
TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
R. M. Graham
BD. 7 .02
06/30/67

The attached revision of BD.7.02 contains the following
changes:

1. Fields for ring crossing information and
subsystem ID are defined in the stack frame.

2. The argument descriptions are further defined.

3. Alternate returns have been deleted and abnormal
returns added.

I r-
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BD. 7. 02 PAGE 1

Published: 06/30/67
(Supersedes: BD.7.02, 04/04/66)•

BD.7.02, 09/20/66

Identification

CALL, SAVE, and RETURN Sequences for Ordinary Slave Procedures
R. Montrose Graham

Purpose

Because of the complexity of the hardware, the linkage
mechanism, and the stack manipulations, standard call,
save, and return sequences for ordinary slave procedures
have been adopted (for execute-only and master procedures
see section BD.7.03). All translators (including assemblers)
must generate these sequences. All supervisor entries,
commands, and public library procedures will use these
sequencesJ further, they will assume that other procedures
use them.

Stack Usage

The standard call, save, and return sequences use the
stack. The usage of the various locations in the stack
is shown in the diagram. For the purpose of the diagram
alpha calls beta, beta calls qanma, and qarrma calls~­
Each time a procedure is called, the value of the st~
pointer sp (the paired bases sb~sp) is adjusted to point
to a new region of the stack segment, called a stack frame,
which the called procedures uses. The value of sp must
equal zero (modulo 8) since the instructions for storing
the bases and registers require addresses which equal
zero (modulo 8). When the procedure beta is executing
the base pair sb~sp will point to spt>eta (in the diagram).
The cross_ring_flag and cross_ring_poTnter are used by
the protection and abnormal return mechanism (see BD.9.01,
BD.9.05). Conceptually there is a single stack per process.
All of the active frames in the stack are connected by
two threads: a forward thread (spl18) and a backward thread
(spf 16). Actually there is a stack per ring. The frames
within a stack are threaded together. The cross_ring_flag,
if equal to 1, indicates that control left and reentered
this ring immediately preceding that frame, and the
cross_ring_pointer indicates where control came from on
reentry to this ring. The subsystem ID is an optional
18-bit field available for use by subsystems to further
identify this frame.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7 .02 PAGE 2

temporary storage
for alehs

sp_beta 0

7
save bases on call gamms

8
. is save registers on ca 11 gamma

16
17

I) ~()~ s_r i ng_f 1 ag_J
sp_alpha(last sp

18
19 sp_gamma (next sp)
20
21 return on ca 11 gamm2

22
23

used by execute-only/master
procedures (see BD.7.03)

24 subsystem ID I. ... - reserved
---··-. ··-··-----·----

25 reserved
26

-----·-------- ---------- _,, _____ -

27 save ap_beta

28
29 cross_ring_pointer

·---~-

30
31 reserved

temporary storage
for ~

sp_gamma 0
7

save bases on ca 11 delte

...

sp_delta

its
.. ----

·-··--

·-----
i
i

I

1---.

)I.

I

'

s

►f
f

stack
frame
for beta

tack
rame

-

or gammsa

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.02 PAGE 3

Argument Lists

An argument list is a sequence of pointers (its pairs)
preceded by a count of the number of arguments. Specifically,
the form is:

arglist O I 2*n

i□ or 2*n
i

2 ! s 111

al

4

2*n sntl

an

i

I t 111

b1

tn:/1

bn

0 or 2

0

its

m1

• • •
• • •
• • •

its

mn

its

its

• • •
• • •
• • •

its

► argument list

I} sp value (optional)

I

pointers to argument
descriptions (optional) ►

n is the number of arguments. arglist + 2*i and erglist
+ 2*1 + 1 contain an lli pair which points to the ith
argument (or points to a pointer if the modifier is non-zero).

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BD.7 .02 PAGE 4

The 1th argument (or pointer to it) is located at <si>lai,
i.e., at relative location ai in segment <si>, whose segment
number is si# (see BD.7.00 for description of notation).
The argument list must begin at an even location.

