—

—
/

o~

MULTICS STAFF BULLETIN-27

FROM: Mike Spier
TO: MSB Distribution
DATE: March 6, 1972

SUBJECT: The new Standard Object Segment

This is the final iteration on the new Standard Object

Segment format; it has been accepted by all principals and the
intention is to immediately start on its implementation. The
projected work will include modification of the new PL/1

compiler, the ALM assembler, the Binder, as well as all other
language processor currently supported on Multics., Also, all
object segment manipulating tools (such as decode_object_, linker
and prelinker, debug etc.) will be appropriately modified to
handle both current and new object segment formats in an upwards
compatible way.

This new format 1is conditionally accepted as the new
standard for object segments, however its final adoption will be
delayed until it is practically implemented in ALM, V2PL1 and the
Binder, and is demonstratively functional.

Recipients of this document are requested to read it and
submit any comments or criticism within the shortest possible

delay, so as to enable us to catch any bugs or Iinconsistencies
before work progresses too far.

—

-~

-

Yultics Standard OblJdect Segument = March 6, 19772 Payge 1

LHE DULIICS SIANDABD QBJECI BROGRAN

fhis document pressents a standard format for the Fultics
ohijezt program to aSsure its compatibility with the ‘Multics
nazhina®, the imnlication being that a3 piece of code which
successfully executes on the 645 procesSor is not necessarily a
stanjard Multlcs object program, and that the concept of
2xecdtion on the “‘NMulticg machine” includes notions of pure
recursivs re=entrant procedure, atcess control, and such
functions as dvhamic linking, machine indevendent diagnostics ang
jebugging, bindineg etc, This standard relates primarily to the
external interfaces of an object proogram, the objective being ¢to
leava as much freedom of code generation as prossible to the
language procesSorsy, and to impose a ceftain discirline only in
rezards to code which interfaces with the external world, It is
assuned that the reader is reasonably familiar with Multics,

certain formats jescribed within thisg document arfe identical
to formats foUnd in older non-standard object programs; others
are new and theXfefole incompatible with older obdect ©progranms.
Such new formats are anpnotated, within this document, with the
synbol (NEW) to allow the reasder more eaSe in relating the
presant standarld to oljer ones, NeedlesSs to saY, all svch new
formats are upwards compatible and the standard Service syStenm
tools are coded in such a way as to prorerly handle 3ll
officially reco9nized object program formats until such time when
the present standari 1s aprlied to all object rrograms in the
systame.

The Multics stanjard objeect program 1is the only tvpe of
>pbject progran guaranteed to be supported by the Multics standara
service system tools,

Lable 2£f Zontenis

1. OVERVIEW
2. DATA STRUCTURES

2.1, The Text Section
22121, The Entry Seguence
2.142. The Gate Procedure Entry Vector
22.143. The Argument List
2.1a4. The Stack Frame

222+ The Definition Saction
2+2+1e The Definition Section Header

1ultics Standard ObJect Segment = March 6, 13972

s

&ade

dalle

2adade
Jadads
2adalte
Caldaze

The
The
The
The

Pefinition
Expression vorid
Type Pair

Trap Pair

Thne LinKage Section

Cadale
2adads
2adade
dadalts

The
The
The
The

The Symbol

Caltsls
2aBa20
2alads
caltalle
o422
2alabe
2alals
2a4aBo

The
The
The
The
The
The
The

Pebug’s Symbol Rlock

GENERATED CODF

ol

deds

dods

ek,

Linkage Section Header

Internal Storage Area
Links

First-Reference Iraps
Section

Object Map

Symbol Plock Header
Source Map
Relocation Information

PL/1 Symbol Block (TD B® SUPPLIF¥D)
ALY Symbol Block (IO BE SUPPLTED)

Binder*s Symbol Bloek

The Text SecCtion

dalals
dalad.

The
The

Entry Sequence
Relocation Codes

The Definition Section
Implicit Definitions

3adals

'he LinkKage Section

dadale
dedade
-3-&3 &43 .

The
The
The

The Symbol

3abal.

The

Internal Storage
Links

Relocation Codes

Section
Relocation Codes

FINCTIONAL INTERFACES

C

Dynamic Linking

Binding

Yaning Conventions

Standard System Tpols
lnclude Files
Suybroutines
Commapis

da421s
1alade
1alald.

(TO Bg SUPPLIED)

Page 2

—

-

"1~\

Multics Standard ObJect Segment - March 6, 1972 Pace 3
1, OVERVIEW

A Multics stanjard object progranm is an executahle
nardware-lesvel (i,e,, machine code) representation of some higher
langyaje algorithm, vprojuced by the appropriate language
procassor, FhySically, {t is a single array of words at the hase
of a distinct segment known as an object segment.,

The generated Object code falls into several cateocories, the
nost jnportant Of which are,

lext - the execUtable machine code represantation of the desired
slgorithnm,

pefianitions ~ sYmbolic information with the aid of which certain
variables which osere 4internal to the object proaram are made
known to the e€xternal world and accessibhble to the dynamic
liankingy mechanhism (the Multics linker),

Links - symbolicC representatiomr of varlaples wvhose address is
anknown at Complle time, and can only he evaluated (i,e.,
resolvad 4int® a machine address by the dyramic linking
mechanism) at execution time,

Synbal Iree - internal definition of Symbolic source language
variables, thelr attributes and relative address within the
sbject segment; neejed for the execution of 4interpretive code
suzh as PL/1 Input/output as well as for debugaing purposes.,

distarical Infokmatdon - information deScribing the circumstances
unier which the object seament was created, such as name anad
version of langWage processor, creation time, identification of
input sourcer, identification of user who initiated the objact
segment creation, etcec,

Releozation Informatian = which identifies all instances of
interna)l relative ajdress references,

Diaagnostics BidsS - information which allows standard syster tools
to extract useful information out of an object segment,

dpiezt Map - control information to allow the ‘Multics machine’
(e,g,, the linker) apnd the Multics standard service system
tools to recognize the structure of the obiect segment,

The generated information items listed abpove are not stored,
intermixad, wWithin a3 monolithic obdect segment, Rather, the
>bject sagmnent is structured into four sactiops. named text,
jafinition, Llibkace ard symbol. A section is an array of woris,

