TO: MSPM Distribution
FROM: R, M, Graham
SUBJ: Pointer Data
DATE: 02/09/68

The attached section (BB.2.02) for the most part gathers
together the definitions of the Multics standard data

types and their identification codes which appear in sections
BB.2, BD.1. ?O BP.2,01, agd BP.%.OZ. ghe format fog ghorg
varying strings, soon to be implemented in EPL, is define
here, 1t also expands the definition of pointer data.

In additlon both argument list elements and specifier
elements are defined to be pointer data, thus expanding

their format. BB.2,02 supersedes those portions of BB.2
which deal with data type representation. The remainder

of BB.2 will someday be superseded by BB,2.01, User Interfaces
with the Multics System, and BB.2,03, Intra-System Module
Interfaces.

There are now three subclasses of pointer data:

i) External: This is the old its Form
0 17 18 29 30 35 36 53 65 66 71

seg /////ﬁ% its loc //////////// m

where seq is the segment number and loc is the
location within segq.

ii) Internal: This is the new form,

0 17 18 29 30 35 36 71

o VI = Y0770

where the segment number, is understood to be
the segment 1n which this f ternal pointer resides
and loc is the location within seq.

iii) Link: This is the form used in the linkage section,

0 17 18 29 30 35 36 53 54 65 66 71

i R 7/ W

where both the segment number, seqg, and the location
within it, ng are defined by auxiliary information
pointed to a and b, This is usually accomplished
by invoking the linker (either via the ft2 fault

or by direct call: see BD.7.04). -

PAGE 2

It should be noted that the only way to be certain of
accessing correctly a pointer datum, without programmed
examination of the datum, is to use the instruction,

eapbp datum, *

Use of the instructions (suggested in BD.7.02)
ldaq datum

staq add

to move a pointer datum will no longer work correctly
in all cases, Since link type pointer data contains a
self relative quantity (a) it may not be moved at all,
Internal type pointer data may not be moved out of its
segment, Use of the new sequence,

eapbp datum,*
stpbp add

will of course force any link involved., To allow movements

without forcing links see the further comments in BB.2.02.

A11 three pointer types may also contain a modifier, m,
éndicating further indirection: see BB,2.02 for further
etails. -

Argument lists for a standard call and specifiers are
both composed of pointer data. Hence, the above comments
also apply to argument lists and specifiers, Section
BD.7.02 and other relevant MSPM sections will be revised

én‘the near future to reflect this enlargement of pointer
ata.

@)

MULTICS SYSTEM~-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 1
Published: 02/09/68

Identification

Mhltics Standard Data Types
R. M, Graham

Purpose

This section specifies the Multics standard data types

and defines their representation in the GE 645, All arguments
for normal user interfaces with the system must be limited

to data types from this set, Thus a language translator
producing programs to execute in Multics need know how

to handle only a small number of rather simple data types.

Introduction

The following topics will be discussed in the order in
which they are listed:

1. A listing of Multics standard data types and their
identification codes,

2, Elements of an argument list,

3, Representation and detailed discussion of each non-string
scalar,

4, The representation of strings, general comments about
free storage (for varying strings), and substitution
rules for strings.

5. Specifiers

6. Dope

7. Accessing of array elements,

8. Representation and detailed discussion of varying and
non-varying string scalars, arrays of non-string scalars,
and arrays of varying and non-varying strings.

In the following discussion a "word" is defined to be

a 36-bit, GE 645 machine word., A "word-pair" is defined

to be a pair of contiguous 36-bit, GE 645 machine words,
the first of which is located at an even memory address.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 2

Summary of Data Types

The Multics standard data types and their identification
codes are listed below. The identification code is used
in calls (see BD,7.02) and in symbol tables (see BD.1.00).

ID_Code
1

O OV O N o N1 F w N

N N = cd cd ed wd cd e d ad -
- O W 00 N O U F W N =

Data Type
single-word integer

double-word integer

single-word floating-point

double-word floating-point

single-word integer complex

double-word integer complex

single-word floating-point complex
double-word floating-point complex
non-varying bit-string

long varying bit-string

non-varying character-string

long varying character-string

pointer data (external, internal, and link)
offset data (offset from a pointer datum)
label data

entry data

1-dimensional array of type 1
1-dimensional array of type 2
1-dimensional array of type 3
1-dimensional array of type L

