
,,----,

MULTICS STAFF BULLETIN-27

FRQt.J: Mike Spier

TO: MSB Distribution

DATE : Ma r ch G, 1 :J 7 2

SUBJECT: The new Standard Object Segment

This is the final iteration on the new Standard Object
Segment format; it has been accepted by all principals and thn
intention is to immediately start on its implementation. The
projected work will include modification of the new PL/l
compiler, the ALM assembl1~r, the Binder, as well as all other
language processor currently supported on Multics. Also, all
object segment manipulating tools (such as decode_object_, linker
and prel inker, debug etc.) will be appropriately modified to
handle both current and new object segment formats in an upwards
com pat i bl c \va y.

This new format is conditionally accepted as the new
standard for object segments, however its final adoption will be
delayed until it is practica.lly implemented in ALM, V2PL1 and the

,.-- B i n d c r , a n d i s de mo n s t r a t i v e 11 y f u n c t i on a l.

Recipients of this document are requested to read it and
submit any comments or criticism within the shortest possible
delay, so as to enable us to catch any bugs or inconsistencies
before \·mrk progresses too far.

1ultics 5t~n3drd OhJect Segment - March 6, 1972 p ~ '1 p 1

Ihis document presents a standard for~at for the r·u1t1~s

obje:t Pro;ram to assure its compatibility with th~ ·~ultics
na:hine", the im~lication b~in; that a piece of codP which
su:cessfJllY executes on the 645 processor is ~ot necessarilv a
stan3ard Mult1cs object proaram, and that t~e concept of
exec~tion :rn the •Multics machine" inc1u:!es notions of P:1r'"'
re:ursivs re~entrant ~roceaure~ access control, \nd such
functions as dvnamic linking, machine innePendent niaonostics ~n1
iehu~gin~, bindinq etc, rhis standar~ relatPs primarily to ~he
extern!l interfaces of an object program, the objective ~einq to
leave as much freejom of code generation as Possible to the
lang~a;e processor~, and to imrose a certain discirlin~ onlv in
re~ards to code wh1ch interfaces with the ext•rnal world. It i~
assune~ tnat the reaaer is reasonablY familiar with Multics.

certain for~ats lPscribed within this document are identical
to form!ts foUnd in older non"standara object proqrams; oth~rs
are new ana therefore incompatible with older ob1ect Proqra~s.
su:h new torm~ts arP annotated, within this document, with the
synbol (~EN) to allow the reader more ease in relatino the

~- Present standara to older ones, Nee~less to say, all such new
formats are upw~rds co~patible and the st!n!ard service system
to~ls are coded 1n such a way a9 to properly handlP. all
offi:iallY reco~nizea object proqra~ formats until such ti~e When
the present standard is applied to all object Programs in the
system.

..... -

Xhe ~ultics stan~ard object program is the only tvPe of
~bje:t pro;ram 9uaranteea to be supporte~ hY the Multics stand~r~
service system tools,

1.. :JVJ:o..RVI!!:W

'Ll• !he rext Section
;a 1 ... 1. 'Ihe Entry Sequerice
'&..1 2., 'l'he Gate P~ocedure Entry Vector
'-.a.la.Jo l'he Ar;iumerlt LiE~t
Z.a.1.a.~• The Stack Frame

~L'-• !he Def1nit1on Section
2. 2..a.1 • 'X he Definition section He a 1 er

~ultics stan~ard Object segment - March 6, 1972

i z ... i. l'he Definition
l l l• The Expression ~or~
i .. 2. ~. The Type Pair
2 2. 2 • 'l' he T r a ri P a i r

~ ... J. !he Linkage Section
z. l .. 1. l' h e L i n k a ~ e s e c t i o n H e a d e r
2 l ... 2.. Ihe I~ternal Storage Area
z..~J. J.. The Links
Z J ... ~. The fir~t-Referpnce traps

, .. ~. rhe Symool Se:tion
, ... ~ 1. The Object ~ap
i !:t. ... 2.. l't-ie Sy:nbol Plock Header
44!:t. l. The Source rap
i ... ~ !!_. The Relocation Information
2. !:l...~. l'he PL/1 Symbol Block (?0 BF SUPPLIF'O)
2.4~ ~. The AL~ Symbol Block Cro BE SUPPLIED)
Z !i. l • T he B i n d e r ' s S y m b o l B 1 o e k
2..a.i..a.l• Debu9~s Symbol Plock (XO Bt SUPPLIED)

~ .. 1, rne rext Section
l 1 1. The Entry Sequence
l.a..1..a.t• l'h,e Relocation Codes

J .. i. rhe Oef1nit1on Section
l.a..Z....1 • I m P 11 c it D a f in i t i o n s

~ .. J, rhe Linka9P Section
l l .. 1. The Internal Storage
l l...2.. The Links
L.l1ol• The Relocation Cod.es

~L~• rhe sy~bol Se:tion
la..!±...a.1 • 'l' h. e Rel o c ~ti on cod es

lo fJN:TIONAL INTERFA:ES

~ .. 1. Dynamic Linking

~ .. J. ~aning Conventions

~L~• Stan~ard Systerr. rools
l..a..l.a.l• lnclUde Files
l..a. !±. £. • s u b r o u t i n e s
l..a. !±...a. l • c o mm a n i ~

,,,,-.

~ultics 5tan1ard Obje:t segment - March 6, 1g72

1., OVgRVIE:.I

A ~ultics staniar~ object proqram is ~n executdhle
nard~are-level (i,e,, ~achine code) representation of ~o~e hi~her
langJaJe algor1thm, pro3uced by the appropriate l~nqu~qe
Pr::lc~ssor. FhySically, it. is ;e single arrar of words l\t the b~s""
-;, f a d i s t i n c t s e gm en t k n o 1o1 n a s a n Q b. j" t.. s..i. l:l..~ an. t ,

The generated Object code falls into several catecoriPs, thP
Tiost i:np-;,rtant Of which ~r~,

I..fU . .t.. - the executable rnach.ine code representation of the desire~
al~orith:n.

Q.J..f.~.llit.i~a. - sYmbolic information with the aid of which cert=lin
variables wh~ch ere internal to the object procram are m~de
kn-;,wn to the external world and accessihle to the avna~ic
linkini ~echanism (the Multics linker).

LL~l~ - sy~boliC representatio~ of variables whose addrPss is
un~n-;,wn at comp1le time, an~ can only be evaluated (1,e.,
resolved into a machine adaress bv the ~Y~amic linkinq
~e:h!nism) at execution time.

~-i.:n.li!..~l.. IC..i.i. .. internal definition of symbolic source lanlJUl!.c;Je
variables, their attributes and relative address within the
obje:t se;~ent; nee.aed for the execution of int~rPre.t!ve code
su:h as PL/1 Input/output as well as for debugQing purposes,

til..E..li..~.ti.-'.i.J.. ;lo.ic.tma.t.1'2..ll .,. 1 n format ion de scr i b inq the circ um stances
unier which ·the object seqment was created, such as name ~nd
version of lanqua9e processor, creation time, identification of
input source, identification of user who initiated the object
se~rnent creation, ete.

B..il.Q..;.at.i:J..ll tilfQcma.ti.a • which id en t 1 fies a 11 inst ~nee s of
intern!l relative al~ress references,

~1~~~Qa11~~ l1i~ ~ information which allows standard svste~ to~ls
to extra=t useful information out of an object s~Qment,

l~i~;t tl12 .. control information to allow the 'Multics machine•
(e.g., the i1nker) and the Multics standard service system
to-;,ls to reco9n1ze the structure of the obiect segment.

The ~enPrated 1nformation items listed !bOVe are not stor~d,
iriteriniXad, within ~ -nol'lolithic object sec:ment, Rather, the
::ibie:t sag'Tlent 1s o.:;truct1ire:i into four ili.~11Q.tl.ii• named t.e.xt.,
i~.f~~iti~n. li~~4~~ al'ld &%m~Q1, A section is an array of woris.

~~ltics stan~ard Object segment • March 6, 1972

the ~bje:t se9~ent 1s a concatenation of these four se~tions, in
the following sequence,

text I I definition I I linkage I I sYmbol

thp len~th of all but the last (i,e., sy~hol} section must he an
e v? n nu r., be r ::> f words.

The assignment of any ite~ of generate~ code to one of ~he
four se:tions is decided on the basis of such considerations a~
!c:ess attributes ~nd efficient resource m~nagement, The rules
of assi9nment are as follows.

!'..it.Kt. ~~;.tJ •. ~c. contains only the Pure (non self modi fYinq)
executable part of the object program; thet i~, instructions
ani read·ontv constants, It may also contain r~lative P~inters
into the definition, linka~e and sy~bol se~tions a~ descr1he1
below,

Q..e..f.io.it.1~.c. §.A~t1Q.ll contains only non-executeble read-onlY
sYTibolic inf6rmation which is intented for the purpose of
1Yna~i: linking ana sy~bolic debuggin;, It is assumed that the
1efin1tion 9ection will be infrequently referenced (as ~ppose~
to the constant1Y referenced tPcxt section); this section is
tneref ore not recommenied as a repository for re!d•onlY
constants which are ref1renced during the execution of the text
se:tion. Th~ definition section may so~etimes <as in the c~sP
~f an object seqment ;enerated by tne Multics Bi~der, be
c;tC'u::::tllred into d~f1.n.1.t.1,g,n.. b.112'-U• which are threaded toqether.

lit..1.!l.~l.ai ~A.:11.,g,n - contains the impure (1.e., modified dU?iAO the
progra~·s execut1on) parts of the proQra~ and consists of two
ty~es of data

!) links wh1ch are modified at run time hy the Multics linker
to contain the mac~ine address of external variables.

b) internal stora;e of the type called "own" in ALGOL and
"internal static" in PL/1.

