
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.02 PAGE 

Published: 8/11/66 

Identification. 

On the Interpretation of ASCII Character Streams within Multics. 
J. H. Saltzer, C. Strachey 

Acknowledgem~.n.i 

The concept of a canonical representation of a printed 
line image which is described here has been used in at 
least two character oriented systems, in TYPSET on the 
IBM 7094 (as suggested by Earl Van Horn) and the TITAN 
operating system on the ATLAS computer. 

DiscussiQ.Q 

Characters are intended ultimately for human communication, 
and conventions about a character stream must be made 
with this in mind. A character stream is a representation 
of printed lines. In general, there are many possible 
character streams which represent the same line. In particular, 
on input a typist may produce the same printed line twice 
with different sets of key strokes. For example, the 
line 

start lda alpha,L~ get first result. 

may have been typed in with either spaces or horizontal 
tabs separating the fields; one cannot tell by looking 
at the printed image. Since the human not blessed with 
a tape recorder memory cannot by reading distinguish between 
seve ra 1 vJays of typing a printed rep res en tat ion, D.Q Q.Logra,m 
should deliberately attempt to distinguish, either. 

For example, a program should be able to compare easily 
tv\lo character streams to see if they are the "same" :tn 
the sense that they produce the same printed image. It 
fol lovJS that al 1 character input to Multics must be converted 
into a standard (canonical) form. Similarly I all programs 
producing character output 1 including editors, must produce 
the canonical form of output stream. 

Effectively, we have said that of all possible strings 
of ASCII characters, only certain of those strings will 
ever be found within Multics. All of those strings which 
produce the same 11 equivalent 11 printed effect on a typeviriter 
console are represented within Multics as one string, 
the canonical form for that printed image. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.O2 PAGE 2 

No restriction has been placed on the human being at his 
console; he is free to type a non-canonical character 
stream. This stream will automatically be converted to 
the canonical form before it reaches his program. (There 
must be an escape hatch for the user who wants his program 
to receive the raw input from his typewriter, unprocessed 
in any way. We assume that such an escape hatch is provided.) 

Similarly, a device interface module (DIM) is free to 
rework a canonical stream on output into a different form 
if, for example, the different form happens to print more 
rapidly or reliably on this device. 

We assume that every DIM is able to determine unambiguously 
what precise physical motion of the device corresponds 
to the actual character stream coming from or going to 
it. In particular, the DIM must kn0\1\1 the location of 
physical tab settings. This requirement places a constraint 
on devices with movable tab stops: When the tab stops 
are moved, the DIM must be informed of the new settings. 

The Canonical Form 

To describe the canonical form, we give a set of definitions 
of a canonical message. Each definition is followed by 
a discussion of its implications. Formal definitions 
are included for the benefit of readers who find them 
useful. For the reader who finds them confusing, they 
can be safely ignored without loss of content. In the 
formal definitions, capitalized abbreviations stand for 
defined Multics control characters as ~iven in section 
BC.2.01 and the vertical bar means "or'. 

1. The canonical form deals with messages. A message 
consists of a sequence of print positions, possibly 
separated by, beginning, or ending with carriage 
motion. 

(message) ::= (carriage motion)J(print position) 
1<print position)<message) 
r<carriage motion)<print position)(message) 

·The most important property of the canonical form is that 
graphics are in the order that they appear on the printed 
page reading from left to right and top to bottom.· Between 
the graphic characters appear only the carriage motion 
characters which are necessary to move the carriage from 
one graphic to the next. Overstruck graphics are stored 
in a standard form including a backspace character (see 
below). 



r' 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.O2 PAGE 3 

2. There are two mutually exclusive types of carriage 
motion, gross motion and simple motion. 

(carriage mot ion) : := <gross mot ion) I <simple mot ion) 
I (gross mot ion) <s imp 1 e mot ion) 

Carriage motion generally appears between two graphics; 
the amount of motion represented depends only on 
the relative position of the two graphics on the 
page. Simple motion separates characters within 
a printed line; it includes positioning, for example, 
for super- and subscripts. Gross motion separates 
lines. 

3. Gross motion consists of any number of successive 
New Line (NL) characters. 

4. 

(gross mot ion) : := (NL) I (gross mot ion) (NL) 

The DIM must translate vertical tabs into new line 
characters on input. 

Simple motion consists of any number of Space characters 
(SP) followed by some number (possibly zero) of vertical 
half line forward (HLF) or reverse (HLR) characters. 
The number of vertical half line feed characters 
is exactly the number needed to move the carriage 
from the lowest character of the preceding print 
position. 

