
. ~ " ,. .
MSB-)j

To: Distribution
From: M.G. Smith, R.A. Freiburghouse, M.B. weaver
Date: March 25, 1973
Subject: A New Multics Signal Mechanism

The current Multics signal mechanism causes several problems
for both novice and experienced users. It does not fully
support the needs of PL/I and is not well suited to the Multics
ring structure. We felt that the number of problems in this
area was so large that a complete review of the signal mechan­
ism was necessary. We have completed that review and have
identified a number of problems which we propose to solve by
a redesigned signal mechanism that is conceptually cleaner and
more general than the existing mechanism. We feel that these
changes are necessary if we are to provide a suitable stand­
ard product for Multics users. We plan to implement these
changes during the next few months and install them on the
6180. The purpose of this MSB is to inform you of our plans
and to solicit your comments and opinions.

1. PROBLEM:
The deceptively benign appearance of the 11 ready 11 message
following a' QUIT or a message from the default error
handler has tricked some users into believing they were
talking to a "clean" process, when in fact the suspended
stack above the new listener involved enabled condition
handlers, initiated segments, yet-to-be-invoked cleanup
handlers, etc.

SOLUTION:
The default error handler and QUIT responder will not call
the listener directly, but wi 11 ask a question: "Do you
wish to hold, release, or start?" The question will be
asked by the normal "command_query_" method, Only if the
answer is "hold" will a new listener be invoked.

2. PROBLEM:
Subsystem writers and other users who desire to stack
a new command loop beneath themselves have been unable tr
call "cu_$cl" because that routine performs a number of
unrelated and annoying functions besides reading commands,'
to wit: performing a reset-read (which kills absencee jobs
or loses type-ahead on interactive), laying down an imper­
meable condition wall, setting an automatic release switch.

SOLUTION:
Move the unrelated functions out
tic release is discarded, as the
default handler wiJ.l obviate :it.

of "cu_$cl". The automa­
question asked by the new

The reset-read is per-

- ' , ..
-2-

formed if necessary when the qu:estion is asked by the
default handler. The wall is simply discarded--any user
wanting one can easily put one in, but one put in by
the system is very difficult to remove. See 4. below.

3. PROBLEM:
Some subsystems desire more rapid handling of certain con­
ditions than is provided by the current mechanism, to
wit: .MMEs in subsystems which use them as supervisor
calls,· MMEs for debug breaks, traps-before-link and
traps-at-first-reference.

SOLUTION:
Since no replacement for "signal_" will provide the per-­
formance speed-up these systems desire unless it is tailor­
ed to their own requirements, we will provide documentation
on how to replace "signal_" but we will not presume to
code the replacement.

4. PROBLEM:
Currently some conditions are set up and handled differ­
ently than others for no essential reason--the so-called
"special handlers". This introduces unneeded complexity
into the condition mechanism and also forces programmers
to go outside the PL/I language to use the features.

SOLUTION:
The "cleanup" condition will be enabled as any other con­
dition. The "any" condition will be enabled as any other
condition, and its meaning will be to catch any condition
not specifically named in a separate on-unit in the cur­
rent frame-Le., it becomes the default handler or "wall".

S. PROBLEM:
The relationship between a PL/I program and a ring should
be respected by the signal mechanism so that users can
construct multi-ring PL/I subsystems. The current imple­
mentation resignals all conditions originating in the
lower ring in a higher ring without invoking the default
handler for the condition in the lower ring. This is
inappropriate for all of those conditions for which the
default handler provides a result suitable for use by the
interrupted program. For example, the default handler for
the conditions un:l:rflow, stringsize and endpage provides
a result and continues execution.

,. . . ·~

6.

-3-

SOLUTION:
When the signaller reaches the end of the stack in a given
ring, it will invoke the default error handler. If the
condition is nonfatal (one of the above), the default error
handler will set the result and return to the interrupted
program; otherwise, it will effectively either resignal
in the next outer ring.or will write a message on
error-output, do a reset-read, and ask the user if he
wishes to hold, start or release. The decision to resignal
a fatal error in an outer ring and the choice of which
ring is described as part of the solution to the next problem.