1-dimensional array of type 5

(;\

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 3

ID Code Data_Type

22 1-dimensional array of type 6

23 1-dimensional array of type 7

24 1-dimensional array of type 8

25 ’ 1-dimensional array of type 9

26 1-dimensional array of type 10
27 1-dimensional array of type 11
28 1-dimensional array of type 12
29 1-dimensional array of type 13
30 1-dimensional array of type 14
31 1-dimensional array of type 15
32 1-dimensional array of type 16
39 short varying bit string

LO short varying character string
L1 1-dimensional array of type 39
L2 1-dimensional array of type 4O

Arqument List Elements

The Multics standard call is defined in BD,7.02. The
argument list described in that section consists of a
list of pointer data, What each argument list element
is actually pointing to depends upon the data type of
the corresponding argument. There are two cases:

i) Datum is a non-string scalar (types 1-8 and 13-16 above):
In this case the argument 1ist element points directly
to the datum. If the datum occupies more than one
word the element points to the first word of the datum,

ith element in

argument list | = = datum (ith argument)

ii) Datum is a string scalar (types 9-12, 39-40) or any
1-dimensional array (types 17-32, 41-42): In this
case the argument 1ist element points to a specifier
which in turn points to the datum (or to an area in
which the datum is found) and to dope for that datum.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE U4

A specifier contains two or more its pairs, hence, it

is process dependent, Dope contains information describing
the datum and is process independent. The datum is located
by using both the specifier and the dope.

ith element in —— | data origin,

Z o Specifier

argument list '_‘—l~>{ESEEJ

Non=-String Scalars

The following is a description of the representation of
each of the non-string scalar data types. The identity
of each type preceeds its description,

1) Single-word integer: Stored in a single word in the GE 6u45
hardware format for a single-word fixed-point number,

01 35

]

N

where N is a signed integer in 2°s complement form,

2) Double-word integer: Stored in a word-pair in the GE 645
hardware format for a double-word fixed-point number,

01 35 36 21

v

N
where N is a signed integer in 2°s complement form.

3) Single-word floating-point: Stored in a single word in
thebGE 645 hardware format for a single-word floating-point
number,

u___!

v vV
E M-

where both E and M are si?ned integers in 2°s complement
form., E is the exponent (base 2) and M is the mantissa.

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BB.,2.02 PAGE 5

. 4) Double-word floating-point: Stored in a word-pair in
the GE 645 hardware format for a double-word floating-
point number,

Q1 789 35 36 71
B ¥i
where E and M are signed integers in 2°s complement
form., E is the exponent (base 2) and M is the mantissa.
5)

Single-word integer complex: Stored in a word-pair,

| real At[imaginary l

where each word is a single-word integer, the first word
is the real part, and the second word is the imaginary
part.

6) Double-word integer complex: Stored in two consecutive
word-pairs,
" real
| imaginary

where each word-pair is a double-word integer, the first
pair is the real part, and the second pair is the
imaginary part.
7) Single-word floating-point complex: Stored in a word-pair,

real

imaginary

where each word is a single-word floating-point number.

Double-word floating-point complex: Stored in two
consecutive word-pairs,

) " real

imaginary

8)

where each word-pair is a double-word floating-point
number .

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 6

13)

i)

ii)

111)

Pointer: Stored in a word-pair. A pointer datum defines,
directly or indirectly, a GE 645 machine address.

The indirection may be more than one level, i.e., the
pointer datum may be an arbitrarily long indirection
chain, Let seq be a segment number and loc be a
location within that segment, where both seg and loc
are unsigned 18-bit integers. 1In addition, let m be an
indirect modifier., Then a pointer datum consists of a
chain which is a mixture of the following three types
of elements all of which contain an indirect modifier,
except for the last one. Stated another way, a pointer
datum is such that the machine address which it defines
may be obtained by executing a single effective address
type instruction,

External:

where both seqg and loc are explicitly stated and m is the
indirect modifier (if any). The shaded part of the
word-pair is ignored, but should, in general, be zero.

Internal:
0 17 18 29 30 35 36 71

we V= 17777

where loc is explicitly stated and seg is the number of
the segment in which this datum resides.