If the right half of trglist equals 2, ~ value is the
value of the stack pointer for the last generation of
storage associated with the procedure being called. This
is used for a call to an internal procedure which is,
in any way, involved in intersegment communication. For
example, any call to a procedure entry point which has
been passed as a procedure parameter uses this option.
The value to put in ,ae yalue, in this case, is the second
.!.!.§. pair in the procedure parameter. If the right half ·
of argll§l is zero, there ls no~ value.

If the left half of ,ralist + 1 is 2*n, a list of pointers
to argument descriptions is appended to the argument list.
A description of the 1th argument is found starting at
<ti>fbl. In general, this description will be in the
symbol table for the' procedure (see BD.1.00), however
it may be anywhere. This descriptive information ls used
in such cases as the callback of the protection mechanism
(see BD.9.01) and interprocess calls.

As a minimum requirement, these pointers must point to
a word which has the format,

0 17 18 19 20 35
I data_type I])

input!_output_type

where data_type ls a code describing the argument and
input_output_type = 1 if the argument is input only for

the called procedure
== 2 if the argument is both input and

output for the called procedure
= 0 if the input/output type of the

argument is unknown

The interpretation of data type ls defined in BD.1.00.
Only those argument types described in BB.2 (scalars and
1-dimensional arrays of scalars) are normally supported
in user interfaces to the system. While the above is
all that is required, the established convention is that
these pointers point to a full segment symbol table entry
for the argument.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BDo? .02 PAGE 5

Y.ll
The standard calling sequence is:

·save

stb
sreg
eapap
stcd
tra

splD
spl8
arg 1 i st
sp 120
entrypoint

save bases
save registers
establish argument
save return
transfer to called

pointer

procedure

arslist is the location of the argument list. There
1s no restriction on the type of address which
may be used for arglist. The argument list must
be generate~ b~fore th,e ca I 1,i~g_ sequence is executed.

~f _-CJ 0 j 6 .-~o CL 'J _ c,,:,t'

entrypoint is the entry point of the procedure being
called. entrypoint may be any type of address.

The save sequence is distributed between the called procedure
and the cal led procedure's 1 inkage section. Let <1 ib> I [entry J
be the entry point of the called procedure, then the following
portion of the save sequence appears in the linkage section
of <lib> at <lib.link> I in:

in

inx

entry

eaplp
tra
•••
• • •

11 lb/I
entry

The remainder of the

established linkage pointer
transfer to procedure segment

its

0

points to actual

procedure entry

the save sequence appears in
procedure segment itself at <lib>l[entry]:

eapbp sp I 1 s~'(es tab 1 ish new, last sp
stpsp bpi 16
eapbp bplt establish new, next sp
stpbp bp I 18-t
eabsp bpl-t establish stack pointer
stpap spl26 save ap for this call

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD. 7 .02

The constant t=O (modulo 8) and must be greater than or
equal to 32. t is the number of stack words needed for
temporary storage by the called procedure, however in
the above sequence t must be less than 21ri(14. If more
space than that is needed the above save sequence may
be optionally suffixed by,

adbbp
stpbp

xtldu
sp 18

where xt may be any 18-bit constant. The total amount
of stack reserved will then be t+xt. The definition,

PAGE 6

in the linkage section of <lib>, of the symbol entry is
marked so that the linker will not establish a link directly
to the procedure segment <lib>, but to its linkage section
~at <1 ib. link> I in (see BD.7 .01 for details). After completion
of the save, sp (the base pair sb~sp) points to the beginning
of the region, in the stack for use by the called routine,
lp (the base pair lb~lp) points to the beginning of called
routine's linkage section, and ap (the base pair abE--ap)
points to the beginning of the argument list for this
ca 11.

The save sequence displayed above has a critically important,
although non-obvious, property. At all times spl18 contains
a valid lli pair pointing to the top of the stack. The
save sequence prepares the next frame before loading sp
with a pointer to the new frame. This property is required
because of the following action by the system when an
1~terrupt occurs. Using the contents of spat the time
of the interrupt, the contents of spl18 is used to find
the top of the stack. Then 32 is added to this value
(in case the interrupt occurred during preparation of
the next frame) to obtain a pointer to free space in the
stack which may be used by the system. The save sequence
is also designed to execute without causing a fault when
the base .§.Q. is locked.