Maltics Standard ObhJject Seoment - March 6, 1972 Page U

The ohject segment 1s a concatenation of these four sections, in
tha following sequelca,

text || definition |} linkaage |1 s¥mbol

the length of all but the last (i,e., Symhol) section must he an
aven nufher of Words,

The assignMent of any {ter 0f genelated code to one of ¢the
four seztions 1is declided on the basis of such considerations as
access attributes and efficient resource management, The rules
of assigoment afe as follows,

Iext Seztien = <contains only the Pure (non selfmodifving)
eXxscutable part of the object progfam; that is, instructions
and read-only conStants, It may also Contain relative pointars
into the definition, linkage and symbol sections as described
helow,

Refinitisn Section =~ contains only non-executable read-only
synholic informatisn which is intented for the purpose of
dynaniz linking and symbolic debugging, It is assumed that the
1efinition section will be infrequently referenced (as opposed
to the constantly referanced text section); this section is
tharefore not recommended as a TrCepository for read=-only
constants whicCh are refearenced 3during the execution of the text
section, The definition saction may sometimes (as in the case
o>f an object segMent generated by the Multics Binder) be
structured into definition blockss, which are threaded together.

kinkage Seztian - containsg the impure (i.e,, modified during the
progran’s execution) parts of the program and consists of two
types of data

1) links which are modified at run time by the Multies linker
to contaln the machine address of external variables,

b) internal storage of the type called "own"™ 4n ALGOL and
"{nternal static" in PL/1,

synkal Sa2ction - named so because it was initially designed to
store the language processor‘s symbol tree, is the repository
of all generated items of information which 40 not belonsg in
the first three Sections, The symbol section may typically be
further structured into variable length symbol bLlogkgse sStored
contiguously and threaded to form a list, The symbol section
may contain pUre (non=writable) information only,

During the eXegution of an obJect prooram, the Text,
Cefinition anid Synbol sections are <sharable among several
rracesses; the lLinkane section is copied 4into each oprocess’

Pla

Multics Standiard OhJect Segment = March 6, 1972 Paga 5

nenpry space 8o that sach copy is a rer=-process data base,

tn

he diszarded Upon process termination, The original lirksge

section serveS as a copying template Only,

dultics staniard ObJject Segment = March 6, 1972 Pades 6
2., LATA STRUCTURRS

This section describes the main 4ata formats and structures
wnich may be encountered withinm the four sections of amn object
segmant, Definltions are oivem in PL/1, Most structures defined
pelow have a “4ecl_vers’ item, a constant which desionates the
format of the Structure; when the stfuctuyre is modified, so is
the zonstant, allowing system tools to Jdifferentiate hetwesen
soncurrent incoMpatlible versions oOf 2 single structure, Normally,
whenaver the stfucture 1ig modifieds the ‘decl_vers’ item is
incramentel by one, Al)] structures as 3jefined in this document
have the declaration version number set to the constant °“1°,
unless otherwise sgspecifieqg,

2.1, The Text Section

The text section is basically unStructured, containing the
nachina langvaSe Tepresgntation of Some symbolic language
aljorithm as compiled hy the appropriate language Processor,

Three (optional) items, however, which may aprear vwithin the
taxt section have standard formats, They =are a) the entryv
sequance, b) the 645 follow=on gate procedure entry veetor, and
z) the argument list used in inter-procedure calls,

221a1. The EntrY SeqQuence (NEW)

The entry SeQuence &s mandatory for executahble obhject
segmants (as oOppoSed to compiled data hases in object segment
€ormat); there must he an entry sequelice for every proceduare
antry point. The entry segquence has the following format,
jezlare 1 entrY_sSequence aligned,

2 symbol_ptr bit(18) unaligned,

2 descriptor hit(1) unaligned,

2 unusei bhit(17) upaligned,

2 save_segUence(n) bit(36) aligned;

symbol_ptr = bointer (relative to the base ©f the definition
gection) to the symbolic definition of this entrypoint, Thus,
givan a pointer to0 an entrypoint, it 1s rossible to reconstruct
its symnbolic name for opurposes such as diagnostics or
iedbugging,

jascriptor - set to "1"b if the entry point’s £formal definition
(s2e section 2,4,2) contains descriptors for the arguments of
this entry pPolnt; this {information is redundant, duplicated 1in
th2 formal definition,

_—

- —

Yaltics Stanjard OhJject Segment - March 6, 1972 Paye 7

Save _sequence = 1S an array of p words containing the standard
save saguence code,

patg! the value (i,e,, offset within the text section) of the
entrypoint correSponds to the address of the 'save_sequence’
itam. If “ent_offSet’ is the value of entrypeoint "start", then
the symbol_prtr Pointing to definition "start” is located at
(ent_offset-1]}, ’

2ala2e The Gate PreCejure Fntry Vector (NEW)

A 645 follow=on gate procedire can only be entered at the
first g 1locatlions at the bottom of the segrent (i,e.s nffSate
(0)8 through (n-1)8), where weach 1location corresponds to a
ngnbared entryPolnt, The validation of the value is nerformead
by the hardware.

Naotg: The folloWing formats relate to structures whose values are
computed at ruUn time and allocated in the procedure’s current
stack frame, They are nevartheless descfibed within this section
pecause they 2are loagically 4indivisibply related to the text
section and conStitute part of the procedure’s current activation
record.,

22143, The Argument List

The argument list {8 a structure, (normally) allecated in
the procadure’s current stack frame, whose value may be computed
at run time, Xt may have the following format,

jeclare 1 arglist aligned,

2 n_arg9s bit(18) uwnaligned,

2 code bit(18) unaligned,

2 n_deScr bit(18) unaligned,

2 unused bhit(18) wvnaligned,

2 arg_ptr(d) rointer,

2 parent_stack_ptr pointer, (OPTIONAL)
2

descr_ptr(p) oointer; (OPTIONAL)

n_ar3ys = a (fixed bin(17)) positive integer vhose value is (2*p)
whare g is the number of arguments in this list,

cole - a (fixed pin(17)) positive integer whose value has the
iual purpose of a) 4differentiating between an older (Epl)
format and *he presant (PL/1) format of the argument lis¢, and
b) defininyg whether or not the optional ‘parent_stack_frame’
itam is allocated within the argument 1list, The ecode can
assune one of the following values,