PROBLEM:
In the present implementation of the signaling mechanism,
there is a feature which prohibits effective utiliation
of the ring mechanism for certain supervisory, monitoring,
metering, and debugging tasks for which it would otherwise
be ideally suited. To understand it, envision a lower­
ring program (call it the "monitor" for ease of reference)
which desires to encapsulate a higher-ring program (call
it the "application") so that it can meter it or debug it.
The point of using the ring mechanism to do this is to en­
sure that the act of metering or debugging the application
will not in fact change it (putting metering or debugging
calls in it moves code around, can affect where page bound­
aries fali, introduce extra frames into the stack, etc.)
and to ensure the integrity of the monitor even if the
application program suffers catastrophic failure. This
usage of rings is fully in conformity with the Multics
philosophy of protection rings: the encapsulated appli­
cation is intended to be at the mercy of the monitor
and to know not what the monitor is up to; the monitor
is intended to be protected from any interference by the
possibly dangerous application program.

However, the present treatment of reflecting non-super­
visor faults directly back to the calling ring is a vio­
lation of the Multics ring philosophy, and makes the mon­
itor susceptible to damage from the application. To wit,
consider the occurrence of a non-supervisor fault in the
application (for the purposes of this discussion, a super­
visor fault is one which is handled successfully and trans­
parently by the hardcore supervisor, so that for all prac­
tical purposes it did not occur at al.1--exarnples are page
faults, segment faults, bounds faults). This non-super­
visor fault causes a trap t': .. ring zero, ring zero decides
it knows nothing of the fault, and so it re-signals the
fault as a condition in the faulting ring. Note that this

. '.

-4-

communication from the higher-ring application ·program to
the hardcore and back out to the higher ring again takes
place without the consent or knowledge of the intermediate­
ring monitor. The bypassing of the monitor ring in this
exchange is the violation of the ring philosophy: it allows
the application program to cause fatal process errors
and prohibits the monitor from setting breakpoints and taking
cont~ol away from the upper-ring upon the break.

Hence, it is proposed that, instead of signaling a fault
in the faulting ring, the hardcore ought to (conceptually,
at least) signal the fault in ring 1. Ring 1, in the de­
fault case, would also have no interest in the fault and
would resignal it in ring 2. The ripple-up of the fault
would continue until it reached either the faulting ring
or else a ring which had some interest in it. In fact,
the ripple-up will be made more efficient by not actually
signalling in the rings which haveno interest in intercepting
such signals.

This mechanism could then be used very effectively to
debug a number of troublesome kinds of things: fatal
process errors due to stack overflow (there would always
be space in the monitor's stack to catch faults), fqtal
process errors due to a fault in the signaler, clobbering
the debugger's linkage section or on-conditions (these
would all be in a lower ring.)

There is one final additional enhancement which is plan­
ned in connection with the ripple-up, that is to gate
into ring zero and ripple-up all signals, not just ones
automatically trapped by the hardware. The rational
here is that the line between hardware-detected and soft­
ware-detected conditions is very fuzzy--indeed, sometimes
the very same condition is caught the one way and sometimes
the other--so the signaling mechanism should not attempt
to preserve or invent a distinction. The uniform signaling
of all conditions in a lower ring assures that the monitor
be kept abreast of and in full control of whatever contin­
gencies arise in the application progra~. Again, this
will not be inefficient in the case where all lower rings
are uninterested.

' , ..
-s-

A new ring zero gate will be provided to allow a user to
establish a signaller for each ring. This gate will
keep a vector of pointers in the "pds", one for each ring.
The initial value of this vector will make the system
behave as it does today.