~I.:n.t.~l ~a"-UQ.A ... name~ so because it was initiallv desionei to
store the lan9uaqe processor-s sYmhol tree, is the reoosit6rv
ot all ~enerated items of information which ~o ~ot belon~ in
th; first tnree sections, The symbol section may typically be
further st~uctured into variable lenQth i~mhQl ~lQ~~i• store~
~ontiguously an~ threaded to form a list, The symbol ~ectlon
~ay :ontai~ oure (non-writable) infor~ation only,

D~ring tne pXecution of an
Definition an! Sy~bol sections
PtJcesses; the Linkane section is

object pro~ram, t~e rext,
are sharable amon~ several
coPie~ into each proce~s·

,-

,_

,ultics Staniard Ohje:t Seqment • March ~. 1972

Tienory space so that each co~Y is a ~er-procPs~ 1ata base, t~
be dis:arded Upon process termination. rhe ori9in~1 link~q8
se:tion serves as a copyinq template on1v,

!ultics stan~ard Object segment , Ma~ch 6, 1972

this section describes the main data for~ats and structure~
wnic~ nay be encountered within the four sections of a~ object
~eqment, Definitions are given in PL/i, Most structures aefinen
below have a ·~ecl_vers• item, a constant which ~esiqnatPs the.
f o n• 1 t J f t he st r u c t u r e ; w he n t h e st r u c t u r e i s !Tl o d 1 f i e d , !; o i ~
the :onstant, allow1n; system tools to differentiate hetween
:oncurrent inco~eat1ble versions of a s1nqle structure. Morm5llv.
when!ver the structure 11 modified, the 'decl_vers• item is
1n:remente5 by one, All structures as ~Pfined in this dncum?nt
have the declar~tion version number set to the const~nt ·1·,
Jnless other~1$e specifiea,

l ... 1.. r he r ex t s e ct i o n

rhe text section is basically unstructured, containinq the
nach~ne lanquage representation of some symbolic lan~u~oe
!l~orith~ as com~11ea hy the appropriate lanquaqe Procpssor.

Three (opt1onal) items, however, which mav ap~ear within the
ta~t section have stan~ar~ formats, They ~re al the entrv
se~uan:e, bl the ~us follow•on ;ate procedure entrv veetor, and
:) t~e ar~ument list use~ in inter-proce~ure calls,

, 1 ... 1.. '1' n :a E n t r Y seq u en c e C N E w)

The entry sequence is mandatory for e~ecutahle object
se~mants (as oppose~ to compiled data bases in object se~ment
format); there must he an entry sequence for every Procedure
entry point. The entry se~uence has the followinq format.

3ecl!re 1 entrY_sequence aligned,
2 symbOl_ptr hit(18) unaligned,
2 descriptor hit(1) unaliqned.
2 unuse~ b1t(17) unaligned,
2 save~sequence(n) bit(36) ali~ne~;

sy~b,l_Ptr - Pointer (relative to the base of the definition
se:tio~) to the symbolic definition of this entrypoint. rh~s.
~iven a pointer to an entrypoint, it is ~ossible to reconstruct
its sy~bol!c name for ~ur~oses sue~ as ~iaQnostics or
iebuJ91.n;1.

~ascri~t'r - set to "1"b if the entry point's formal definition
(see section 2.~.2) contains descriPtors for the arQuments of
this entry po1nt; t~is information is reiundant, duplicated in
tl1? formal definition,

1u1tics Stan5ard Object Se9ment - March 6, 1972

save_sequence ~ is ~n arraY of n words containing the stand~ra
save saquence code.

'1~.t.i : t h e v a l u e (1 • e • , o f f s e t w i t n i n t ti e t e x t see t i on) o f t h""
entrYP::>int corresponds to the address of the ~save_sequence·
item. !f •ent.offSet• is the value of entrypoint "start". then
the srmbol_Dtr Pointing to definition "start" is locatert at
(ent_offset-1>.

'-.a.L.2.. Tie Gate Proce:lure Fntrv Vector (Ne;W)

A 6U5 follOw•on ~ate procedure can only be entered at the
first U loc~t1ons at the bottom Of tne seg~ent (i,~,, nffS~t~
(0)8 tnr::>ugh (n-1)~), wnere each location corresponds to ~
nu~bered entryPoint, the validation of the value n is nerfor~ed
by the har1ware.

t!~.t.l: !he folloWing f::>rmats tel.ate to structurP.s whose values 1\t"e
:::>~P~ted at run time and allocate~ 1n the ~rocedure•s eurr~nt
stack frame, ?hey ar~ nevertheless described withi" this section
oeca~se they are logictlly indivisiDly relate~ to the t~xt
section an~ conititUta part of the proce~ure•s cur~ent aetivat~on
re:ord,

z. 1 ... l.. 1· h.e Ar CJ um en t List

rhe arqument li~t is a structure, CnormallY) allDcated in
the ~r::>cedure"s current stack frame, whose value mey be computed
at run time, It may have the follovin9 for~at,

1ecl!re 1 arQ11st aligned,
2 n_arqs bitC18) unaligned,
2 code hit(18) unaligned,
2 11 _des c r b i t (1 8) u n a U. g n e d •
2 unusea b1t(18) unali;naa,
2 ar9_Ptr<n> rointer,
2 parent_sta:k_ptr pointer, (OPTIONAL)
2 descr_ptr<a..> t:'ointerJ (OPTIONAL)

n_!r~s - a (fixe~ b1n(17)) positive 1nteqer whose value is (2*n>
whare ~ is the number of arg~ments in this list,

:o;e - a (fixed b~n(17)) positive integer whose value has the
1ua1 ?urpose of a) ~ifferentiatin9 between an older (EpL)
format and t.he present (PL/1) format of tne argument list, ~nd
h) 1efin1nJ whether or not the optional 'parent_stack_frame•
item is allocated within the argument list. The eode can
assune one of the fJllowing values,

u ·> this is a PL/1 troe argument list.
R -> t~is is ~ PL/1 ty~e ar9ument list featurinq an o~tional

•parant_stack_ptr·.

~~ltics Stan~ard Object Sa~ment ~ March 6, 1972

n_1escr - a (fiXed bin(17)) rositive inteqer w~ose value is
either zero, indicating that this li$t contains no ontional
ar~u~ent descriptors, or (2*~) indicati~q that th@re are n
1escri~tors corre~pon1ing to the ~ arqument5; descriptor i
:orrasponns to ar9u~ent 1.

!\r::r_;itr: - a rointer (ITS pair) to the base of 1t1 variable,

Parent_-ta:k_ptr • optional Pointer to the stack tra~e of ~

nested pro:e1Ure•s immediate ~arent,

jascr_ptr - opt1onal pointer to an a~gument ~escriDtor.

rJ BE SUElPLlf'P

Pa qr:> q

'--L.2.., T h e o e t i n t t i. o n s e c: t i o n

For historical reasons, character strings ~rP represente1
~ithin th~ Definition Section in ALM 'ace• format which ~av b~
ief1~e:3. bY the tollO~ing (free style) PL/1 declaration,

:3.ecl.are i ace,
"J. c h a r _.c o u n t b 1 t (9) u n a 1 i ~ n e d ,
~ strina char(char_count) u~ali~nPd;

~,r the ~urpose of this ~ocument, we shall use the notntion "char
!cc" t~ represent an "acct strin~. Note that a) the l~noth of
such a varYing strin; ts incorporated within the strin~. and bl
•ace· strings are pad:3.ed to the rioht (whe" necessary) wit~ null
characters cooo~s. ·

!he iefin1t1on section contains a number of data structure~
il'hich are,

'-.... 2. ... l. Tt\e Definition Section Header

The detinition section header resides at the base of the
iefinitiJn section and contains a pointer <relative to the b!Se
'f t~~ definition section) to the beginn1ng of the definition
list. The definition list is a threaded list of formal
iefiniti,ns, defining those variables within the obiect oroaram
Whic~ are ma~e known eKternally. The list consists of one or
no~e aef inition blocks, each of wnich consists of one or more
type-3 iefinit1ons, and zero or more non tYPe-3 definitions (5ee
tielo11).

]a:lare 1 def_neader based(p) aligned,
2 def_list bit(18) unaligned, (NEW)
2 unuse~ b1t(54) unaligned; (NEW)

ief_list - relative pointer to first definitioft in definition
list.

l i~ 2... T h e D e f i n i t i o n

The f ~rmat of a iefinition is as f 011ows,

1a:lare 1 definition basen(p) aligned,
2 forward threa5 bit(18) unali9ned,
2 backward_tnread bit(18) unaliqned, CNEw)
2 value biiC18) unali~ned,
2 flaqs, (NEii)

3 new_format bit(1) unaligned,
3 ignore bit(1) unaligned,
3 entrypoint bit(1) unaligned,
3 retain bit(1) unaligned,
3 descr_sw bit(1) unaligne~,

~~lllcs Stan1ard ObJect Se~ment - March 6, 1972 Faqe 1Q

3 unused bit(10) unali~ned,
2 class bit(3l unaliqne~. (~EW)
2 sy:nhOl_!"tr tiit(18) unaligned• (NEW)
2 seqname rtr bit(18) unaligned, (NF.Wl
2 n_arQs h1t(18) unaliQnea., (~Ew)
2 descriptor (n _ =i r gs) b 1 t (1 8) u n a 1 i q n e "l ; (t: E w)

f~rwar!_tnread - thread (relative to the b~se of thP definition
se:tion) to the next 1efin1tion, The tnread tP.r~inates wh~n i~

ooints to a ~~5 wor1 which is all zero. rhis thre~d ~rovi~eq ~

si~yle sequential list of all the ~efinitions witrin the
1efiniti~n section,

ha:k~ard_thread - thread (relative to the base of thP 1efinittor.
se:tio~) to the preceding definition. The thread ter~in1~e~
when it ~oints to a 645 word which is all zero, Tris thrpa~
nrovides a sinqle se~uential list of all the definitions wit~in
th~ iefinition section.

valu~ - this is the offset, within the section d@sianate1 ~Y th~
:liss variable, of this symbolic lefinitio~.

fl~gs - 15 binary indicators to ~rovi~e aii1t.ional informatlon
~bout this definition,

new_for~at -> ~1~h 5efinit1on has the format de~crihe! in
t~ls document, as distinct fro~ the older definition
for:nat.

iinore -> "1~b tnis definition does ~~1 represPnt an
external symbol ani must therefore be iqnored by the
M;iltics linker,

entry~oint -> "1"b this is the definition of an e~trYootnt
Ci,e,, a variable rPfarenced throuqh a transfer of control
irutruct1on),

r~t!in -> ~1"b this ~efinition must not be delete~ from the
object segment.

des:r_•w -> "~"b this definition includes an ~rrav of
argument descriptors (i,e,, 1te~s 'n-~r~s· ~ni
'1escriotor(n_arg~)· contain valid information).