4 => this is a8 PL/1 type argument list,
R => this is a PL/1 type argument list featuring an optional
‘parant_staCk_ptr‘,

Multics Standard ObJect Saoment = March 6, 1972 Page 8

n_diescr = a (fiXed bin(17)) positive integer whrose value |is
either zero, 4indizating that this list contains no onrtional
argumnent descriptors, or (2*p) 4{indicating that there are 1
jescriptors Ccorresponding to the § arguments; descriptor i
zorrasoonas t0 argument i,

arg_p»tr -~ a rointer (ITS pair) to the hase of a variable,

parent_stack_ptr = oOptional pointer to the stack frame of a
nestzd procedlUre’s immediate parent,

dascr_ptr - optional pointer to an argument descrivtor,
éanlal. The Stack Frame (NEW)

ID> BE SUPPLIFD

9

o

Taltics Standard ObJect Segment = March 6, 1972 Page 9

2e2s The Definition Saction

For historical reasons, character strings are representeid
within the Definition Section in ALY ‘acc’ format which may be
jefineld by the tollowing (free 8tyle) PL/1 declaration,

jeclare 1 acc,
< char_count bit(9) unalianed,
4 string char({char_count) uralioned:;

For the purpose of this Apcument, we shall use the notation ‘char
acc’ to repreSefNt an ‘acc’ strinag, Note that a) the 1lenath of
such 3 varying strinc is incorporated within the string, and b)
"acc’ strings ale padjed to the richt (whan necessary) with null
characters (00018,

The Jefinltion section contains a number of data structures
which area,

24241, The Definition Section Header

The definition section header resides at the base of the
jefinition section and contains a pointar (relative to the base
2f the dafinition section) to the beginning ocf the definition
lise, The definition 1list 1is a threaded 1list of formal
jefinitions, defining those variables vithin the object oprogram
which are made khown eaXxternally. The 1list consists of one or
nore definition blocks, each of which congists of onhe or mMore
type-3 1efinitions, and zero or more non type=3 definitions (see
below).

1 def_header based(p) aligned,
2 def_list bit(18) unaligned, (NEW)
2 unusei bit(54) uvnaligned; (NEW)

jezlare

jaf_list = relative pointer to first definitiomn in definition
list.

2alads The Definition
The f£ormat of a definition is as £21lows,

jaclare 1 definition based(p) alignei,

2 forward_thread bit(18) unaligned,

2 backward_thread bit(18) unaligned, (NEW)
2 value bit(18) unalianed,

2 flags, (NEQJ)

new_format bit(1) unaligned,

ignore bit(1) unaligned.

entrypoint bit(1) unalignel,

retain hit(1) unaligned,

deScr_sw bit(1) unalianeil,

wwwWww

vultics sStaniard Object Seoment - March 6, 1972 rage 19

3 unused bit(10) unaligned,

class bit(3) unaligned, (NEW)

synbol_ptr bLit{18) unaligned, (NEW)
segname_ptr bit(18) unaligned, (NFEW)

n_args bit(18) unaligned, (NEw)
descriptor(n_args) hit(18) nnaligned; (NEwW)

NN NN

forwar?_tnread = thread {(relative to the base of the definition
section) to the next 3afinttion, The thread terrinates when ir
points to a A45 word which is all zero, This thread provides a
sitgle sealential 1list of all the definitions withkrin the
jefinition section,

packward _thread - thraad (relative to the base of the definitiorn
sectioa) to the preceding definition, The thread terminires
whan it points to a 645 word which is all zero, Tris <¢threa?
nraovidas a SinNgle sacusntial list of all the definitiong within
tha definition section.

values = this is the offset, within the Section designated ry +the
z2lass variable, of this symbelic definition,

flags = 15 binaFy indicators to provide ajditional information
about this definition,

new_formnat ~> "1"b Jafinition has the format dAdescribed in
tais docCumelt, as distinct €from the older definition
fornat,

ignsre => M"1"b this definition d4oces pot represent an
external Symbol and must therfefore be ignored by the
Maltics linker,

entrypoint => "1"b this is the definition of an entrypoint
{i.es» a variable referenced through a transfer of control
lastruction),

ratain => "1"b this jefinition must pnot be deleted from the
object segment,

dascr_sw =2 "1"p +tnhis definition 1includes an array of
argument descriptors (i,e,0 iters ‘n_args* anid
“descriotor(n_args)’ contain valid information),

class = this field contains a (fixed bin(3)) code which indicates
relative to whicCh section of the obJject segment the value is,
as follows,
G => text Section
1 => linkage section
2 => symbol section
3 => this symhol is a segment name (NFu)

svmbol_ptr = rointer (relative to the base of the definition
szction) te an alignead acc string representinrg rhe
d2finition’s symbslic name,

saglamne_ptr - Pointer (relative to the base of the definition
Ss2ction) *to the first class=-3 (see balow) segname definition

,—

_—

Multics Standard ObJect Segment ~ March 6, 1972 Page 11

0f this definition hlogk,

g2L2: the following two 1items may be interpreted oanly if
fa2scr_sws"1"Db,

n_args = a PpPositive f£ixed bin(17) intecer vhose value
corresponds to the npumber of arjguments expected by this
extarnal entCfypoint,

jescriptor = an array of pointers, relatjive to the base of the
taxt section, which point to the descriptors of the
corresponiing entryroint aroguments,

In the caSe of a class-3 Aefinition, which is the =<segname
neader 2f a definitior block, the abhove structure is interpreted
as follows,

jaclare segname based(p) aligned, (NEW)
forwvard_thread bit(18) unaligned,
backward_thread bit(18) unalignesi,
segname_thread bit(18) unaligned,
flags bit(15) unalighed,

class bit(3) unaligned,

symbol _ptr bit(18) unaligned,
defblock_ptr bit(18) unaligned;