All signals will be directed to ring zero where the "pds"
will be inspected to see which ring should receive the signal.
A signaller called to respond to a signal originating
in a higher ring would be a user-written signaller
interested in trapping certain signals before they reach
the ring of occurrence. It would either handle the signal
or would return to ring zero via a gate that would select
the next interested ring. A signaller called to respond
to a signal originating in its own ring or a lower ring
would look for a handler in its own ring, finding none it
would invoke the default error handler. The default error
handler would either sucessfully return to the interrupted
program or would call back to ring zero via the gate that
will select the next ring to receive the signal, normally
this would be the calling ring. If no more rings are
interested, the standard error messages are written and

~- the user is asked to indicate. whether he wants to start,
hold or release. (program interrupt may be a fourth

. alternative, but its effect is achieved by "hold" followed
by "pi II)•

7. PROBLEM:
Scattered throughout the system are routines that try to
identify the procedure that owns the stack frame from
which a signal originated. These routines are not always
consistant and must all be updated when changes are made
to system conventions or data formats.

SOLUTION:
We propose two levels of routines to perform this function.
A high-level routine will return, among other things, the
character-string representation of the entry name used
the invoke the procedure that owns the first standard stack
frame preceding the most recent"signal_"stack frame. It
will also return an integer that gives the word offset
0£ the instruction or the statement number of the state­
ment that caused the signal. Lower level routines will
also be provided.

The PL/I compiler will be modified to accept a new pro­
cedure option (support~.' This option will cause a flag
to be set in the stack frames created by activations of
the procedure. The two routines used to perform the

' , .. '

-6-

the identification of the signalling procedure will ignore
stack frames containing this flag and return the informa­
tion corresponding to the most recent stack frame with­
out the flag.

This option can then be used on Jan guage support sub­
routines whose signals should appear to have originated
in their calling procedure.

When these changes have been made PL/I will properly
support the "onloc" built-in function, and error messages
issued by the default error handler will always contain
an identification of the offending procedure and statement.

8. PROBLEM:
The arguments passed to a condition handler and the values
accessible via the PL/I builtin functions onsource, ondata,
onfile, oncode, onfield, onkey, and onloc are essentially the
same kind of data and should be handled in the same manner.

SOLUTION:
Since each condition handler may be interested in only sane
of the data, and since new condition data may be intro­
duced into the system together with new conditions,
passing these values as arguments is impractical. Furthermore,
PL/I on-units cannot receive arguments. Consequently, we
propose to make the values now passed to condition handlers
as arguments accessable via functions. The pll_ondata used
to support PL/I condition built-in functions will be
extended to accomodate the new information. Ondata will
be kept in signal_ automatic storage and will be correctly
set for all signals regarlless of their source.

9. PROBLEM:
The fim does not sort combined hardware detected signals
into the distinct signals required by PL/I. This causes
incorrect execution when a user-supplied default handler has

1:een established, unless it knows how to separate these
conditions. On the 6180 an illegal procedure fault should
sometimes signal the stringsize condition and sometimes
pehave as a nop. This sort of dirty work should be hidden
in the fim, not spread around in everybody's default error
handler.

SOLUTION:
The fim will separate the arithmetic conditions into:
underflow, overflow, fixedoverflow, and zerodivide. It

L.A.""

..
I

.. ' ;.. ...
-7-

should only signal zerodivide when the divisor is zero.
(The fault also occurs for some nonzero divisors). A
fixedoverflow resulting from a EIS decimal instruction
should signal the size condition. An illegal procedure
fault resulting from an EIS move whose second operand
is a null string should signal the str:ingsize condition if
the detection bit of the instruction is on, and do a nop
if it is off.

10. PROBLEM:
The snap and system options of PL/I are not properly
supported by the signal mechanism.

SOLUTION:
The on-unit data placed in the stack frame for a given
condition handler will contain two flags, indicating the
presence of these two options. On encountering the snap
flag, the signaller will call debug and then call the
handler. On encamtering the system flag, signal_ will
call the default error handler. This latter feature
allows a programmer to establish the default error handler
for a specific condition rather than for all conditions.

This MSB is an outline of the proposed changes. More complete
design documentation is being prepared. The detailed design and
implementation will minimize the inconvenience to users of the existing
signal mechanism by providing compatible interfaces or write-arounds
whenever possible. Some changes will probably be required, but the
increased facility provided by the new mechanism should be worth the
price.

•