:l~ss - this field contains a (fixed bin(3)) code which indicdtes
relative to which section of the object segment thP value ls,
:i.s follows,

C -> text sect1on
1 -> link~ge section
2 -> sy~bol section
3 -> this symhol is a seg~ent name (NF~)

svm~ol_~tr - r.ointer (relative to the
s:cti,nl to ~n ~liqned ace
~=finition·~ symbolic name,

base of the definition
string rePresentinq ~h~

SRgiane_ptr - Pointer (relative to the base of the definition
s:ctionl to the first class-3 {see below) segname definition

~ultics standard Object segment - March 6, 1972 Paqe 11

of th1s definition hlock.

ll..2ia.: th.e followi.n;; twc> items may he interpreter'l only if
d a s : r _.s "' : " 1 " b •

n_arqs a PositivP
cJrrespon5s to the
eKter~al entrypo1nt.

fixed hin(17) inte~er whose value
number of ar;uments exPectPd ~v this

ies:riPtor - an array of Pointers, relative to th~ base of the
taxt section, which point to thP descriptors of the
cJrrespon!in; entrypoint arauments,

In the case ot a class-3 definition, which 1~ the seqn~me
heaier of a detinition block, the above structure is interpretea
ac; follows,

iecl!re 1 segname based{p) ali;ned, (NEW)
2 forward_thread bit(18) unali;ned,
2 backWard~thread bit(18) unaligned,
2 seqname_threa~ bit(18) unali9naa,
2 flags bit(15) unaliqnedl
2 class bitC3) unaligned,
2 symbol_ptr bit(18) unaligfted,
2 defblock~Ptr bit(18) unali;ne~;

seqname_tbreaj - thread (relative to the base of the definition
se:tion) to the next class#3 ~efinition, The thread termiftates
whan it points to a ~45 word which is all zero, Thia thread
orovides a single sequential list of all c1ass~3 definitiofts.

iefblo:k_ptr - this thread (relative to the base of the
1efinition section) points to the hea~ of the d!finition block
asso:iated with this se~name. Definition blocks (which are
ea:h a list of non class-3 definitions threaded together bY the
forw!ri thread) are preceded sequentiallY (within that thread)
hY zer; or more class•3 definitions each of which has its
~efblo:k_.Ptr l'Ointing to the blocl<'s first non c.-laS!!:-3
5efinition.

r~e en~ of a 1efinition block is deter~ine~ bY one of the
tollowin, conditions (whichever comes first),

a) for~ard_thread points to an all zero word.
h) the current entry•s class is not 3, and forward_thread

points to a class-3 ~efinition.
=) the current de~inition is class~J, and h~t~ forward_thread

anr.1 aefblocl(_ptr roin~t to tli.e &..lnl.i. clasf!l•3 definition.

riiure-1 illustrates the threadinq of ~efinition e~tries.

,-, i 3. ... l. 1' ~e Ex~re ssio n word

~ultics Stanaard Oh~ect segment • March 6, 1972 Paqe 12

the expression word is the item pointed to bY the expres$f on
Pointer of an unsnaPPed link (see below), and has the followinq
stru:::t11re,

Je:::lire 1 exp_word base~(P) aligned,
2 type_pair_~tr bit(18) unaligned•
2 expression b1t(18) unalignea;

type_~air_~tr - pointer (relative to the base of the definitlon
se:::tion) to the 11nk's tYpa•pair.

expression• a s1gnea fixed binary(17) va1ua to be added to the
value (i.e., Offset within a segment) of the resolved link.

the type ~air is a structure ~hich defines the e~ternal
sy~bol Pointed to hY a link,

ieclare 1 type_pair baaed(p) aligned,
2 type~b1t(18) unaligned,
2 traP.-.Ptr bit(18) unaligned,
2 segname_Ptr bit(18) unaligned,
2 entrYname_gtr bit(18) unali~nedl

type - this is~ fiXei binary(17) positive integer which may
assuTie one Of the following values.

1 ·> t~is is a selfreferencin; link (1.e •• the ae;ment in which
the externa~ symbol is located is the very object seqment
c~ntaininq tnis ~efinition) of the form

myselflO+eXp~eSsion,modifiar

2 ~> u~use~ (NEW), use1 to define a now obsolete ITB•tYDe 1i~k.

3 -> tnls is ~ iink referancin~ a specified seqment, but no
symbolic entryname of tha form

segnamelO+expression1modifier

4 ·> tnis is ~ link referencing both a symbolic segmentname and
a symbol1c entryname, of the form

sagname$entryn~me+expression,modif1er

5 ~> this 1s a ~elfreferancing link having a
en~ryna~e,· of ~he form

myselfSentryname+expression,modifier

svmbotic

t r a p __ p t r .. 1 f n o n - z e r o t h. en t hi s is a p o i n t a r (rel a t iv e t o t he
base of the def1n1tion section) to a tra~~pair.

,-
~ultics standard Ob~ect sa~ment - March 6. 1972 paqe 13

se;n!me_ptr - 1s a Pointer to the reference~ segment; its value
~ar be 1nterprete~ in one of two wars. dependinq on the va1u~
of the type item,

a) f~r types 1 and 5, this item is a fixed binarY(17) positive
inte~er coae- wh1ch may assume one of the followinQ valu~s,
iesi;n,tinq tne sectior1s of the selfreferencina object seqment,

o ~> selfreference to the object's text sectionJ such a
reference 1s represented symbolically as ••text'

1 ·> selfref~rence to the object's linkage section; such
reference 1s represented symbolic•lly as '•link'

2 -> selfreference to the object's symbol section; such
reference 1s represented symbolically as '•symbol'

b) for types 3 ~nd 4, this item is 1 pointer (relative to thP.
base of the definition section> to an aliqned 'ace' strino
representation Of the reference~ segment's symbolic na~e.

entrrnama_ptr ~ is ~ pointer to the referenced item <1.e •• offset
within the referenced sagment)I its value mav be inter~reted in
one ~f two waYs, depen~ing on the value of the tYPe item,

a) f:)r types J •nd 3, this value is i;nore~ and an offset of o
<zer:)) is assumed,

b) for types ij ana s, this item is a pointer (relative to the
base of the dlfinition section) to an a1i~ned 'ace' atrin~
repreaentation of- an external symbol,

z.~ s... '1' l\e 1'r a P Pair

r~e trap pair 1s a structure specifYi"g two external symbols
<i.e., p:)intino.to tv:) links), the first of which 11 the ~all
P~inter: and th.a second b•1no the Ubll.Di ciointar, Dud.n!J the
pr:)cess 'f dynamt~ linking, the Linker •while processino a tvPe
Pair·· mar encounter a non~zaro trap_ptr1 in that ca••• orior to
the snaPoin; of tna actual link1 the linker first invokes the
trap pr::>cedure ~sin~ the spec!fiea call and aroument ~ointars.
rne trap pair ii structur1d as follows,

1 trap_pair based(Pl ali;na!,
2 call~p~r bit(18) unaligned,
2 ar;ument~ptr bit(18) ~nali;nedJ

call_ptr ~ a pointer (relatiYa to
section) to a link aPecifYinq
pr::>ced~re.

tne
th•

base of
entrypoint

the
of

!rgunent_ptr - a po1nter (relative to the base of the linkaqe
section) to a llnk specifying the base of an argument list to
be passed to the trap proee~ure;