NNNDDNODNNND

segname_thresd - thread (relative to the pase of the definition
section) to the next classe3 definition, The thread terminates
whan it pointS to a 645 word which is all zero, This thread
provides a SiNgle seaquential list of all class~3 definitions.

jefblozck_ptr = this thread (relative to the base of the

jefinition section) points to the head of the definition block
ass0ciated with this segname, Definition blocks (which are
each a list of nonh class~3 definitions threaded together by the
forwari_thread) are preceded sequentially (within that thread)
ky zerp or more class~3 definitions each of which has its
defbloczk_ptr pointing to ¢the block’s first non clasg=3
jefinition,

The end o©of a Jefinition block 18 Adetermined by one 0f the

£ollowing conditions (whichever comes firgt),

a) forward_thread points to an all zelfo word,

h) the current entry’s class is not 3, and forwvard_thread
points to a class-3 4efinition,

=) the gurrent definition is class~3, and bhoth forwvard_thread
and defhloCk_ptr point to the game class-3 definitien,

Figure-1 1llustTateS the threading of definition entries,

2ea323, The Expression Worj

Multics Standard Object Sagment = March 6, 1972 Page 12

The expresSion word is the item polnted to kY the expression
pointer 2f an uhNsnaPped link (see below), and has the following
structure,

ieclare 1 exp_v¥ord based(p) aligned,
2 type_pair_ptr bit(18) unaligned.
2 expression bit{(18) unaligned;

type_palr_ptr - pointér (relative to the pase of the definition
seztion) to the 1link*'s type-pair,

expression =~ a Signeld fixed binary(17) value to be added to the
value (i.e,» Offset within a segment) of the resolved link.

22244, Tha Type Pair

The type pair is a structure vhich defines the external
synhol pointed to hY a link,

laclare type_pair based(p) aligned,

1
2 type bit{18) unaligned,

2 trap_ptr bit(18) unaligned,

2 segname_ptr bit(18) unaligned,

2 entryname_ptr bit(18) unaligned:

type - this is 2 £ixei binary(17) positive 4integer which nmay
assune one O0f the following values,

1 => this is a selfreferencing link (i,e., the segment in which
the exterfNal symbol 1is located is the very object segment
containing this jefinition) of the form
mysalf|O+eXpreSsion,modifiaer

2 => unused (NEW), used to define a nowv obpsolete ITB~type 1link,

3 => this is & 1ink referencing a specified Segment, but no
symbolic enNtryname of the form

segname|O+eéxprassion,modifier

4 => this is a link referencing both a symbolic Segmentname and
a symbollc entryname, of the form

sagnames$entryname+expression,modifier

5 => this is a selfreferencing link having a symbolic
entrynamne, of the form

mysalfSentryname+expression,modifier

trap_ptr = if nOn=zero then this is a pointer (relative to the
base of the definition gection) to a trape~pair,

—~

-

Yultics Standard ObJect Seament ~ March 6, 1972 rage 13

Segname_ptr -~ 18 a Pointer to the referenced segment; its value

may be intelpretei in one of two ways, depending om the value
2f the type item,

a) £5r types 1 and 5, this item is a fixed binarvy(17) vpositive
intejer code Which may assume one of the following values,
jesignating the sections of the selfreferencing object segment,

0 => selfreference to the object’s text sectiony sSuch a
reference is represented symbolically as *+*text*

1 =»> selfreference to the object's 1linkage sSection; such
refarence is represented symbolically as *+*link’

2 => selfreference to the object's symbol sections such
reference 1s represented symbolically as ‘*symbol’

b) for typeS 3 anid 4, this item is a pointer (relative to the
base of the definition section) to an aligned ‘acc’ strine
represantation of the referenced segment’s symbolic name,

entryname_ptr = i8S 3 pointer to the referenced item (i,e,, offset
within the referenced seument)s its valuye may be interoreted in
one of two ways, depending on the value of the type item,

a) f£or types 1 and 3, this value is ignored and an offset of O
(zaro) is assumed,

b) for typeS 4 ani 5, this item is a pointer (relative to the
base of the d0finition section) ¢to an alioned ‘acc! string
representatiol of an external symbol,

24243, The Trap Pair

The trap pair is a structure specifying tvo external symbols
(i.e@., Pointing to two links), the first of whiech is the call
pointer and the Second beirg the argument rointer, During the
process of dynamic linking, the Linker =while processing a tvpe
pair- may encounter a non-zero trap_ptrj 4in that case, prior to
the snapping of the actual link, the linker f£irst dinvokes the
trap procedure Using the specified call and argument pointers,
The trap pair i8 structured as follows,

leclare 1 trap_pair based(p) aligned,
2 call_ptr bit(18) unaligned,
2 arguMent_ptr bit(18) unaligned;

call_ptr -~ a pointer (relative ¢to the base of the linkage
secztion) to a link specifying the epntrypoint of a trap
procadure,.

argunent _ptr - a polnter (relative to the base of the linkage
section) to a link specifying the base of an argument list to
be passed to the trap procedure,

Multics Standard ObJect Seament = March 6, 1972 Page 14

pgtes The 4invokation of a trap pProcedure involves Some
technizal Aifficulty in that a standard argument 1ist cannot he
usad in conjuletion with such a call, MNore specifically, the
argument list {s an array of pointers, normally residimg in the
procedyre’s stack frame, whose value is computed at run time,
Argunent lists for trap procedures must be provided at compile
tine (bescauser by dafinition, they will be used prior ¢to the
first 4invokation of the trapped procedures) and may therefosre
coatain pQ pPointers, whose values arle undetermined at that
tine, I'wo posSible solutions are recommenied,

a) the argument list is prepared at run timg by an initialization
procejure, &nd put into an external static data base rointed
t> by the "aFgument_ptr’ link.

b) the ¢trap Procedure uses a noen=Standard argument list
containing Constant values rather than pointers to variables
2,7.¢ the *‘datmk_’ procedure),

In any case, it is currently impossiple for users to specify
traps before linmnk Using high level languages {(e,g.» PL/1 Fortran
2tc,), 85 that the uUsa of this facility is practically reatricted
to systen programmers using the Multics assembly language alHM,