Links
0 17 18 29 30 35 36 53 54 65 66 71

L» O v Y 7K

where h and d lead to descriptive information which defines
both seqg and loc. This definition is usually accomplished

by the linker, either because of an ft2 fault or by a
direct call to the linker: see BD.7.04,

As an aid to understanding pointer data and its manipulation
we will call,

0 17 18 29 30 35 36 53 54 6566 71

| see V) its 7/

-

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB,2.02 PAGE 7

the normaiized form of a pointer datum, This form, since
the modifier 1s zero, directly defines the machine address
(seq, loc). The most important characteristic of all
three types of pointer data is the following: If datum

is the location of a pointer datum, then executing the
instructions,

eapbp datum,*
stpbp temp

will place in the word-pair at temp the normalized form

of the original pointer datum, Use of the pair of instructions
above is the simplest, foolproof method of moving pointer

data. It has the disadvantage, however, that any 1links

in the chain of indirect word-pairs are established.

A link is established by invoking the linker. The linker
replaces the link by an external type pointer (its).

In order to obtain the segment number to put in the its,

the segment must be located in the file system, even if

it is never actually referenced.

I1f the premature establishment of links is considered

to be too costly, one of two alternative methods for moving
pointer data may be used, The first alternative is to
construct an indirect external pointer to the pointer
datum and move it, For example,

eapbp datum
stpbp temp
1da =020,d1
orsa temp+1

The contents of temp will then be,

data seg#m its | datum loc W *

A disadvantage of this method is that comparison of pointer
values will give unexpected results, For example, suppose
that a and b are both pointer type variables, then after
the substitution,

a=>b

the contents of a are not equal to the contents of b]
Rather, a points to whatever b points to by means of pointing
to b with an indirection modifier:

b: deglt VA its || _loc W/ o |
a: [Sg8yF W its [[locyofyl

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BB.2.02 PAGE 8

Another disadvantage of this alternative is that the indirect
chain increases in length each time the pointer datum
is moved.

The second alternative is to test for the type of pointer
and only if it is not external build the indirect external
pointer. The following code sequence will test to see

if datum contains an external pointer,

1da datum

ana =¢77,d1

cmpa =@Lu3,d1

tze extptr transfer if external pointer

If the datum is an external pointer it is moved with the
instructions,

ldaq datum
staq temp

Using this alternative, the beginning of the indirect
chain is always an external pointer after the first move
of the datum. Hence, the chain will not grow in length
on successive moves,

External pointer data is process dependent since its
representation includes a segment number., On the hand

it is not location or segment dependent, hence, it may
be moved about freely, Internal pointer data is segment
dependent, hence, it may not be moved out of its segment,.
Link pointer data is location dependent and may not be
moved at all. However, both internal and link pointer
data are process independent, which is their principal
advantage since they may be generated at compile or assembly
time, whereas external pointer data must be generated
during execution.

14) Offset: Stored in a single word,
0 17 18 3

e VT

where delta is an offset relative to some pointer.
An offset is process independent., The connection
between an offset datum and the pointer for which
it is an offset is a function of the procedure
using the datum,

o/

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB,2.02 PAGE 9

15) Label: Stored in three consecutive word-pairs,

program point

stack_frame

error_check

where the first two word-pairs are both pointer data
(type #13) and the last word-pair has not yet been
defined. Label data is usually used to communicate
an abnormal return point to some other procedure:
see BD.9.05. Program _point is the address (recall
that pointer data defines a machine address), in
the linkage section of the procedure in which the
label was defined, of instructions which will re-
establish the correct value of the linkage pointer
(1be1p base pair) and transfer to the proper
location within the procedure: see BD,7.01, BD.7.02,
and BD.7.03, stack_frame is the machine address of
the base of the stack frame in use at the time when
the label datum was defined, i.e., the contents of
the sb<sp pair at that time. error_check may
someday contain error checking information.

16) Entry: Stored in three consecutive word-pairs,

entry_point

stack_frame

error_check

where the first two word-pairs are both pointer data
(type #13) and the last word-pair has not yet been
defined. Entry data is usually used to communicate
a procedure entry point to some other procedure,
entry_point is the ‘address, in the linkage section
of the procedure for which this datum is an entry
point, of instructions which will establish the
lb<1p base pair and transfer to the proper location
in the procedure: see BD.7.01, BD.7.02, and BD.7.03.
stack_frame is either a null pointer if entry_point
is an external procedure or the address of the base
of the stack frame in use at the time when the entry
datum was defined if entry_point is an internal
procedure: see BD,7.02.

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BB.2,02 PAGE 10

Representation of Strings

- There are two kinds of strings: bit and character.

i) Bit Strings: An n-bit string may begin at any bit position
within a word and extends into as many consecutive following
words as are required to contain the string. A1l words,
except possibly the first and last, contain 36 bits of the
string. The first (leftmost) bit of the string is bit
1, while the last (rightmost) is bit n.

ii) Character Strings: Individual characters are coded in 7
bits, as specified in BC.2.01, right justified in 9-bit
bytes with leading zeros. An n-character character string
is represented as if it were a 9*n-bit bit string, except
that it must start at bit position 0, 9, 18 or 27 within
a word. The first character of the string is character 1
and the last is character n.