Return

The standard return sequence is:

ldb spl16,*
l reg spf.8
rtd spl20

,...
'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD. 7 .02 PAGE 7

It is possible to return control to some point other than
the location immediately following the call, such a return
is cal led an "abnormal" return. The location to be returned
to abnormally, abnrtn, is specified by label data (see
BB.2) and may be transmitted as an argument or as the
contents of an external (global) location. Since abnormal
returns may imply ring crossings, the abnormal return
sequence is actually a system procedure (described in
BD.9.05). To effect an abnormal return,

call unwinder (abnrtn)

Notes and Comments
'

The call, save, and return sequences assume the standard
pairing of the eight base registersJ i.e., ab+..aP,
bb+-bp, lb~lp, and sb,+--sp. They further assume that
at least SO<'r·SP has the same value that it did when the
procedure was entered. Once a procedure has been entered,
b~bp may be used freely. lbf-lp must be preserved for
the standard linkage machinery to work. It is extremely
dangerous to change the contents of lb+-lP. The base
sb will be locked and its contents cannot be changed by
the user. It is essentially disastrous to change the
contents of sp. The user may generate argument lists
by any method that he choosesJ however, the following
suggestions constitute a rather simple method. The simplest
way to generate a pointer to the location place is:

eapbp
stpbp

place
pointer

pointer must be an even location.
all types of addresses except when
generates a pointer to a pointer.
the sequence,

ldaq apl2*1
staq pointer

This method works for
~ = apj2,':i, which
To~avoid this, use

which moves the 1th argument pointer. When~ is an
external reference such as <seg>le. or <seg>J[x], normal
reference to the linkage section, i.e., lplk,* (see BD.7.01
for details), will cause linking to occur at the time
the pointer is generated if the sequence, ·

eapbp
stpbp

lpfk,*
pointer

. ' ' '

MULTICS SYSTEM-PROGRAMMERS' MANUAL

is used.

eapbp
stpbp
lda
orsa

The sequence

lplk
pointer
16,dl
pointer+ 1

SECTION BD.7.02 PAGE 8

will generate a pointer, containing an indirect modifier,
to the linkage section entry at lpfk, i.e., a pointer
of the form:

I (lb)

(lp.,.k)

where (lb) is the segment number in the external base
lb and (lp) ls the contents of the internal base lp.
Since indirect modifiers may or may not occur in the its
pointers of the argument list, the called routine must
assume that they·do. The safe way to obtain the value
of ith argument is:

lda apl2,'ri,*

if it is a single word scalar, or

ldaq apl2*i, *

if it is a double-word scalar.

eapbp apf2*i,*

loads bb~bp with the address of the 1th argument. If
the argument ls an array or string, the accessing is more
involved since the argument list entries point to specifiers
(see BB.2). It should be noted that the call, save, and
return sequences use only the eight base registers. Hence,
ill registers are preserved across the can in the caller.
Further, all registers except for the bases, are preserved
in the transition from cal ling program,/to cal led program.

,.-'

,PLBSA Notes

The bootstrap assembler contains the following built-in
macros.

V
i

I

,--,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.02 PAGE 9

i) ca 11 ent rypoi nt
ii) call entrypoint (arglist)

iii) save
iv) return

These macros expand into the standard sequences described
above. In case (i), no argument listt the assembler substitutes
eapap = O for eapap arglist in the ca1l sequence given
above. In EPLBSA writing,

eapbp <seg> f [ext]

will always cause

eapbp lplk,*

to be generated.·\.,.. Writing the pseudo-operation,

link k,<seg>f[x]_

will define the symbol k to be equal to the relative location
in the linkage section of the link for <seg>f[x]. Now
the user can write,

eapbp
stpbp
lda
orsa

lp f k.
pointer
16,dl
pointer+ 1

which will generate a pointer (containing an indirect .
modifier) to the link for· <seg> f [x] without causing linking.