2a3 The Linkage Section

The Linkage 8Section 4s substructured 4into four distinct
components, whicCh are a) a fixed-length header which alwvays
resijes at the base of the linkage section, b) a variable lenagth
area usel for internal storage, c) a variable length Structure of
links and 4) an array of firstereference traps, These four
components are allocated within the 1linkage section {n the
following seguencs,

headerl || internal storage || links || traps

with the further restrigction that the link structure must begin
at an 2ven location (offset) within the 1linkage section,

24321, The Linkage Section Header
The header of the linkage section has the following format,

jeclare linkage_header based(p) alignead,
object_seg fixed binary,

def_Section hit(18) unaligned.,
first_reference bit(18) unaligned, (NEW)
gsection_thread pointer,

linkage_ptr pointer, (NEW)

begin_links bit(18) ynaligned,
section_lenoth bit(18) unaligned,

NN NNVDOLN

o

-——

Multics Standard ObJect Sagment ~ March 6, 1972 Page 15

2 obJect_seg bit(18) unaligned,
2 combined_length bit(18) unaligned;

Sbhject_s2g =~ reSet to zero,

jef_sectlion = a pointer (relative to the base o0f the object
segment) to the base of the Aefinition gectioen,

first_reference = a pointer {[relative t0 the base 0of the 1linkage
saztion) to the array of first-reference traps, As exnlained
below, these traps are activated by the linker when the first
reference to thils object Segment s made within a agiven
process, IDpRriadt: as explainred in following note, this item
is overwritten in the copied 1linkage section with an ITS
pointer to the obJject’s definition section, Consequently, its
value may only be validly 4interrogated within the original
linkaga sectioOn template,

Notg: when the ObJect segment 48 loaded 4inte memory £or the
purpsse of execUtion, the impure linkage section is copied intos a
par=process writable data base (known as the combined 1linkage
section) and the preceding 4items (which are intentionally
allocatel to ocCupy a contiguous pair of words) are overwritten
with a pointer variable (645 ITS pair) polntinrg to the base of
the 3efinition Section),

section_thread =~ under certain applications, linkage sections may
be threaded together, to form a linkage 14t/ such applications
are not iiscusSsed within this document, The forvard_thread {is
an absolute pointar to the next linkage section in the 1list,
allowing & 1isSt t0 spread over more than a single seament,

linkage_ptr - i8 a pointer, set by the linker during the process
of copying 3into the combined linkage gection, to the original
linkaga section within the object segment, It is used by the
l1ink unsnapping mechanism,

begin_links = this is a pointer (relative to the base of the
linkage sectlion) ¢to the first 1link (the base of the link
structure), The length of the linkage header is known to be set
to the fixed value 8, providing an implicit relative pointer to
tha base of the intarnal storage area,

section_length = this is a fixed binary(18) positive 4inteager
value representing tha length, in words, of the Jlinkage
section,

opjest_sa2g = When the linkage section iS copied into the combined
linkage section, the segment number of the object segment is
put into this item,

=ombined length =~ when several linkage Sections are combined into
a 1list, this 4item {(of the first linkage sectiocn in the 1list)

Multics standard ObJect Seoment = March 6, 1972 Page 16

contains the length of the entire list,
24322 The Interfal Storage Area

The internal storage area is an array of vords used bv
compilers to allocate 4internal static variables, and has no
predaternined structure to it,

2a3ad The Links

This is an array of links, each defining an extermal symnhol
referenced hY this object segment whose effective address is
gnknown at compile time and can be resolved only at the moment of
execytion,

A link must reside on an even address loecation in memory,
and nust therefore be located at an even offset from the base of
the linkage section, The format of a link is,

declare 1 link based(p) aligned,

2 header_pointer bit(18) unaligned,
2 ignoret bit(12) unaligned,

2 tag bit(6) unalignead,

2 expression_ptr bit(18) unaligned,
2 ignofe? bitc(12) unaligned,

2 modifier bit(6) unaligneds
header_pointer = is a backpointer (relative to the head of ¢the
linkaga section) to the head of the linkage section. It is, in

other words, the nNegative value of the 1link pair’s offset
within the linkage section,

ignore1l - unused, Resat tp zZero.

tag - a constant (u46)B which represents a 645 £fault tag 2 and
distinctly identifies an unsnapped link. The snapped link (ITS
pair) has a distinct (u3)8 tag.

expressiosn_ptr = pointer (relative to the base of the definition
section) to the eXpression structure defining this link,

i1gnore2 = unused, Resat to zZero,
nodifier - a 645 address modifier,
Figure=2 illustfateS the struceure of a link,
2a3s4. The First-Reference Traps
It is Sometimes desired to effect soMe special
initialization Of an object segment when it is first referenced

for exezution (i.e,, linked to) in a given process, for examnle
in order to comPlement the object segment with process derendent

S

FiumaN

—

Yaltics Standard Obdect Segment -~ March 6, 1972 rage 17

information, such as a segment number, The array of
first-reference traps contains relative pointers to links
jefining procedures to0 pe invoked upon first reference within a
orocess, and correspPonding links to specify arcument pointers for
such invokationRs (if any). NormallY, a procedure may have a
single initializZation trap, however bound segments may specify
saveral, If item *first_reference’ in the linkage section heailer
is "2"b then no such initialization is reguired; a non~zero value
2f that itemn 418 a relative pointer to the array of trapms, anAa
iniicates that initlalization is required,

laclare 1 fr_traps based(p) alligned, (NEW)
2 decl_vers fixed bin,

2 n_traps fixed bin,

2 arraY{(n_traps) aligned,

2 call_ptr bit{18) unaligned,

2 arg_Ptr hit(18) unaligned;

Jecl _vers - a coOnstant degignating the format of this structure;
whanevaer the 8structure 1is modifiel, so is this constant,
allowing system tOols to easily diffefentiate between sevaral
inzompatible versions of a single stricture,

n_traps e~ specifies the number of trap vointers in this
structyre, AN obJect segment, such as a bound object, may have
saveral initialization traps to be invoked,

zall_ptr = a pointer (relative to the base of the linkage
section) to a link specifying an initialization procedure to bde
invoked by the linker upon £first reference to this object
within a given process,

arg_ptr - if uUnegual "0"b, this is a pointer (relative to base of
linkage sectlion) ¢to a 1link specifying an argument list for
natching ‘call_ptr‘,