There are two classes of strings: varying and non-varying.

i) Non-varying strings: A non-varying string has a fixed
length and remains in a fixed memory position throughout
the scope of its definition. When substituting a string x,
of length 1x, for the contents of a non-varying string vy,
of length ly, the following rules apply,

a) if Ix<1ly; a copy of the strin? x is extended (padded)
on the right until its length is 1y and then substituted
for string y. The padding is zeros for bit strings and
blanks for character strings.

b) if 1x >1y; a copy of the string x is truncated on the
right so that its length is 1y and then substituted
for string vy.

A non-varying string may be a substring of a longer string
extending either to the right or left or in both directions.
Hence, sybstitution into a non-varying string must not
change any bits on either side of the string.

ii) Vvarying strings: A varying strin? has a fixed maximum length
throughout the scope of its definition; however, both its
length and memory position may vary during this time. The
substitution rules for varying strings are slightly more
complicated than those for non-varyin% strings. When
substituting string x, of length 1x, tfor the contents of
a varying string y, of maximum length my, the following rules

apply,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 11

a) if 1x > my; a copy of the string x is truncated on the
right and substituted for string y so that its length
is my and the length of the updated y is my.

b) if 1Ix < my; a copy of the string x is unmodified, i.e,,
not extended in length and substituted for string y;
the length of the updated y is 1x.

Hence, the length of a varying string may change each

time its value changes, while the length of a non-varying
string never changes when its value changes. A varying
string is never a substring of a longer string (in the
sense of sharing memory locations). When the value of

a varying string changes the memory location of the string
may need to change. There are two cases:

a) The new value of the strin? is either shorter or its
increase in length is not large enough to require
additional memory words for its storage. 1In this case
the same memory locations may be reused (note
however, EPL will reuse the same memory locations
for short varying strings, while for other varying
strings EPL will pever reuse the same memory locations).

b) The new value of the string is enough longer than the
old value that additional memory words are required.
Since, in general, words on either side of the memory
location of the old value may be in use, new memory
locations will have to be used for the new value.

To facilitate this storage managgment problem all
non-short varying strings must stored in some

free storage area. Four library procedures exist to
carry out the bookkeeping required in the management
of a free storage area., These procedures are:
area_manjinitial which initializes a free storage area,
area_manyextend which extends a free storage area,
free_man§allocate which allocates space in a free storage
area, and free_manyfree which returns space in a free
storage area to a list of available space. These
procedures and the free storage management algorithm
are described in BY.,16.01.

Finally, string data may be packed or unpacked (aligned).
Varying string scalars and arrays of varying strings are
never packed. An unpacked string scalar or element of

an array of unpacked‘strin?s always begins at bit position
0 within the word. Each element after the first of an
array of packed non-varying strings begins at the next
bit position immediately following the last bit of the
preceeding element, Stated another way, unpacked strings
always begin on word boundaries while packed strings need
not, There are no unused bits between elements of an
array of packed strings.

MULTICS SYSTEM-PROGRAMMERS © MANUAL

Specifiers

SECTION BB.2,02 PAGE

A specifier consists of two or three contiguous word-pairs,

all of which are pointer data (type #13).
appears only in specifiers
Data_origin is usually the
data (although not always:
dope_origin is the
If the datum is

dope).
the dope.

data_origin
dope_origin
free_storage

is the address of the base of a free storage area 1in which
the datum is located. In this case data_origin is the
address of further information which locates the datum

in the free storage area,

Dope

There are three major formats for dope,

i)

ii)

iii) 1-dimensional array of s

string scalar

Addressing Offset

String Breakdown

Addressing Offset

b——— e

— Array ——
Breakdown

= (5 words) -

f—— ——

Addressing Offset

String Breakdown

— —
.

Array —
Breakdown
(5 words)

1-dimensional array of non-string scalars

tring scalars

The third pointer
for non-short varying strings.
address of the first word of
see the next paragraph on
address of the beginning of
non-short varying string free_storage

12

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 13

The addressing offset is a single word and contains an
of fset relative to the data origin given in the specifier.
Its interpretation differs depending on the data type.