(simple motion) : := (SP) I (SP) (simple motion) 
!(simple vertical motion) 

(simple vertical motion) : := (UP feed) I (do\Jlm feed) 

(up feed) : := <HLR) I (HLR) (up feed) 

(dmrJn feed) : := (HLF) I (HLF) (down feed) 

The basis for the amount of simple carriage motion 
represented is always the horizontal and vertical 
distance between successive graphics that appears 
on the actual device. In the translation to and 
from the canonical form, the DIM must of course take 
into account the actual (possibly variable) horizontal 
tab stops on the physical device. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC .2. 02 PAGE 4 

5. A print position consists of some non-zero number 
of character positions, occupying different half 
line vertical positions in the same horizontal carriage 
position. All but the last character position of 
a print position are followed by a backspace character 
and some number of HLF characters. 

(print position) : := <character position) 
l(character position)(BS) (down feed)(print position) 

6. A character position consists of a sequence of graphic 
formers separated by backspace characters. The graphic 
formers are ordered according to the ASCII numeric 
value of the graphics they contain. (The first graphic 
former contains the graphic with the smallest code, 
etc.) Two graphic formers containing the same graphic 
will never appear in the same character position. 

7. 

(character position) : := (graphic former) 
r(graphic forrner)<BS) <character position) 

Note that all possible·uses of a backspace character 
in a raw input stream have been covered by statements 
about horizontal carriage movements and overstruck 
graphics. 

A graphic former is a possibly zero-length sequence 
of graphic controls followed by one of the 94 ASCII 
non-blank graphic characters. 

(graphic former) : := <graphic) f (setup sequence) {graphic) 

8. A graphic setup sequence is a color shift or a bell 
(BEL) or a color shift followed by a bell. The color 
shift only appears when the following'graphic ,is 
to be a different color from the preceding one in 
the message. 

(setup sequence) ::= (color shift)((BEL) 
t(color shift)<BEL) 

(color shift) ::= (R.RS)f(BRS) 

In the absence of a color shift, the first graphic 
in a message is printed in black shift. 

Other control characters are treated similarly to bell. 
They appear immediately before the next graphic typed, 
i~ the order typed. By virtue of the above definitions, 
the defined Multics control characters HT, VT, and CR 
will never appear in a canonical stream. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.O2 PAGE 5 

The apparent complexity of the canonical form is a result 
9f its generality in dealing with all possible combinations 
of typewriter carriage motions. Viewed in the perspective 
of present day language input to computer systems 1 we 
observe that many of the alternatives are rarely 1 if ever 1 

encountered. In fact for most input 1 the following three 
statements 1 describing a simplified canonical form 1 are 
completely adequate: 

1. A message consists of strings of character positions 
separated by carriage motion. 

2. Carriage motions consists of New Line or Space Characters. 

3. Character positions consist of a single graphic or 
an occasional overstruck graphic. A character position 
representing overstrikes contains the numerically 
smallest graphic 1 a backspace character 1 the next 
largest graphic 1 etc. 

Thus we may conclude that for the most part, the canonical 
stream will differ little with the raw input stream from 
which it was derived. 

Examples. 

In this section are several illustrations of canonical 
form. The examples do not attempt to cover every conceivable 
variation or combination of characters 1 but rather illustrate 
the intent and the method. (In the examples, assume that 
the typist's machine has horizontal tab stops set at 11, 
2 1 , 3 11 etc.) 

Example 1: 

Typist: 
Printed line: 
Canonical form: 

This is ordinary text.<NL) 
This is ordinary text. 
This is ordinary text.(NL) 

For the case of simple, straight line input 1 the canonical 
form reduces to the original key strokes of the typist. 
Most input probably falls into this category. 

Example 2: 

Typist: 
Printed line: 
Canonical form: 

start(HT)lda(HT)alpha 1 4(HT)get argument(NL) 
start lda alpha 1 4 get argument 
start lda alpha,4 get argument(NL) 

HT is the fixed horizontal tab typed in; the tabs have 
been converted to blanks in the canonical form. 



MULTICS SYSTEM-PRO RAMMERS 1 MANUAL SECTION BC.2.02 PAGE 6 

Example 3: 

Typist: 
Printed line: 

Here fu 11 (BS) (BS) <BS) (BS)_ means tha t(NL) 
Here full means that 

Canonical form: Here _<BS) f_<BS)u_(BS) l_<BS) l means that(NL) 

Here is probably the most common example of canonical 
conversion, to insure that overstruck graphics are stored 
in a standard pattern. 

Example 4: 

Typist: 
\ve see no sol u (BS) t ion (CR) (HT) (BS) (BS) (BS)_ (NL) 
Printed line: 
We see no solution 
Canonical form: 
\r.Je see _(BS)n_(BS)o solution(NL) 

(Recall that the carriage return (CR) does not produce 
a line feed.) The most important property of the canonical 
form is that meanderings of·the typist within a line are 
irrelevant. Example 4 illustrates that the typist need 
merely concern himself with the printed image. Instead 
of a tab and three backspaces, the typist could have typed 
seven space characters and produced the same printed image 
and same canonical form. 