2alts The Symbol Section

The symbol section consists of one or more sSymbol blocks,
followed by an Qblegt maps, which are allocated contiguously and
threaded (beginnfing with the object map) to form a single 1list,
It terminates with a8 single 645 word containing a (left addusted)
18-bit pointer (relative to the base of the object seagment)
pointing to the object map, This pointer must alyayd constitute
the last word of an obpject segment, The size (in words) of the
object segment 14s a quantity which may be obtained from the
Mgltics file system, Using this value, it is possible to 1locate
tne segmant‘’s obiject map (through this pointer) which in its turn
zontains all the information necessary in order to identify and
access the 3ivers components of the object segment, Knowledge of
the ohpjest map is the key to the decodinag of an object gegment,
and the <conveltion bhy which the last word points to the object

Multics Standard Object Segment = March 6, 1972 Page 18

nap provides that key,

The gymhol section contains a significant numbter of variahle
langth character strings whieh should be directly accessihble, bhut
which (for the Sake of economy) should preferahly be stored in
packad format, In order ¢to achieve Such storayge organization,
strings within the Symbol section may be pointed to by a string
palinter, which contains both offset and length of the string in
packed form,

jeclare 1 stringpointer aliagned, (NEW)
2 offset bie(18) unalignel,
2 length bit(18) unaligned;

wnera offget is a pointer (relative to the base of the gymbol
block) to the first character of the aligned string, amnd lenath
is a (fixed binary(17)) positive integer representing the 1lenath
of the string 4in characters, This fepresentation allovws easy
access to the String by using the PL/1 built 4in functions
‘addrel’, "fixed’ and ‘supstr’, In the following description, wve
shall usa the notation “stringpointer’ to denote such a vpointer;
a stringpointer i8 null if its value is all zero,

2aldal The Objact Map (NEW)

The obiect map is a fixed length structure residing at the
very end of the object segment, It contains all the necessary
structural informatlion pertaining to the object segment,
jeclare 1 object_map based(p),

2 decl_vers fixed bin,
2 identifier char(8) aligned,
2 text_offset bit(18) unaligned,
2 text_length bit(18) unaligned,
2 definition_offget bit(18) unaligned.
2 definition_length bit(18) unaligned,
2 linkage_offset bit(18) unaligned,
2 linkage_length bit(18) unaligned,
2 symbol _offget bit{18) unaliened.
2 symhol_length bit{18) unalignea.,
2 first_block bit(18) unaligned,
2 number_of_blocks bit(18) unalignad,
2 format aligned,
3 bound bit(1) unaligned,
3 relocatable bit{1) uvnaligned,
3 procedure bit(1) unaligned,
3 unused bit(15) unaligned,
2 map_Ptr bit(18) aligned;

decl _vaers ~ a constant designating the format of this structure;
whanevar the structure is modified, so 1s this constant,
allowing systeém toOols to easily differfentiate between several

—

o~
.

Multics standard ObJect Segmént = March 6, 1972 Page 19

incomnpatible Versions of a single structure,
ijentifiar - muSt be the constant “obj_map",

taxt _offset ~ offset (relative to the base of the object seqment)
2f the text section,

text_length = a fixed binarry(17) positive integer representing
tha length in words of the text section,

lefinition_offset ~ analogous to text_offget
definition_length = analogous ¢o text_length
linkage_offset = analogous to text_offset
linkage_length = analogous to text_length
symbol _offset ~ analogous tp text_offset
symbol_length = analogous to text_length

first_block - Pointer (relative to the base of the symhol
seztion) to the most recent symbol block. An object segment may
have one or more Symbol blocks which are threaded on a list in
reverse chronological order (i,e., nevWest block is first on the
liSt)n

number_of_blocks = this is a (fixed binary(17)) positive inteser
jisplaying the number of symbol blocks within this symbol
saztion,

pound =~ this is a bound segment

relozatable = "1"b => this object segment has relocation
information in it8 f£irst symbol block,

procedure ~ "1"b => this is an executable object programj
"U"»p => this is a data base,

rap_ptr = this is a pointer, relative to the base of the object
segment, to the object map; as mentioned before, this {tem must
reside in the last worid of the object seoment,

2el44s2, The Symbol Block Header (NEW)

The symbol bloCk has two main funetions, a) to document the
circamstances Under which the object Wwag created, and b) serve
as a repository for information which d%es not belona in any of
the sther three sactions (es0ss relocation informationn,
csompliler‘s symbol treg ets,). The BYmhol section must contain at
least one symbOl block, 4escribing the creation circumstances of

Multics Standard ObJect Segment - March 6, 1972 Page 20

the object segment, A symbol Section may also contain more than a
single symbol blocCk, for example in the case of a bound object,
wheras in addition to the symbol block describing the object’s
sreatisn by the bindar, there is also a3 symhol block for each of
the zompanent objects, The symhol section iIs designed so0 that
symbol blocks may he 3ynamically appended to, or deleted £from it,
such as in the case of thas debugger which allocates 4itself a
symbasl block in order to stofe in it breakproint information. The
size and structlUre of a symbol block are variable, depending uvon
their purpose, All symbol blocks have a standard fixed formwat
header, as follows,

Jeclare 1 symbol_block_hgeader bhased(p) aligned,
2 decl_vers fixed bin,

2 identifier char(B8) aligned,

2 gen_Version_number fixed bin,

2 gen_creation_tima £ixed bin(71),
2 obJeCt_creation_time fixed bin(71),
2 genefator char({8) aligned,

2 gen_Version_name stringpointer,

2 userid stringpointer,

2 comment Sstringpointer,

2 text_boundary bit(18) unaligned,
2 stat_boundary bit{18) unaligned,
2 sourcCe_map bit(18) unalignaed,