The first word of any breakdown contains a code, in
the leftmost nine bits (bits 0-8) which partlally—Tdentifies
the dafa type. 3This code has the following interpretation,

DEnnnZED

=1 if datum is short varying string
= 1 if datum is packed, = 0 otherwise
=1 if array, = O otherwise
——= 1 if datum is string, = O otherwise

where size is the size in words of the elementary data item,

size = 0 for non-varying strings and short varying
strings (types 9, 11, 25, 27, 39-42)

= 1 for single word non-strings (types 1, 3, 14, 17,
19, 30)

= 2 for double word non-strings and lon? varying
strings (types 2, 4, 5, 7, 10, 3, 18, 20
26 28, 29)
= L4 for four word non-strings (types 6, 8, 22, 2u)

= 6 for six word non-strings (types 15, 16, 31, 32)

A string breakdown has the format,
0 8 9 11 12 35

<D - |

where n is the length for a non-varyin? string or the
maximum length for a varying string. The length and maximum
are always expressed in bits,

Accessing of Array Elements; Array Breakdown

An array breakdown has the format,
089 17 18 35

W V7000 L

length

multiplier

1b

ub

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 1L

length is the smallest number of contiguous words (bits
if the array is packed) which will contain the array.
multiplier is the separation, in words (in bits if the
array is packed), between two elements whose subscripts
differ by exactly one., It must be at least as large as
the length of the elementary data item (size from id),
however, it may be larger, i.e., data elements need not
be contiguous in memory, but they must be evenly spaced.
b is the lower subscript bound and ub is the upper subscript
bound, i.e., the elements of the array, A, are: A(1b),
A(1b+1), ..., A(ub),

The following formulae are used for computing the machine
address of the first word of an element, A(i), of an unpacked
array of scalars,

address of A(0) = [data_origin + addressing_offset] mod 2%*18
address of A(i) = [address of A(Q0) + delta] mod 2%*%18
where, delta = [i * multiplier] mod 2%*18

and data_origin comes from the specifier and addressin%_offset

and multiplier from the dope. For all packed arrays o

scalars, the formulae for computing the address of A(i)

are the same as above except that delta = integer part
of ([i * multiplier] mod 36%2%%18),

Non-Varying String Scalars (Types 9 and 1i)

The layout of specifier, dope, and datum for a packed
string is,

specifier data origin
L >l
<_d-bits —
- S
dope ~T-bits— datum
P 4.,
Z
240(8) n

where d is the offset, 240(8) is the id code, and n is the length
of the string.

Both n and d are expressed in bits, If the string is
unpacked n 1s still expressed in bits but d is measured
in words and has the form,

MULTICS SYSTEM-PROGRAMMERS “ MANUAL

specifjer

data origin

- <

4—’ .n-bity

SECTION BB.2.02

——

Long Varying String Scalars (Types 10, 12)

The layout of specifier, dope, and datum is,

specifier

_~

PAGE 15

>d words

> datum

data origin

dope

k

i—=

n

202(8)

max

free storage area

s

L—n-bits7

<]

f

A long varying string datum is always unpacked and is
ree storage area, while auxiliary data,

which specifies the position of the string in the free

area, is found at the data origin.

located in a

in the dope is always zero.

k words

datum

The addressing offset

3

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2,02 PAGE 15A

Short Varying String Scalars (Types 39, 40) .‘)
The layout of specifier, dope, and datum is,

data origin

d words

A—n-bitsS
dope : >
4 % m-bit87

o]

220(8)EZ24 max

where d is the offset (in words), 220(8) the id code,

max the maximum length of the string (in bits), and n

the current length (in bits)., A number of memory locations B
sufficient to contain a string of maximum length is initially
allocated d words from the data origin, The string always ~
begins at bit 0O in the word at data_origin+d. The word
immediately preceeding this (data_origin+d-1) contains

the current length of the string.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 16

1-Dimensional Arrays of Non-String Scalars (Types 17-24, 29-32)

The layout of specifier, dope, and datum is (supposing the name
of the array is A),

data origin

specifier — of | A(lb) Jm words

- words

B A(IBFD) b

dope

< V) S =
100(8)+m {fff] 1
S
mp : 5
™ A(ub) i L
ub

where d is the addressing offset, m (i.e., the low order
octal digit of the ID code) the size of the elementary
data item, s the length of the array in words, mp the
mu1t1p11er 1b the lower subscript bound, and’ ub the upper
subscript bound The address of A(Q0) = data orlgin + d.