~ultics Stanaard Ob~ect sa~ment ~ March 6, 1972 Paqe 14

~~~~: rhe !nvokation of a trap Procedure involves some 
te:hni:al ~ifficulty in that a standard aroument list cannot he 
used in conjunction witn such a call, More specificallv, the 
ar;unent list is an arraY of pointers, normally residi~~ in the 
pr,cedijre's stack.frame~ vhosa value is computed at run ti~e. 
Ar~ument lists for trap procedures must be ~rovided at comPilP 
ti~e (because, by aafin1tion, they will be used Prior to the 
first invokatton of the traPP&d procedures) and mav tharef ~re 
co~tain Q..Q. po1nters, whose val~es are undetermined at that 
ti~a. rwo posSible solutions are recommended, 

!) t~e argument list is Prepared at run time bY an initialization 
p~o=e~ure, ~nd put into an external static data bas~ rointe1 
t' by the ·argument_Ptr' link. 

b) the trap Procedure uses a non.standar~ arqument list 
containing constant values rather than Pointers to variables 
(!,••• the •datmk_." procedure), 

In anY case, it is currentlY impossible for u&ers to specify 
traps before 11nk U~ing high leYel languages <e,9,, PL/1 Fortran 
etc,), s' that the use of this facility is praeticallY restric~ed 
to srsta~ proqr~mmers usinq the Multics assembly lanQUaQe ALM, 

'-.a..l. rhe tiinka9e section 

the Lin~a9e section is substructured into four distinct 
co~ponents, whi~h are a) a fixed-length header which always 
resi~es at the base 'f the linkage section, b) a variable lenQth 
1rea use~ for internal storage, c) a variable length structuFe of 
links and d) an array of first~reference traP•. These f;ur 
:omponents ~re allocate~ vithin the linkage section in the 
f oll,win~ sequence, 

header I I internal storage I I links I I traps 

with the further restriction that the link structure must be~in 
1t an even location C~ffset> within the linkage saetion, 

l ..... 3. .... 1.. I t\ e Lin k ~ g e s e : t i o n K •ad a r 

The heaaer of the linkage section has the following format, 

1ecl1re 1 linka~e_header ba$ed(P) aligned, 
2 object_se9 fixed binarr1 
2 def_sect1on bitC18) unaligned, 
2 first_referenca b1t(18) una11qned1 (NEW) 
2 sect1on_thread Pointer, 
2 linka~e_Ptr pointer, (NEW) 
2 be~in_links bit(1Q) unaligned, 
2 sect1on_length b1t(18) unaligne~. 



~ultics Stanaard Object Segm•nt ~ March 6. 1972 Paqe 15 

2 object_se9 bit(18) unalignea, 
2 comb1ned_length b1t(18) unaliqnedJ 

:>bje:t_~eg ~ reset to zero, 

ief_se:tLon - a pointer Crelative to the base of the ohjP.ct 
se~ment) to the base of the definition section, 

first_reference • a P:>intar trelative to the base of the link~qe 
sa~tion) to the array of first-reference traps, As exnlained 
belo~, these traps are activatea by the linker when the first 
reference to this object segment is made within ~ oiven 
pr:>cess, i.m.;..~~.t.1.D.t..: u1 explained in following note, thi~ item 
is :>varwritteft in the copied link!qe section with an rrs 
pointer to the object's definition section, Consequ~nt1v, its 
value may orily ·be val14ly 1nterroqate~ within the oriqinal 
linkage section template, 

!.w..t..1,; when the Object seqment ts loaded into memorv for the 
purp,se of axecut,on, the impure linkage section is cooied int6 a 
?ar~process writable aata base (known as the combined linkaqe 
section) and the preceding items (which are intefttioAallv 
allo:ate~ to occupy a contiguous pair of words) are overwritten 
with a pointe~ variable (645 ?Ts pair> Pointing to the base of 
the iefinition section), 

section thread • under certain applications, llnkaoe sections mav 
be threaa.ea together, to form a linkage 11.1.tJ such 1Jiplications 
are not aiscussed within this document. ?ha forward_t~rea4 is 
an absolute pointer to the next linka;e section in the list, 
allowi~g a lilt to spread over more than a ain;la seQment, 

linkage_Qtr ~ ii a Pointer, set bY the linker ~uring the 
of co~yin; ;nt.o the combined linkage section, to the 
linkage section w1thin the object saoment, Xt is used 
link unsnappino mecnani1m, 

process 
orifJil'lal 

bY the 

begi~_link9 ~ this 1s 8 pointer <relative to the base of the 
linkagt sect1on> to the first link (the base of the link 
stru::t~re). The length of the linkage heeder is known to be set 
to the fixed Value e, providin~ an imPlicit relative Pointer to 
tha base of the internal storage area, 

section_length - th1s is a fixe~ binary(18) Positive inte~er 
value representing the len;tn, in woraa, of the linkaqe 
section, 

Obje:t_~eg - when the linkage section is cOPie~ into the combined 
linkage section, the segment number of the ob,ect seqment is 
put into this item, 

,.-- : o ~ b i n e d l e n qt h - w he n s e v e r al l i n k a q e s e c t 1 on s are comb in e d i I\ t o 
a list, thiS item (of the first linkaqe section in the li~tl 



~ult1cs standard Ob~ect segment ~ March 6. 1972 

contains the length of the entire list. 

'-a,.l .... 2.. r h e In t er n al s t or a q a Are a 

the internal storage area is 
:o~Pilers to allocate internal 
predeternined structure to it, 

'-. ....l...l ?he Links 

an array of words use~ bv 
static variables; a~d h~s no 

r his is an arr~ y of 11 nits, each defining an exter?'I al sv 111no 1 
referenced bY this objact seqment whose effective addre~s is 
unkn~wn at cornp1le time and can be resolve~ only at the mo~ent of 
execation. 

A link must resi1a on an even address location 1~ memory. 
an1 ~ust therefore be located at an even offset from the base of 
the linkage section, the format of a link is, 

declare 1 link based(p) aligned, 
2 haader_pointer b1t(18) unaliQned, 
2 ignore1 bitC12) unaligned, 
2 tag bit(6) unaligned, 
2 e1<pression_.Ptr bit( 18) unaligned, 
2 1gnore2 b1tC12) unaligned, 
2 modifier bit(5) unaliqnedl 

header_~~inter ~ is a backpotntar (relative to the head of the 
link!ge section) to the head of the linkage section, It is, in 
ot~er ~ords, the negative value of th@ link Pair's offset 
within the linkage section. 

i;nore1 - unused. aesat to zero. 

tag - a :onstant (4~)8 which rep~esents a 645 fault ta' 2 and 
1istin:tlY identifies an unsnapped link, The snappe~ link (!TS 
pair) h~s a d1stirict (43)8 ta;. 

expression_.Ptr - Po1.nter (relative to the base of the definition 
se:tion) to tne expression structure aefinino this link. 

1;nore2 - unused. Reset to zero. 

no1if1er • a 64~ address modifier. 

ri~ure•2 illustrates the structure 0£ a link. 

l.-..3..~l!. .• The First-Ref erenee rraps 

It is someti~~s desire~ to effect some ~pecial 
initialization Of an object segment when it is first referenced 
for execution (i~e., linked to) in a 9iven process~ for @xamole 
in order to comPlement the object seqment with process dependent 



,-
,~ltics standard Object segment - March 6, 1972 Pacre 17 

information, such as a segment number. fhe array of 
first-reference traps contains relative Pointers to link~ 
iefining procedure~ to be invoked qpon first reference within A 

~r,cess, and corresPondin~ links to specif Y araument Pointers for 
such invokations (if anY). Normallr, a proce~ure mav have a 
single initialiZation tra~, however boun~ segment~ mAY specifv 
several, If ite~ 'first_referenca' in the linkage section heaier 
is "'"b then no sQch initializatioR is require~; a non-zero value 
~f that item iS a ral&tive pointer to the arrav of traps, ~n~ 
in!i:ates that ~n1t1alization is require~. 

ieclsre 1 fr_traps base~(P) aligned, (~F.~) 
2 decl~vers fixe5 bin, 
2 n_traps fixed bin, 
2 arra~Cn_traps) aligned, 
2 call_ptr bit(18) unaligned, 
2 arg_Ptr bit(1B) una11gnedl 

5e:l_yers - a const~nt de1i;nat1n; the format of this structure: 
whenever the structur1 is modified, so is this constant, 
allo~i~g system tools to easilY differentiate between several 
in:o~Pitible Versions of a sinqle structure, 

n_trsps ~ specifies th1 number of trap Pointers in this 
structure. An ob~ect s1gment, such as a bound object, maY h~ve 

·- several initi~liz~tion traps to be inVoked, 

call_ptr • a pointer (r1lative to the base of the linkaqe 
section) to a link speclfyinq an initialization ~rocedure to be 
invo~e! bY the linker upon first reference to this object 
within a given process, 

!r~-~tr • if unequal "O"b~ this is a pointer (relative to base of 
li~kage sect1on) to a li"k specifY1ng an arqument list ~or 
Tiatching 'call_ptr•, 

, ..... !!., l' h e s y m b o l s e c t i o n 

The symbol section consists of one or more a~m~~l hl~~~a, 
foll::>wed bY an Qhli!..a m1..e.1 which are allocated cont.i~uously 11nd 
threaded (beq1nning with the object map) to form a sinole li~t. 
It terninates with a sin~le 645 word containin~ a Cleft •d1usted) 
19-bit pointer (relative to tha base of the object seqment) 
~ o i n t i n g t o t he ob j e c t llllll p , Thi s Po i l'I t e r m Us t UW.UA co n !'! t i t u t e 
the last word of an object segment. The size (in words) 6£ the 
::>bje:t se~ment is ! quantity which may b@ obtained from the 
~ultics file system, Usina this value, it is possible to loc~te 
tne se~ment•s object map (through this Pointer) which in its turn 
cont~i~s all the information necessary in or~er to identify 11n~ 
a:cess the ~ivers components of the object seqment, Knowledqe of 

·- tl'\e ::>bje:t map is the key to the d.ecodina of al'I object seoment, 