2 area_pointer bit(18) unaligned,

2 sectionbdse_backpointer bit(18) unaligned,
2 block_size bit(18) unaligned,

2 next_hloCk_thread bit(18) unpaligned.,

2 rel_text bit(18) unaligned,

2 rel_Qef Dit(18) unaligned,

2 rel_link bit(18) unaligned,

2 rel_Symbhol bi¢(18) unaligned,

2 Gefault_truncate bit(18) unaligned,

2 opticnal_truncate bit(18) unaligneds

lecl _vers =~ a cOnstant degignating the format of this seructure;
whenever the sStructure 418 modified, so is ¢this constant,
allowing system tOols tp easily differentiate bhetween several
inconpatible Versions of a single structure,

iientifier =~ symMpolic code to define the purpose of ¢this symbhol
hlock, It maY asSume one of the following values,

"synbtree" =2 compilar symbol tree
“"bind_map"™ _> bind map
"ibbreak" => debuua breakpoint information

jen_version_number = a positive integer designatinoe the version
of thz generatoll whigch was8 used in compiling this object
programn, The Policy regarding this version number 4s that
whanever a QJenerator is substantially modified, such as the
adiition of new capabilities or the generation of nev obiject

S~

o

Multics Standard ObJect Segment = March 6, 1972 Pace 21

cole patterns, this number has to be incremented by one, Tt is
usad mainly bY system tools which sometimes have to be
cognizant of the code generation vpeculiarities of a given
conpiler,

Jen_creation_tiMe -~ 3 <calendar clock realding specifving the
Jate/time at Which this generator was created,

dbjest_creation_time -~ a calendar clock reading specifvying the
iate/time at which this symbol block wasg generated.

Jenerator = symbolic code defining the Processer which generated
this symbol block, It may assume one of the values in the
following list (which is subdject to change or exransion),

nalmll
"pl1n
"fortran”
"hbinder”
"debyg"”

gen_version_name = the geperator's version in airectly oprintable
character string form, such as.

"PL/1 CompPiler Version 7,3 of Wednesday, July 28, 1971"

this string is dispjrayved by various System toolS. The (inteser
part of the) Version number imbedded 4in the string must De
identizal with the numper stored in ‘gan_version_number’; the
optional fraction as Adisplavyed above (7,3) 1is added in
inzrements of (,1) whenever (for reasons such as fixed bugs or
minor improveMentS) a gensrator is installed which does not
differ 4in anhy sSignificant way froMm other generators of that
version, It is mandatory that the generater nrame be updated
whenevar the genefator is installed for public use,

userid = the standard Multics identifier of the user in behalf of
whom this symbel Dlock was created,

commant - it 18 sometimes desirable to bput certain <factual
information concerning the generator (e,9.,» certain code
generation peculiarities) of perhaps the actual process of
object program generation (e,9g., warning about non fatal errors
encountered auring compilation, or warning concerning <certain
jefaults applied by the generator) into the obiject segment., The
conment is diSplaYed by certain system tools, and may be of
spacial intelest,» for exampie, when a decision has to be made
concarning the suitability of a given object Segment for
official installation in the system libraries,

text_poundary =~ for speclialiZed vprograms, it |is sometimes
necessary that the taxt section Dbegin on @8 predetermined
bouniary (e.g., 0 mod 64 address); this 4is an integer which

fultics Standard ObJect Segment = March 6, 1972 Page 22

iefines this DboUnijary, 1Its default value is 2 (0 moj 2
adiress).

stat_poundary - same as taxt_boundary, for internal static. Tts
jefault value is 2,

source_map = 2 Pointer (relative to the base of the symbol block)
to a source_map structure (see 2,4,3) defining the pathnames of
the source files, If no source map i8S provided, this npointer
is reszt to "U"D,

area_pointer = Pointer (relative to the base of the symbol block)
to the actual symbol block informationh (e,3,. Symrbol tree, bind
map etzc,),

sectionbase_backpointer - pointer (relative to base of symhol
block) to base of symbol section, This is a negative quantity,

block_size = a (£fixed binary(17)) integer value representing the
size of the s¥mbol block (including header) in words,

next_block_thread = thread (relative to base of B8YMbol section)
to next symbol block.

rel_taxt = pointer (relative to base of symbol block) to text
section relocation information, as defined below,

rel_3ef =~ pointer (relative to the base of the symbol bloek) ¢to
jefinition seCtion relocation information,

rel_link = pointer (relative to base of symbpol bloek) to linkage
section relocation information.

rel_symnbol = Polnter (relative to base 0f symbol block) to symbol
section relocation informatien.

defaualt_truncate = offset (relative to base of symbol block)
starting from which the binder systematically truncates control
information (Such as relocation bits) from symbol section,
while still maintaining such information as the symbol tree,

optional_truncate =~ offset (relative to base of symbol block)
startiang from which the binder may ovtionally truncate
non-essential parts of the symbol tree in order to achieve
maxinun reduetion in size of bound obJject segment,

2.4a3. The Source Map

The source map is a structure defining the Source segments
used to originate this object segment, as follows,

jeclare 1 soufce_Map alioned based(p),
2 decl_vers fixed bin,

o

-

Multics Standard ObJect Segoment = March 6, 1972 Page 23

2 size fixed hin,

2 map(size) aligned.
3 pathname stringpointer,
3 uid £ixei bin,
3 dem £ixed bin(71);

jecl_vaers =~ a coOnstant designating the format of this structure;
whenever the Structure 4is modified, so» is this constant,
allowing system tOols to easily differentiate between several
inzompatible Versions of a single structure,

size -~ the numbeér of aentries in the "map" arrayvy (i,e., number of
source flles definei in this structure),

pathname == a stringpointer specifying the full pathname
(treename) of the source segment,

uid1 - the unique identifier of the source Segment’s branch at
conpile time,

3tm » the datewtime modified from the sOurce Segment's bpranch,

dalald. The Relocation Information

The relocation 4information designates all instances of
relative aiddressSing within a given section of the object segment,
so 3§ to enable the relocation of such a section (as in the case
5f biniing), A variable length prefix coding scheme 1is used,
where there 48 a logical relocation item for each halfvord of a
3iven section, If the halfwori is an absolute value (non
relozatable) that 4item is 8 single bit whose value is zero,
dtherwise, the Litem ig a string of either 5 or 15 bpits vhose
first bit {5 set to "1"b, The relocation 4nformation is
concatenated to form a single string which may only be accessed
sequentiallys if the next bit is a zero, it is a single=hit
absolute relocation item, otherwigse it is either a 5 or a 15 bhit
item depending Upon the relocation codesS as defined bhelow,

There are four distinct blocks 0f relocation information,
one for each of the four object Segment sectionsi taxt,
jefinition, linkage and symhol; these relocation blocks are
known as ‘rel_teXt', ‘rel_def’, ‘rel_link’ and trel_symbol’,
=orraspondingly.