If 1b > 0, A(0) does not actually exist and d is negative
(in 2°s complement form), If 1b < 0 then d >0, 1In fact,
if ub < 0, again A(0) does not actually exist, Of course
if 1b = 0, d = 0. Even though A(O) may not exist the
address of A(0) is used as a base for computing the subscripts
of the elements of A, The address of A(i) = address of

ACQ) + i*mp.
1-Dimensional Arrays of Non-Varying Strings (Types 25, 27)

If A is a packed array, the layout of the specifier, dope,
and datum is,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02

data origin

specifier
[P < -
én*blts;-
—A-bits—
| <l
“E:BTC?
dope s/36J >
d
340(8 n
340(8 "
s
mp
1b
ub

where d is the addressing offset expressed in bits, n

PAGE 17

LA(Lb)

1 (1b+1)
5
-/f A(1b+2)

the length in bits of each string in the array (all strings

must be the same len?th), s is the length of the array
in bits, the mult

plier in bits, lb the lower subscript

bound, an ub the upper subscript bound. The first element

in the array, A(lb) always be?ins at bit 0 within the
word at the data or gin. The

by determining k = i-1b, The strin? A(i) then starts

at bit k*n counting from bit O within the data origin.

ocation of A(i) is computed

As an example suppose A is a packed array of non-varying
character strings, each 3 characters long, with subscript

range (-4, 2). The dope for A would look like,

108]
340(8 27
4340(8)% 1
' ' 189
27
-4
2

—

~

‘t\

MULTICS SYSTEM-PROGRAMMERS * MANUAL

and the datum looks 1like,

data origin—j@ i~ A(-4)

To locate A(-2),

SECTION BB,2.02

A(=3) v < e

A (-2)

. »f»vv‘.“\""*(_l)w

A (0)

A(1)

A (2)

e~~~

add A(O) = data_origin + 108
delta = (=2) * 27 = =54

add A(=-2) = data_origin + 108 - 54 = data_origin + 5u
which is bit 18 in first word after data_origin.

If A is an unpacked array the layout of the specifier,
dope, and datum is,

specifier

ll
l.l

where d, s,
begins at bi

data origin

PAGE 18

}A(lb)

A(lb+1l)

= ::“F—7
L _n-bits—
|
£Z_n
N -bits
300(8) Zy' $
300(8) /% 1
S
mp
1b .
ub

and mp are expressed in words and each string
t O within the word.

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BB.2.02 PAGE 19 ‘

-

1-Dimensional Arrays of Long Varying Strings (Types 26, 28) <

The format of specifier, dope, and datum is (supposing
the name of the array is A),

data origin .
specifier /W—/ //////Zﬂ\i
1/// *_ n(1lb) (mP
/ dope .o i
d T k(Ib+l) VI l
_ free storage B02 (8) 7//// max n(1b+l) ,fmp
ﬁ ‘ 02 (8) /// 1 vee
k(Lb+1) v .
__14.4_7 | S <
‘ mp
4£;(1b+1)biE§;7 (1b+1 b
k(1b) = ub
v Y \
Zigllb) bit A(1b) | ~
= -

where d is the addressing offset and max the maximum length
of strings in the array A, The array breakdown applies

to the array of auxiliary information beginning at the

data origin and s is its length, mp the multiplier, 1b

the lower subscript bound, and ub the upper subscript

bound. The auxiliary array is composed of two word elements,
one element for each varyin? string in the array A, The

ith auxiliary element specifies the current length, n(i),

and location relative to the base of free storage, k(i),

of the ith varying string A(i), in the array A, The strings
in free storage need not be in any predictable order and

may be located anywhere in the free storage area.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BB.2.02 PAGE 20

1-Dimensional Arrays of Short Varying Strings

The format of specifier, dope, and datum is (supposing
the name of the array is A),

data origin

—P
d
specifier : c o
' f n(1lb)
" A(lb){ <—Zmax-bits—-2 \l
> mp
1btl n(1b¥1)
S -<A(o \‘Zmax-bits-—z >
dope/
d B
B20(8ZZ] max J’ n(ub)
= A(ub) <—Z_ .
820 8B 1 bite—
AS/ L L max 1Cs
mp
1b
ub

The dope specifies a 1-dimensional array which looks (except
for the id code) 1ike an array of unpacked, non-varying
strin?s of length max. The current length of the string
A(i) is stored {ust preceeding the string, n(i) in the
diagram, Each length may be different, however, each

must be < max.