ani the convention hY which the last wor~ points to the ohject 



~ultics stan~ard Ob~ect segment • March 6. 1972 Pacre 18 

Xhe symbol section contains a significant numher of veriahle 
length c~aracter strinqs whieh ahould he directly accessible, but 
~hie~ (f:::>r the Sake of economy) should PreferahlY be store~ in 
Packad format, In order to achieve such storaqe orqa~iiati~n, 
stri~~s ~itoin the symbol section maY be poi"ted to bY ~ at~in~ 
~.~1.ll.U.t..• w o i ch con t a i n s b o t h of f s e t a n ~ l e n Q t h o f t he st r i n g i n 
t>acked f:::>r:n, 

~eclare 1 stringpointer ali~ne~, (NEW) 
i offset b1t(18) unaliqna~, 
2 l~nqth bit(18) unaliana~; 

~here :::>f fset is a pointer (relative to the base of the symhol 
block) to the first character of the aliqned strinq, and len~th 
is a (fixe~ binarY(17)) positive integer representinq the lenqth 
:::>f the string· in- characters, This representation ello~s eBSV 
!Ccess t~ the string bY using the PL/1 built in functibns 
'a1drel', 'fixedf and 'substr•. In the followin~ descriDtion, we 
snall usa the notation 'stringpo!nter' to denote such a DointerJ 
! str1ng~ointer is null if its value is all zero. 

, .... ~ ..... 1. r h e ::> b j e c: t M a p ( N E ~ ) 

rne ob1ect map is a fixed length structure resi!inq at the ....,; 
vary end of the object segment. It contains all the neeessarv 
stru:tural 1nformat1on pertainin~ to the object seqment. 

1ecl1re 1 object_map basad(p), 
2 decl_vers fixea bin, 
2 1~entifier char(B) a11;ned, 
2 text~~ffset bitC18) unalignei, 
2 text_lanoth bitC18) un1li9nei, 
2 definition_offaet bit<1B) unaligned, 
2 definition_len;th b!t(1B) unaliQntd1 
2 linkage_offset bit(18) unali;nea, 
2 link~ge_length bit(18, unaligned, 
2 symhOl_offset bit[18) unali~ned, 
2 symbo1_1en;th bitf 18) unaligned• 
2 first_blOck b!t(18) unaligne~. 
2 11 um be C' _of __ bloc Its bit ( 1 8 > u n a 11 Q n a I! , 
2 format ali;nedl 

3 boUnd bitC1) unaligned, 
3 relocatable bit(1, unaligned. 
3 procedure bit(1) unaligned, 
3 unused bit(15) unali;ned, 

2 map_Ptr bit(18) alignedJ 

ie:l_~ers - a constant designating the format of this structureJ 
whenev~r the structure is modifiei. so is this constant, 
!llo~ing system tOole to easilY differentiate between several 



,-
~ultics Standard Ob~ect sa;mint • March 6, 1972 

in:o]P!tible Vers~ons of a sin9le structure. 

i~entifiar .. must be the constant "obj_map". 

t e x t _.o ff s e t - offset ( r e 1 at i v e t o t he b !\ s e o f t h e o b i e c t s P q me n t ) 
of the text section, 

text_len;th ~a fixed binarry(17) positive inteQer represent1na 
the length in ~ords of the text section. 

:1 e f i n i t i o n _.off s ~ t .. a n a l c1 go us t o t e x t _.of f s Et t 

5efinition_len~th .. analogous to text_lenath 

linksge_of fset ~ an~logous to text_offset 

linksge_langth " an~loqous to taxt_len~th 

s y mb ~l-.o ff set ... analo qo us. to t@xt _.offset 

s y m b o l _.l an gt h "' anal. o go u s t o text _.l en gt h 

first_block - Pointer (relative to the base "f the svmhol 
se:tion) to the most recent symbol blOck. An object seqment ~av 
have one or more symbol blocks which are threaded on a list in 
reverse chronoloQ1ca1 order <1,a., newest block is first on the 
list), 

number_of_~lockS ~this is a (fixed binaryC17)) positive inte~er 
1isplaring t~e number of symbo1 blocks within this symbol 
se:tion. 

relo:atable = "1"b ·> this object segment has 
informatiol'\ in its U~at. symbol block, 

relocation 

proced~re ~ "1"b -> this is an executable object pr0Qram1 
"0"b -> this is a data base. 

~ap_ptr • this 1~ a Pointer, relative to the base of the object 
se;ment, to t~e object map; as mentioned before, this item muat 
resi~e in the last ~or3 of the object seqment, 

~ .... ~ .... 2.., Th ·a s y m b o l Block Header C NI w ) 

Xhe symbol block has two main functions, a) to document the 
circ~mstances Under which the object w~s created, ana b) se~ve 
as a repository for information which aoes not belonq in any of 
the oth~r tnree sections (e.g,, relocation infor~ati;n, 

,.,- compiler· s svrnbOl tree etic,). 1'ha symbol section must contain at 
least one symbOl block, ~escr~.bing the creation circu~stances of 



~ultics St!niard Ob~ect Segment • March 6, 1972 Pa~e 20 

the obje:t segment, A symbol section maY also contain more than a 
single symbol block, for example in the case of a boun~ object, 
where in aiditiOn to the symbol block describinq the object's 
:reati~n bY the binder, there is also a svmhol block for each of 
the :omponent objects, The symbol section is designed s~ that 
symbol blocks ~~Y be ~ynamicallY appended to, or deleted from it, 
such as in the case of the dabu~ger which allocates it~elf a 
symbol block in order to store in it breakDoint information, !he 
size and structure Of a symbol block are variable, dePendina uoon 
their Purpose, All symbol blocks have a standard fixed for~at 
header, is follows, 

iecl!re 1 symhOl_block_haader based(p) aligned, 
2 ctec1Tvers fixed bin, 
2 identifier char(B) aligned, 
2 gen_vers1on_number fixed bin, 
2 gen_creati~n_tima fixed bin(71), 
2 object~creation_time fixed bin(71), 
2 gen~rator charf B) aligned. 
2 gen_vers1on_name stringpointer, 
2 usar1d stri"gpointer, 
2 comm~nt ltrin;pointer, 
2 textTboundary bit(18) unalioned, 
2 statTboundary bitf 18) unalivnea, 
2 source_m~p bitf 18) unali;na41 
2 areaTpointar bit(18) unaligned, 
2 sect1onb~se_backpo1nter bitC18) unal1qned~ 
2 blook_s1ze b1t{18) unaligned• 
2 next~b~ock_thraad bitf 18) unalianed1 
2 rei_text b1t(18) unaligned. 
2 rel_ae~ bit(18) unaligned, 
2 rel_link b1t(18) unaligned, 
2 rel_symbol bit(10) unaligned• 
2 defaUlt_truncate bit(18) unalianed, 
2 optiona1~truncata bitC18) unaliqnadJ 

1ecl_vers ~ a const~nt de1i;nating the format of this structureJ 
whenever the structure is modifie!, so is this consta"t, 
allowing system tools to easilY differentiate between several 
in:o~P!tible ~ersions of a single structure. 

1~entifier ~ svmbo11c coae to define the purpose of this svmbol 
bl~c~, It maY assume one of the fol1ow1n; values, 

"sY~btree" ~> co~pilar symbol tree 
"bir\d_.map" _> bind rnaP 
"~bbreak" ~> aebua breakpoint information 

~en_vers1on_number ~ a positive integer desi~natln~ the version 
of the generator which was used in compllinq this object 
pr~gram, Xhe Policy re;ardino this version number is t~at 
whenever a 9enerator is substantiallY modified~ such as the 
~d~iti~n of new capabilities or the qeneration of new object 



--

~ultics Stan5ard Object Segment • March 6, 1972 Paae 21 

:oie Patterns, th~s number has to be incremented bv one. It i~ 
used nainly bY system tools which sometimes have to oP 
co;nizant of the co~a generation Peculiarities of a qiven 
conpiler, 

;en_:reation_time - a calendar clock rea~i"g specifvinq the 
iateltime at Which this generator was created. 

:>bje:t_.creation_tj,me - a calenaar clock reading specifvino thf> 
iateltime at Wh~ch this symbol block was ;eneratPd. 

;enerator • symbo~ic code definin; the Processor which generated 
this symbol hlock, It mat assume one of the values in the 
followin~ list (which is sub~ect to change or ax~ansion), 

"alm'' 
"pl 1" 
"f::>rtran'' 
"bird.er" 
"deb1,HJ" 

;en_version_nam~ ~ the generatc~r·s version in directly Printable 
character str1ng form, auch as, 

"PL/1 :omPiler Version 7.3 of Wednes~aY, Julv 28, 1911" 

this stri"; 1s disp1av1d by various system toois. The C!nte~ar 
part of the) Vers,on number imbedded in the strinG must be 
identi:al witk the number stored in •qan_version_number•; the 
option!l fract,on as displayed above (7,3) is a4ded in 
in:rements of (,1) whenever (for reasons such as fixed bu~s or 
minor improvements) e qenerator is installed which 4oes not 
diff ar in any signif lcant way from other generators ~f that 
version. It 1s mandatory that the generator name be UP!ated 
whenever the 9enerator ls 1nstalled for Public use. 

userid " the st~ndard Multics identifier of the 11ser in behalf of 
~bom this symbol ~lock ~as created. 

:omment • it iS sometimes desirable to Put certain factual 
informstion concernin; the generator (e,g., certain code 
qe~eration peculi~rities) df perhaps the actual Drocess of 
obje:t program generation (e.g., warn1nq about non fatal arr~rs 
en:ountere~ aur1n9 compilation, or warning concernin; certain 
iefaults aPP11ed ~Y the generator) into the ob;ect segment. rhe 
conment is diSplaYe~ by certain system tools, and ~av be of 
special interest, for example, when a deeiaien ha• to be m~de 
concerning the sUitebility of a given object segment for 
of fi:ial inst~llation in the system libraries, 

text_~~undarY for specialized pro;rams, it 
ne:essary that the taxt section beqin on 
boun~ary Ce,q., o m:>o 64 address); this is an 

is sometimes 
a predeterminea 
integer which 



~ultics Stan~ard Ob~ect Segment • March 6, 1972 Paqe 22 

iefines this boUniary. Its ~efault value. is 2 (0 mo~ 2 
a1.Bress). 

stat_poundarY - same as taxt_boundary, for internal static. rt~ 
1efault value is i. 

sour:e_map " a Pointer (relative to the base of the sY~bol block) 
to a source_map ~tructure <see 2;4,3) aefining the P~thnames of 
the so~r:::e fiies, If no source map is providea, this Pointer 
is reset to "U"b. 

area_pointer • Po~nter (relative to the base of the sYmbol hlocK) 
