
MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BC.3.04 PAGE 1 

I""'· Publlsheda 10/02/67 

Jdsotlficatlon 

System Controller Addressing 
J. H. Saltzer 

piscuu,1O0 

In a 645 processor operating In appending mode all lnstruct!cns 
which generate operand addresses have these addresses 
run through the appending (page and segment) hardware, 
and through the interlace and port selection hardware. 
This statement applies even to the instructions which 
address the system controllers themselves, rather than 
the memory addresses contained within the system controllers. 
Several such Instructions exist, to.manipulate special 
regl sters located within a system controller -- the interrupt 
cells, the interrupt mask register, the calendar clock. 
register, and the alarm cloc~ register. By hardware Interface 
convention, the absolute address resulting after appending, 
interlace, and port selection need merely lie anywhere 
within the system controller containing the register of 
interest for the Instruction to work properly. 

For a program which wishes to, for example, read the contents 
of the calendar clock register in system controller 3, 
It is a non-trivial t~sk to generate a segment-number 
word-number pair which results In an absolute address 
lying within system controller 3. Even If the program 
somehow discovers a location within some segment which 
works, it may stop working as soon as the file system 
reloads the page containing the magic location into another 
absolute address. 

To provide a way of addressing system controllers, the 
fol lowing strategy ls fol lowed in Multlcs1 

a. For each system control~er, dedicate one 
64-word page whose base address lies In that 
system controller. (It is not obvious that 
this ls possible with interlace, since one 
might guess that interlace would cause all pages 
to be based in the same system controller. The 
6OO-line interlace scheme is unusual In that It 
does not cause all addresses which are k(mod)B 
to lie In system controller k. Thus strategy 
a. ls possible.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.3.04 PAGE 2 

b. Make up a page table for which the first m 
entries point to them pages dedicated above. 
The remaining entries in the page table are 
filled with directed faults. 

c. Include a segment descriptor word pointing to 
this page table in the template descriptor segment. 

Now, if the segment descriptor word is in position scas_segno, 
one may generate an address lying in the appropriate system 
controller by, for example, 

eabbb 
smcm 

scas_segno 
bbfk*64 

which sets the interrupt mask in controller t. 
It should be pointed out here that the programmer does 
not generally know the value of k to use to get to the 
register he wants -- the approprTate value changes every 
time the hardware configuration is modified. ITS pointers 
of the form scas_segnofR-A-64 are therefore placed in the 
system communication segment at initialization or reconfiguration 
time, by a program which knows the current hardware configuration. 
The prograrrrner now writes the instruction 

smcm <scs>l[mask_ptr],* 

using indirect addressing through the symbolic name of 
the appropriate ITS pointer to get at the register he 
wants. A complete description of the system communication 
segment, giving the list of symbolic entry names, and 
the system controller addressing segment are found in 
BK.4.01-3. 

An appropriate hardware modifl~tion to the 645 processor 
to simplify system controller addressing would be to discover 
during operation decoding that the instruction is a system 
controller addressing lnstruction 1 and instead of processing 
the effective address of the instruction normally, consider 
the low-order three bits of the word number of the effective 
address to be port selection bits. Thus the first instruction 
above would be replaced simply by 

smcm k 

and the second, using indirect addressing would still be 

smcm <scs> I [x] 1 * 
but location x of scs now contains Just the number kin the 
address field. 


