and transferring to the
beginning of the procedure segment. Here is found a prologue
which checks the validity of the index and then fans out
to the true entry point via a transfer vector. Figure
1,shows the linkage section and prologue for an E0 or
MM procedure with m+1 entry points and pseudo-entry points
(which are used for returns and will be explained below).
Just as in the case of ~S procedures, the original contents
of the link at in is a pointer to the link definition
with an fi modiTI'er and the link is generated by the linker
in the normal way. The code at~ loads index register
O with the numerical index of the corresponding entry
point and establishes the linkage pointer. At <a>IO the
entry index is verified. If the index is out of range
an error procedure is invoked. If the index is valid
control is transferred to the true entry point. The code
at .ill is the remainder of the save sequence as in ~S
procedures preceded by two instructions which restore
index register O and the indicators which were used in
verifying the entry.

The Call Seguence {Calling Out)

When cal 1 ing an external subroutine a return point must
be set up in the linkage section similar to an entry point
since the called procedure may not transfer into the middle
of an E0 or MM procedure (even with an rtcd instruction).
In addition, to prevent accidental entry at a return point
by a procedure which was not called by the E0 or MM procedure,
an index is used to verify the return. Figure 2 shows
the code in an E0 or MM segment <a> for a call out and
return and the corresponding contents of its linkage section.
The code from callout to .e.:LI,-1 ls the call to an external
procedure. The bases and registers are saved and the
argument pointer established as in a normal call. A return
to a pseudo-entry point in the linkage section is fabricated.
The indicators are then saved, the index of this return
point is moved into the stack at sp(22, and the q-register
and indicators are restored. Control is then transferred
to the subroutine being called. Note that the transfer
is actually executed in the procedure but that the return
is to the linkage section. This insures that if this
procedure is MM and the called procedure is Master Access
only the transfer wi 11 be val id. When the cal led procedure
executes a normal return sequence, control returns to
out and index register O ls loaded with an index, just
as if this were a real entry point, and control is transferred
to the prologue of the E~ or MM procedure. Finally, control

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.03 PAGE 3

reaches ill via the transfer vector in the prologue.
At J21.l., whTch follows the original call out, the return
index is retrieved from the stack and tested against the
original. If they do not match, an error procedure is
invoked. If the index checks, the return is valid. The
index position in the stack is cleared and the registers
which were used are restored.

One other problem remains, that of abnormal return points.
This is solved in a fashion similar to the normal return
using a pseudo-entry point. An abnormal return point
is passed in the form of a label as an argument to the
called procedure. The called procedure returns to this
point by invoking the unwinder, (BD.9.O5). In figure
2, if .el!J. is an alternate return for the call at callout,
then the argument passed to the called procedure must
be a pointer to the pseudo-entry point abnrtn in the linkage
section. When control actually reaches fil.!l, the index
is verified and registers restored as in the normal return
index.

Notes and Comments

The notes about pointers, use of bases, cautions, etc.
in Section BD.7.O2 also hold for E0 and MM procedures.
It is expected that the compilers and assemblers will
have a modal switch activated by some declaration such
as:

executeonly
mastermode

Using assembly as an example, the assembler would generate
the code c0 11out through cyllend in the segment and~
through 2Y!, + 1 with the 1 nk at sub in the linkage sect ion
when the macro:

ca 11 out : ca 11 < 1 i b> r [en t ry](a rg 1i st)

was encountered rather than the sequences defined for
the call macro in section BD.7.02. The save macro would
be modified to produce the code at ill in <a> and~
with the link at .!n in the linkage section. The assembler
would also generate the prologue. There would be a pseudo-op:

abnreturn ptn(callout)

MULTICS SYSTEM-PROGRAMMERS' MC>.NUAL SECTION BD.7.03 PAGE 4

which would declare 2!!!. an abnormal return point for the
call labeled callout. This pseudo-op would produce a
class 4 definition for .l2lO. (see BD.7.01) in either mode
of assembly. In E0 or MM mode this pseudo-op would also
produce a pseudo-entry for l2l!J. and produce the appropriate
code. In setting up 2iO, as an alternate return, the symbol
callout declares that the expected password upon return
is the same as the one set for the call at callout, i.e.,
2lO. is an abnormal return for the call of callout. With
these features in the assembler, it will be possible,
in most cases, to change a procedure from r/f::, to E0 (or
MM) (or vice-versa) by merely adding the declaration executeon]y
and reassembling.

The use of the return index reduces the probability of
accidentally causing either, 1) a return which is out
of sequence or 2) a return when no unsatisfied return
remains. The use of return indices, or even passwords,
cannot prevent a user from deliberately causing either
of the above events. The writer of an E0 procedure should
keep this in mind. The execute only feature does prevent
entry except at those entry and return points specified
by the writer. It also prevents any user from making
a copy of the procedure. On the other hand there is no
way to prevent a user from copying the linkage section.
This means that knowledge of what procedures and data
segments an E0 procedure references can not be kept secret.
In addition, there is no way to prevent the user from
writing in the linkage section. This means that the user
can substitute his own version of any segments referred
to by doctoring the E0 procedure's linkage section.

MULTICS SYSTEM~PROGRAMMERS' ~NUAL SECTION BD.7.03 PAGE 5

Linkage Section for <a> Efl/MM segment <a>

<a>IO cmpxO top-bottom,du
tnc bottom,O
cal 1 <mmerror>f[entry]
• • •
• • • bottoms tra ptO
•••
tra pti

••• • • •
• • • tra ptm

epi I ldxO 1,du top, syn *
eaplp •*, ic • • • tra in-*,ic* • • •

pti: ldxO sp 8
• • • ldi Sp 21

:r-,, • • • eapbp sp 18,*

in I f 1161]
stpsp bp 16

al} eapbp bp t
0 stpbp bp 18-t

eabsp bp -t
stpap sp 26
., ..
• • •

figure 1

MULTICS SYSTEM-PROGRAw,\ERS, fJANUAL SECTION BD.7.03 PAGE 6

Linkage Section for <a> E0/MM Segment <a>

• • • • • •
• • • cal lout:

out: ldxO i,du · ar 1 is
tra n-* ic* p out ,

bp sp 20,
i spl21

• • • ldq =j
• • • stq sp 22

ldq sp 13
in: all. jl~s I ldi sp 21

0 tra lp sub,*
ptj: ldq sp 22

• • • cmpq =J
• • • tnz rtnerror

111Qt.r
1165 1 ·

stz sp 22
sub1 ldq sp 13

! ,r-, : entr,1 ldxO 8 sp
cal lends ldi sp 21

• • • • ••
••• • • • abnrtn: ldxO n,du ptn: ldq spf22
eaplp •*,ic cmpq =J
tra in-*, ic* tnz rtnerror
• • • stz sp 22
• • • ldq sp 13

ldxO sp 8
ldi sp 21
• • •
• • • rtnerror: call <mmerror>l[return]
• • •
• • •

Eig1.1ce Z