to the actual symbol block information (e.~ •• sy~bol tree., btn~ 
ma;i et:::,), 

se:tionb!se_bacKpointer • pointer <relative to base of symhol 
bloc~) to base of symbol section, This 1s a neoative quantitv, 

bl,cl size • a (f~xea binary[17)) inte~er value rePresentino the 
size of the sY~bol block (including header) in words, 

n a x t _.bl o:::: k _.t I\ re~ d "' t tire a a < re 1 at iv e to base of s Y m b o 1 section ) 
to next symbol blOcK. 

rel_taxt ~ pointer (relative to base of sYmhol block) t6 text 
se:tion reloc~tion information. as defined below, 

rel_ief ... pointer (relative to the base of the syml'lol block) to 
3ef1n1tion section relocatio~ information, 

rel_link "' ~ointer (relative t6 base of symbol bloek) to liftkaqe 
se:tio~ relocation information. 

rel_synbol ~ Po1nter (relative to base of symbol block) to aymhol 
se:tion relocation information. 

jefa~lt_truncate ~ Offset (relative to base of symbol block) 
starting from which the binder systematicallv truncates cofttrol 
informstion (such as ralo~ation bits) from aYmbol section, 
while still maint~inin9 such information as the symbol tree. 

::> p t 1 ::> n al _.t r u n cat e "' offset C rel at 1 v e to b a s e of s y m b o 1 block ) 
st!rting from wnich the binder mav o~tionallv truncate 
non-essential parts of the symbol tree in order to achieve 
~axi~u~ re~uetion in size of bound object seqment, 

l.L.!i .... l .. 'l'h.e Source Map 

Xhe source m~p is a structure defining the source segments 
used t~ :>riginate this object gagment, as follows, 

ie:lare 1 source_map ali~ned based(p), 
2 decl~vers fixe~ bin, 



.. 
~ultics standard Object Segment " March 6, 1972 

2 size fixed ~in, 
2 map(size~ aliqned. 

3 pathname stringpointer, 
3 uiC1 fiXel bin, 
3 dtm fixea bln(71)J 

Pa"e 23 

i e cl _.vars ... a constant de! sign at in g the form! t of this st r u ct u !':' e; 
~henever the structure is modifiei, so is this constant, 
allowin; system tools to easilY differentiate between several 
in:o~Patible vers1ons of a s!nqle structure, 

size - the number of entries in the "maP" arrav (i,e., number of 
source files definea in this structure>. 

?ath~ane a str1ngpointer specifying the £u11 Pathname 
(treensme) of the source segment. 

~i~ • the unique identifier of the source segment's branch at 
co:npile time. 

itm ~ the iate.ttme modifiei from the source seoment•s branch, 

'-.-..!!. .... !!.. l' l'le Relocation Information 

,-. l'he relocation information aesi;nates all instenees of 
relative a~dressing within a given section of the object se;ment, 
so ~s to enable the relocatio~ of such a section (as in the case 
'f hiniing), A Variable length Prefix coding schema is used. 
where there i& a logical relocation item for each halfword ol a 
~iven section, If the halfwori is an absolute value <non 
relo:atable) tnat item is e single bit whose value is zero. 
'tharwise, tne 1tem is a string of either 5 or 15 bits vhose 
first blt is ·set to "1"bw rhe relocation informat!oft is 
:onc!tenated to form a single string which may onlY be acces~ad 
sequenti~llYI 1f the next bit is a zero, it is a ainale~bit 
absolute relocation item, otherwise it is either a 5 or a 15 bit 
item depeniing ~~on the relocation codes as !e£1ned below. 

There are four distinct blocks of relocation informatibn, 
one for each of the four object seqment sectional text, 
~efi~iti'n' linkage and symbol; these relocation blocks are 
K: n :> w n. !! s • rel_ text • , • r al _def• , • re 1 _link' and ., rel _s v m b o l • , 
:orraspondingly, -

rhe relocation blocks reside within tna symbol block of the 
~enerator which-~roduced the object segment, The corresoon~a"ce 
between the relocation items and the halfwor~s in a Qiven section 
1s m!de by matchinq the sequence of items with a sequence of 
h!lf ~ords, from left to right and from wor~ to wora bY increasinQ 
value of ajdress. 



~ult1cs stanaard Object segment • March 6, 1972 Page 24 

rne relocation block Pointed to from the symbol block hea~er 
(e.g., rel_~ext~ is structured as follows, 

~eclare 1 relinfo baaed(p), 
2 iecl_vats fixed bin, 
i n_bits fixed bin, 
2 relbits bit<n_bits) alianed1 

iecl vers ~ a constant designating the format of this structure; 
wh;~ever the st~ucture ts modifie~, so is thi~ oonstaMt, 
~llow1n; system tools to easilY differentiate between ~everal 
in:o~Pstible vers1ons of a single structure, 

n_~its • the size of the atrina of relocation hits. 

relbits • the packed string of relocation bits. 

Following is a tabulation of the possible codes and thPir 
corresponding re1oc~tion types, 

"O"b ~> ~bsolute 
"10000"b -> Text 
"10001~b -> Negative rext 
"10010~b •> Link 18 
"10011~b -> Negative tink 18 
"10100"b •> Link 15 
"10101"b ~> Definition 
"10110:b w) Symbol 
"10111"b •> Negative symbol 
"11000"b •> Internal storage 18 (NEW) 
"11001"b •> Internal storage 15 (N!W) 
"11010~b •> Self ~elative 
"11011"b •> unused 
"11100"e ·> unused 
"11101~b ~> unused 
"11110"b -> gxpanded Absolute (NEW) 
"11111:b •> Escape 

~bsolute • do not relocate 

rext ~ use text section relocation counter 

Ne;ative rext ~ use text section relocation eounter, The reason 
for having ~1St1nct reloca~1on codes for ne;ative quantities is 
thst s~ec1al co~ing miqnt have to be used in order to convert 
the 19~bit tield in question into its correct fixed binarv 
f.orm. 

Link 18 - use 11nka9e section relocation counter on the ent{rP 
18-bit nalfwor~, This, as well as the Ne;ative Link 18 and the 
Li~k 15 relocation =odes aPPlY onlY to the array of links in 
the linkaqe 'section (i,e., by definition, usage of thes@ 
relo:ation codes 1m?lies external reference through a link), 



.-
~ultics Standard Ob,ect Segment " March 6, 1972 Pa(le 25 

~egative Link 1s ~ same as above 

Link 15 •·use l1nkaQe section relocation count~r on thp low or~er 
15•bits of t~e halfword, This relocation co~e m!Y onlY te Used 
in conjunction with a 6~5 instruction featuring a has@/offget 
adiress field. 

Definition " indicated that the halfword contains an address 
which is r~lat!ve to the base of the definition section. 

Synbol - use symbol section relocation counter. 

~egative Symbol ~ s~me as ab~v~ 

Internal Storage 18 " use internal storage relocation counter on 
the entire 18·b~t halfword. 

internal storaqe is " use internal storage relocation counter on 
the lo~ order 15•bits of the halfwor~. 

!xpanded Absolute • it has bee~ establilhad that a major Dart of 
an ~b~ect program has the absolute relocation code; for 
effi:1encY re~sons, the expanded absolute code allows the 
~efinition of a block of absolutely relocated halfwords. ?he 5 
bits of relocation code are immediately followe~ by a fixed 
length 10•bit f1eld which is a (fixed binarY(10)) Doaitive 
co~nt of the number of contiguous nalfworas all havin~ an 
~bsoluta reloca~ion, !videntlY• usao• of the exPanded absolute 
co~e c'n be ~conomicallY justified only if the number of 
contig~ous abloluta halfwords exceeds 4. 

escape • reservea for possible future use. 

Fi~ure~3 illustrates the oveta1l structure ot the symbol section. 

'-..J!. ... ~ .• 'l'l\'e PL/1 Symbol Block 

ro BE SUPPLIP.:0 

, .... !! .... ~.. '1' he ALM symbol. Block 

ro BE: SUPPLIED 

Z. .... !! .... Z .• 'l'l\e Bind~r· s Symbol Block 

l'he bil":!er·s s:rmbol block contains tne b.in.4 m1.11~ deseribin" 
the rel~cation· values assi;fta! to tne various sections of the 

~- bouni :onponent object segmente. the blOck c~nsists of a variable 
len~th structure, followed bY an area in which variable len~th 



~ultics Stanaard Object Segment ~ March 6, 1972 Pa~e 26 

symbolic information is stored, The format of the hina~a~ 
stru:tura is, 

jecl!re 1 bindmap base.d(p) aligned, 
2 decl_vers fixed bin, 
2 n_com~onents fixed bin, 
2 component(n_compoaents) al1Qned, 

3 name stringpointer, 
3 generator_name char(8) aligne~, 
3 text_start blt(18) unaligned, 
3 text_1en;th bitf 18) unaligned• 
3 st~t_start blt(18) unaligned, 
3 st~t_length bit(18) unalioned, 
3 symh_start bit(18' unali;fttd, 
3 symb_length bit[18) unalioned, 
3 defblock_ptr blt(18) unaliQne~; 

iecl_Jers ~ a constant designating the format of this structure; 
whenever the structure is ~odif ied, s~ is this constant, 
allowing system tools to aasilY differentiate between several 
in:o~P\tible Yers1ons of a sinqle structure, 

n_~onponants - number of component objects bound withi" this 
bo~ni segment. 

:onponent - var1able length arraY featurinq one entrv per bonnd 
:onponent object segment, 

name - Pointer to the symbolic ~ame of the bou"d com~onent. this 
is tha name ~ftder wnich the component object was 14antifiad 
within the archive file used as the binder's input (i,a., the 
nane :orresoOnding to the object's 'objectname' entrv in the 
bindfite), The stringpointer is relative to the base of the 
b1ndna~ structure, 

~enerator_name - ~he n&me of the qenerator which create~ this 
conponent object segment, 

text_~tart • (£1xed binary(17)) inteqer value of the comgonent•s 
text section relocation counte~, 

text_len~th • (fixed binary(17)) integer value of the comoonent•s 
text section's lenqth. 

stat_~tart - relocation counter for comPonent•s internal static. 

stat_lenJth - length of component's internal static, 

sy~b-•tart - relocation counter for comPonent•s symbol section. 

symb_le~;th - 1ength of component's symbol section. 



.. 

-
~ultics Stan~ard Object segment • March 6, 1972 !'aqe 27 

iefblo:k_ptr - 1£ non-zero, this is a ~ointer (relative to the 
base ~f the definition section) to the comPonent•s definition 
blJck (first c1ass~3 seqnama defiAit1on of th~t co~Ponent"s 
~efin1t.ion blOck), 

r:> Be: SUE'PLIED 



~ultics Standard Ob~ect sa9mant • March 6, 1972 

Xh1S section ~e~cribes those ~arts of the generated Code 
(oth~r than the structural parts discussed in section 2) which 
have to conform to a systemwide standard because thev interf ~ce 
with syste~ tools sUch as the ~inder, the ~efault error han~l?.r, 

iebu; et::. 

l~.1. rhe ?ext SeCtj,on 

T~e teKt section contains a number of sequences vhere it is 
idvanta;eous to h~ve all generators produce identical code 
~atterns, such as the call, save and return s~quences. For the 
~urp~se ~f this aocumant, however, only the entry se~uence ~nn 
the 1enerated re1oc~tion co~es are of interest, 

L..1 ... 1., 1'!\8 EntrY Sequence (NEW) 

The entry sequence must fulfil two requirements, a) that at 
the location precadin9 the entrypoint Ci,e,, CentrYPoint•1)) 
there is a left adjusted 1e~bit relative pointer to the 
1afi~iti~n of that entrypoint (within the definition section), 
ini b) that the save sequence executed within that entrypo{nt 
store an ITS pointer to tnat entrypoint at spl22 so that bY 
inspecti~g the. proced~re•s current stack frame ene mlY determine 
the id~rea3 of the entrypoint at which it was invoked, and then 
reco~str~ct that entry's symbolic "&me through use of its 
iefinition pointer, 

J. ... 1 .... z. .• T!\e aeloCation Codas CN!W) 

the follow1ng list defines the on1Y relocation codes which 
~aY be generated 1n conjunction with the text section, and tken 
onlY wit~in the scope of the restrictions specified, 

~bsolute • no restriction 

reKt • no restriction 

~e~ative ~ext • no restriction 

Link 19 - may onlY be a direct (i,e,, unindexed) reference to a 
link, 

Link 15 - may only appear within the address field of a 
Cb!Sa/offset) ty~P. instruction (bit29•"1"b). The instruction 
nust not be tndexe~~ an~ must not contai~ a "10"b tm 
no11fier. ~lS01 the followin~ instruction codes may not h!V@ 

.. 



. . 

.-· this relocation code, 

srBA c~sns 
sreo C!>52)~ 
srcA usns 
srco c?s2)~ 

PaCJe 29 

titl&.; th a peculiar restrict 1 on s 1 mp o s e :l u Pon the 1 ink - 1 5 3. n rl 
int•15 ralocat~on Codes stem from the fact that these relocation 
:oies aP~lY to base/offset type address fields encountPred in ~he 
!dlress portion of macnine in1truct1ons1 the effective value of 
such an address is comrutad by the har~ware at execute ti~e. To 
that en~, cert a1n nar d ware rest r 1 ct ions a re i mpo!=!ed on s itch 
instru:tions. When the Mu1tics Binder ~rocesses these 
instru:tions, ~t often resolves them into s1mp1e•address for~at 
and t\aS to further modify information in the OP•code (ri~ht hand) 
~ortion of tne instruction word. Therefore, these relocation 
:odes ~ust onlv-be specified in a context which is com~rehensihle 
to t~~ 6~5 control unit, 

Definition • no restriction 

synbol • no r~str1ction 

Internal Stor~~e ~a ~ no restriction 

Internal Storage 15 - maY on1Y appear within the address field 
~f a (ba~e/o~fset) type instruction Cbit29•"1"b), rhe 
instruction m~st not contain a "10"b tm modifier~ however it 
nay be indexed. The instructio" codes exeladed from the 
Link •·15 relocat1o n may also ba used, 

Self Relative • no restriction 

Ex~anded Absolute • no restriction 

l.L.2. .• rne Definition Section 

rnere are no relocation codes associated with the definition 
section, Item ~rel_jef' in the symbol block header has beeft 
pr~vided for the sake of com~leteness and may be used in the 
future. 

l.&..'-a.1.. Il\Plicit Definitions (Nf~~) 

All qenerated ohject segments must feature the followinq 
,,,,..... i:nPlicit iefinition, 



~ultics stan~ard Object segment • Maren 6, 1972 Pacre 30 

"symbol_table: ~ ~efining the base of the symhol hlock 
'enerated by the current language Processor, relative to the 
base of the symbol section. 

A:lditionally, objects created bY the binder havP. the 
i:nplicit :lefin1t1on ''bind_map" which Points to the base of the 
sy~b~l block generate~ by the hin~er, relative to the base of the 
sy'.l!b::>l section, 

~~,l.. r he Lin k age sect 1 on 

?he linka~e section consists of four distinct hlocks: the 
linkage section header, the internal storage, the links and the 
first reference traps •• rhe format and value of the linkaqe 
section h~ader ~re as defined in section (2,3,1), 

~ ... 41., 'r t\ 'a Inter n al. s tor a 11 e 

rne intern~l storage 1s a 
internal static storage class. 
even tho~gh acc~ss to the linkage 
it may n~t cont~in an1 executable 

rext ~ no restr~cti~ns 

repos1tory for items of the 
It mar contain data items onlY: 
section is of the •raw• tYoe, 
code, 

rhe link ~rea may only contain an arraY of links aa daf ined 
in secti~n (2,3,3), rhe links must be considered as distinct 
~nrelate! items, an~ no structure (e,;., array) of links may be 
assunei, rheY ~ust be accessed explicitly and ind!viduallY 
tnro~gh an unin~exed internal reference featuring the Link~18 or 
t h e Li n k "'·1 5 rel o cat 1 o n c o de s ~ 

l.~ .... l.. 'rne Relocation Co:las tNEW) 

Only the 11nka9e section heade~ and the links ~av have 
relo:ati~n codes ass~ciatea with them (the internal storaae area 
has !sso:iated With it ~ single Expanded Absolute relocation 
:Ltem). 

~bsolute - no restriction; mandatory for the internal stor~oe 
!rea. 



,-

--· 

~Qltics Staniard Object Saqmfnt e March 6, 1972 Paqe 31 

Link 18 • no restriction 

Ne~ative LinK 18 • no restriction 

Definition - no restriction 

Internal Stor~ge 18 • no restriction 

EX~ande~ Absolute - no restriction 

l. ... ~ .• :rhe symbol sectiori. 

T~e symbol section may contain infor~ation related to s6me 
'ther section csuch as a sYmbo1 tree defininq relative offsets of 
symbolic items), and therefore maY have relocation co~es 
asso:iated with it. 

~bsolute • no restriction 

reKt • no restriction 

Link 1S • no restriction 

Definition - no restriction 

synb'l • no r~str1ction 

~e~ativa symb01 • no re1triction 

Internal Stor~oe JS • no restriction 

set£ aaiative • no restriction 

EX~and!d Absolute - no restriction 



~ultics stan1ard Ob,e:t saqment ~ March 6. 1972 

T~is section briefly dagcribes a number of the objpct 
se1ment·s functional interfaces in order to give the reader s~me 
i~ea as to how certain structures an~ formats. describe~ in 
sections (2, 3) are usea, Also, a list of stsndard svstem to61s 
is proviied in order to allow a subsyste~ or compiler writer to 
!C~U!int himself with existing facilities on Multics. 

~...l. Dynamic LiOk1n9 

one of tne basic Principles of Multics is that information 
is alwaYs accessed by its symbolic file svstem name. and that 
segments are asSiqnea a machine address Ci,a,. segment number) at 
t~e nonent of execution onlY• It follows that any inteF•seqm~nt 
reference must be resolvaa Prior to its execution into ' machine 
s~~ress which ii a priori unknown, Certain computer systems 
require that such address resolution he Derforme~, orior to 
exec~tion, by a process commonly known as "loading"• which maY be 
tnou;nt ~f as a "PoSt•compilation" in vnich several indePendentlv 
:omp1led procedures are assembled into a single procedure in 
wnicn !ll prav~ous symbolic inter•Proca~ure references are 
:onverte~ into 1nternal relative addresses, 

In ~ultics, such loa!inG is unnecessary because the ayna~ic 
linkin~ machan1sm ~llows symbolic ref ereneas to be evaluate! and 
resolved whenever theY are encountered !uring execution, ~ 
~a r o 11 a re re Q 1st er , It n ow n as t h e U.n.t.U a. QJU.11lar. ( 1 p ) is a 1 w a y s 
set to P~int to the base of the currently executing procedure•s 
linkage section. All references to external symbols are made in 
the form (lPln~~> where ~ is a relative offset within that 
?roced~re•s l~nkaqe section, and notation •,•• in!icates 
1n1ire:tion Ci.e,, address substitution), Location (1Pln) 
:ont1ins an unsnappe~ link, as defined in section (2,3,3), which 
features a linkfault (46)9 tag, When the processor attem~ts to 
execute the inairection and recoqnizes the fault taq (46)8, 
exec~tion is interrupted and the processor faults Cit@•• forces 
:ontrol) to the Multics li.D.UC. .• 

[.~.llJ I:oi the following description 
reference is ma~e to items defined in 
2.2.~ and 2.3,3, rne reader may wish 
illustrates the structure of a link, 

of the linking mec~anigm, 
sections 2.2.2, 2.2.3, 

to con~ult Figure~2 wnich 

The linker's only input is a pointer to the unsnaPPe! link 
~nich initiate~ tne linka;e fault. By using the link's 
'heaier_pointer· the linker is able to Calculate the ad1ress of 
the lin~a~e section header which in turn contains in its fi~st 

. ' 



.. .' 

.-
~ultics Standard Ob~ect S19ment ~ March 6, 1972 '.Pa".le 33 

two ~ords an ITS pointer to the object seqment's definition 
sa:tion (this pointer is 1et when the procedure is referen~e1 for 
the first time, as 1s explained below), 

Let us na~e the pointer to tne definition section ~ef~; th~ 
s~iress :alculation 

addrel(defp, axpresston_ptr) 

Prod~ces a Po1nter to tne link's excression wor~. Given ~ 
Pointer to the expression word, the address calculation 

~ddrel(dafp, typa_pa1r_ptr) 

prod~cea a pointer to the link~1 type~Pair, whereupon in t~rn 
!diress :alculations 

addral(defp, entryna~e_rtr) 

Yieli pointers to the r1spectiYe 'ace' strin~s which define thP. 
externil symbol, 

the linker first interrogates the 'trap_ptr• item in the 
link's type•Pa1r, and if that item's value is unequal to "0"b 
then the linker effects a call to ClPICtraP-Ptr),*), a call which 
in turn maY provoke a linkage fault (in ~ultica, !ynamic 1inKin~ 
nay be recursive), 

If the ~trap_ptr' is null (or upon r1turn from the tra~ 
Proced~ra) the· linker proceeds to Obtain a Pointer to the 
refe~enced object seQment. ror link types 1 an5 5 
<selfreferencing links) this 11 a Pointer to the referencin~ 
Procedura. ror l~nk type1 3 and 4 the Pointer i• obtained bv 
:allin; the MUltics file system with the 1Ymbolic •se;mentna~e· 
Portion ~f the external symbol. rhe linker is now in possession 
of t~e ssgment number portion EagL for the referenced symbol. 

rne linker also obtains from the file system a value l~~~th 
which is the length (in words) of the referenced object seoment. 
By c~nvention, C~•~it~"1) is the offset within the object se~ment 
of a p~inter to the object map, which contains the off set of the 
reference1 object's definition section. The linker com~utes a 
Pointer to the target aefinition section, searches it, and 
l~:ates the definition for 'entrypoint' which desiqnates the 
~1.f.AU. of that symbol within the object se<Jment. Goine baclt to 
the lin~·s exPressi~n ~ord, tne linKer performs the coMoutation 
(lifi.1..t..+express1on) to obtain the final relative address portion 
~£ the referenced symbol, It no~ inserts values a~~! aftd ~ffsat 
into the corresPond1n; 'haaaer_pointer• and •expression_Dtr• of 
the unsnapped link, changes the link's ta~ to (U3)8 a"d thu~ 
:~nverts the original unsna~ped link into a valid (executable) 



~ultics Standard Object segment - March 6, 1972 Pa~e 34 

rrs pointer, wnereu~on the referencin9 proce~urets e~ecuti~n i~ 
rasu~ei !t the Point of interruption. 

BY :onvert1ng the original linkfault into an rrs Pointer it 
is !ssurei tnat Only the very first reference to ~n ext~r~Rl 
sy~b~l will invoke the ~Ynamic lin~inq mecnaris~. and thP. 
asso:i!tas cost of linkin;, Future references to (lPln,*l will b~ 
iire:tlY executed. 

BY ief inition, an executable object seQrnent is P 1:re 
<non·selfmodify1n9l procaaure anj may not be ~ltere~. As we ~~ve 
seen, the process of ~ynamic linkinq re~uires that an unsnapnP.1 
link be overwritten with an Irs pointer; also, that ITS ~oln~er 
:ont!ins a ~i~! which may assume ~ifferent values ~ependino u~on 

the cir:unstances under which linkinq took Place, ThereforP., 
~henever the linker attempts to link to an objP.ct segment w~ir.h 
h!S never before been referenced within that Multics ~roces,, i~ 
initiates that segment (i,e,, requests the file svste~ to ~~ke 
the seg~ent ~nown within that Multics ~recess under some sa7!l 
!n1 :o,1es its entire linka;a section into a writable datab~se 
~now~ as the 'QmA~Ead 11.A&.a.su. ~~ti~. ?he (lpl reQister will 
!lways point to tne linkage section copr, ani it is t~is c;py 
wnic~ is moditied 1ur1n; the procedure's execution. The ~rocess 
'f cJPYing 1nc1U1es the appropriate settinq ef the 
·iefinition_ptr~ (words 0&1), ·11nk1;e_otr• and 'object_seQ' 
items in the coPied link!;e section heaier. 

It is sometimes iesirable to reverse tne ~rocess of dYna~ic 
linkin~ (unsnaP a link) and restore the oriQinal linkfa~lt 
inform!tion, Given an offset n to a link in the combine1 11n~!Qe 
se=tio~, unsnapping is trivially achieved by locatino ~he 
'rigin!l linkaQe section in the object seqment throuqh the 
·11n~a~e_ptr• 1tem in the eo~ied linkaqe section hea~er, an~ bv 
'verJritin; the snaPPed link with its oriqinal value found at 

addral(linka;e_ptr, ~) 

fiJU~e-~ is a flow Chart illustrating the OV@rall logic of the 
linker, 

• • 
' -



~ultics St~n!ard Ob~ect Segment - March 6, 1972 Pacre 35 

orn!mic linking is a vary useful and Powerful caPabilitv; it 
Provides tha casual user with the convenience ~f not havinq to 
explicitly assemble all of the mo~ules related to his proqram ~na 
"loai" t~~~ before being able to execute it, Bather, he needs 
only to be concerned with specific mo!Ules which are of inter~st 
to him, leaving it Up to Multics to locate and link to all other 
Tioiules ~hich may be eithar hi~ own, or perhaps lihrarv Procedure 
~rovided as standard tools, Moreover, ne nee! not even be aw~re 
of certain modules Which are invoked bY the system in his behalf. 

Sometimes, however, a large subsystem whieh bV ri~ht sho~ld 
be coiai as a s1n;le procedure is in effect subdivided into 
iistin:t smaller modules, mostlY for reasons of codina (and 
iebu~qin~) convenience, rhis collection of Procedures mav now be 
exec~ted, and will be interlinked by the dynamic linkina 
nech1nisn~ In this case, however, it is known in advance that 
tnis collection of PhYBicallY distinct Procedures effectivelv 
f~rms a sin;l• 10g1cal unit, The cost of dynamic linkin~, no 
n1tter h~w triv~al 1t may be, will be 1ncurre~ whenever this 
subsrsten is invoked for the first time bY some Multics process. 
supp~se that we have a comPiler named ~comp$comp• Which was co~e~ 
n~iularly in ~ d1stinct modules, eacn of which features an 
!Ver19e ~£ m entrypointSJ further SUPPose that in or!er to 
execute the compiler all afttrypoints must be linked to bY the n 
noiules, rne cost of a single compilation will thus b• inereaged 
by the ~verhead colt of invbklng n*m 11nka;e fault•~ whereas the 
only linkage faUlt that needs to be taken is that of linkln~ to 
'com~Sco~p', all otners bein; internal to th• comPilar and 
unne:ess!rY1 ~n the sense tnat the comPiler•s modularity is a 
convenience to the writer of the compiler but an unnecessary an~ 
expensive pe~altv to the ~aar, 

T~e ~ultic• binder is a "~ost processor" which, ~iven an 
input of ~ ob~ect seQmenta combines and reduces them intb a 
single new 'bouna• object segment, one of the £uncti6ns of 
bindin~ is to reduce all internal interse~ment references from 
linkfaults to r~lativa internal a~dresses, rhua, by bindinQ all 
co~ponents of our com~ile1~, we would produce a new object seqment 
na~ei 'comp$c~mp• whose execution provokes none of the orevibus 
a..•:n. linksge faults. 

Another re~son for bindin~ is that in a paged virtual membrv 
such as ,ultics·, n distinct object segment woul~ incur the extra 
eKpense ~f an average 1/2 a Paga Of lost storaqe per leQ~ant. By 
bindln; nanY component objects (even if they perhaps are onlv 
nar;in!lly related to one another) one may make substantial ~ains 
in stora~e spac~. 

~- BY bindinq several object segments, ~hether related or n~t. 
~ne loses none of the capabilities associate~ with those ohject 



~ultics Stan~ard Object Segment e Ma~ch 6, 1972 Paae 36 

seqmants in th~1r free standing form. The only discernible eff P.ct 
of binding is that the storage requirements of the bound obiect 
segment ire less then the combine~ storaqe requirements of ~11 

the :o~P~nent o~ject segments, and that anv internal inter~e~ment 
references will be Pre"linked automatic&llY. runctionallv1 the 
exec~tion of a collection of bound object seg~ents is Quarant~ed 
to b! identical to the execution of those same object se~ment in 
f ree-standihg form, 

!:l.a..l., IH mi n g c on v e n t 1 o n s 

Multics segments have symbolic names which may be from 1 to 
32 c~ara:ters lOng. By convention, such names maY be co~PoUnd, 
:ons1st1n~ of a concatenation of two or more su~·names where thP. 
point of concat~nat1on is flag~ed bY the insertion of a "•" 
:h.aracter; the number of sub~names within a compoun! na~e is 
linitei onlY by the imposed maximum total lenqth of 32 
:h.3.r1cters. 

It is often desirable to give Bimiliar names to two or more 
lo;i=allY relate~ segments, For example, if we have a seqment 
:ont1ining the symbolic source languaqe of some proqram 'Proa• 
!n1 ~e com~ile 1t to ~ro~uce two more seQments, namely the object 
segment and a se;mant containing a printable listinq of the 
:onpil!tion, we WoUli like to indicate that these two new 
segments ~re 1n effect a aeriviative of 'prog• an~ ~1va t~em 
na~es in which the symbol •proq• is feature~. 

BY :onvent;on, it is always the Object segment vhich is 
~iven t~a primary name 'Prog', All other related segments !re 
given :o~~ound names consisting of tne Primary (first sub•> name 
'pro~· ani one or more standard suffixes, ?hus if the source 
lan;~a;e in our example 11 PL/1, the seqment containino tkat 
sour:e code 1s bY convention named 'Prog,pl1'• and the listino 
se~mant produced by the PL/1 comP1ler iS named ·~ro;,list'. Bv 
usin; t~is systemw1ae convention, we ~aY now invoke the PL/1 
:omPiler bY tyo1ng 

pl1 prog 

!ni the :ompiler Will automatically construct the name 'Proa.Pt1' 
!n1 loc~te th~t segment which it knows bY convention to contain 
the sour:e code for ·~rog', 

!:t .... l!. Standari SYstem rools 

r:> Be: SUPPLIED 

... 