The relocation plocks reside within the symbol bloek of the
generator which produced the object segMent, The correspondance
between the relfcation iteams and the halfwords in a given saction
is made by matching the seguence of items with =a Sequence of
halfwords, from left to right and from Word to word by increasing
valuz of ajdress,

dultics standard ObJect Seogment = March 6, 1972 page 24

The relocation block pointad to from the symbol block header
(a.gs., F2l_text) is structured as follovws,

1 relinfo based(p),

2 jecl_vets fixed bin,

2 n_bite fixed bin,

2 relbits bit(n_bits) aliagned;

jeclare

lecl_vers =~ a cOnstant designating the format of this structure;
whanever the Structure 18 modified, so is this constant,
allowing system tOols to easily differentiate between =everal
inconpatible Versions of a single structure,

n_bits - the siZe of the gtring of relocation bits,
ralbits - the packed string of relocation bits,

Following i8 a tabulation of the possible codes and their
corresponding relocation types,

"0"b => Absolute

n10000"p «> Text

"10001"b =2 Negative Text

"10010"p =»> Link 18

"10011%p => Negative Link 18

"10100"b =2 Link 15

*10101"h «> pefipnition

"10110"p «> Symbol

"10111"b =2 Negative Symbol

*"11000”p =»> Internal Storage 18 (NEW)
"11001"h =2 Internal storage 15 (NEW)
"11010"p => Self Relative

"110117"b =2 Unusad

"11100"p =2 Unused

"11101"bh =2 Unused

"11110"b =? Expanded Absolute (NEW)
"11111"p =»> Escape

Absolute « do nOt reloscate
Text =~ uUse teXt section relocation counter

Negative Text = usSe text section relocation ecounter, The reason
for having distinct relocation codes for negative gquantities is
that spacial Coding might have to be Usad in order ¢o convert
tha 18=bit f£ield in aquestion intdo its correct fixed binary
form.

Link 18 - use linkage section relocation counter on the entire
18-bit halfwold, This, as well as the Negative Link 18 and the
Link 15 relocation codes apply only ¢0 the array of 1links 4in
the 1linkage section (i,e., by definition, usage of these
reloczation codes implies external reference through a link),

l"

Multics Standard ObJject Segment = March 6, 1972 Page 25

¥Negative Link 18 « Same as above

Link 15 = use linkage section relocation counter on the low orjer
15=bits of the halfvord, This relocation code ma¥Y onlY re Uged

in conjunction with a 645 instruction featuring a bhase/offset
adiress field.,

Definition =~ indicated that the halfword contains an address
which is relative to the base of the definition section,

Symhdl =~ use symbpol section relocatien couynter,
Negative Symbol ~ same as above

Internal Storage 18 = use internal Storage relocation counter on
tha entire 18=bit halfword.

internal storage 15 = use internal storage relocation counter on
the low order 15=bits of the halfword.

Expanded Absolute =» it has been established that a major part of
an obiect ©ofogram has the absolute relocation code; for
efficliency reasons, the expanded absolute code allows ¢the
jeEinition of a Dblock of absolutely Felocated halfwords, The 5
bits of relocatioh code are immediately followed by a fixed
length 10-bit f£ield which ts a (fixed binary(10)) poaitive
count of the humber of contiguous halfwords all havine an
absolute relocation, Evidently, usage of the expanded ahsoclute
cole can be economically Justified only 4f the number of
contiguous ab8olute halfvords exceeds 4,

Escape =~ reserved for possible future use,
Figure=3 illustfateS the overall structure of the symbol section,

22423, The PL/1 Symbol Block
’> BE SUPPLIED
2sl4a5, The ALM Symbol Block

I0 BE SUPPLIED

2a421. The Binder‘s Symbol Block

The birder’s s¥mbol block contains the bind map, deseribing
the relocation values assigned to the various sections of the
bouni conponent object segments, The block consists of a variable
length structure, followed by an area in which variable lenath

Multics Standard ObJect Segment = March 6, 1972 Page 26

symbolic 4information 4is stored, The format of the bhindmap
structura is.

ieclare 1 bindmap DPased(p) aligned,

2 decl_vers fixed bin,

2 n_components fixad bhin,

2 compopent(n_components) aligned,
naMe stringpointer,
genNerator_name char(8) aligned,
teXt_start bit(18) unaligned,
text_length bit{18) unaligned.,
stat_start bit(18) unaligned,
stat_length bit{18) unaligneq,
symh_start bit(18) unaligned,
symb_length bit{18) unaligned,
defblecCk_ptr bit(18) unaligned;

W wwwwwtww ww

lecl_vers ~ a constant fesignating the format of this structure;
whenever the gtructura 18 modified, so is this constant,
allowing system tOols tp easily differentiate between several
incompatible Versions of a single structure,

n_comnponants - Rumber of component obJects bound within this
houni segment.

component - varliable length array featuring one entry per bound
conponant obiject Segment,

name - pointer to the sympolic name of the bound component, This
is the name under which the component object was identified
within the archive file used as the binder's input (i,e.s the
name corresreOnding to the object’s ‘objectname’ entry in the
bindfile), The stringpointer is relative to the bhase of the
bindmap structure,

jenerator_name ~ the name of the generator which created this
component ohiect Segment,

text_start - (fixed binary(17)) integer value of the component’s
text saction relocation counter,

text_length - (fixed binary(17)) integer value of the componefnt’s
text sesction’s lehgth,

stat_start - relocCation cpunter for component’s internal static,
stat_length - length 5f component’s internal static,
synb_start = relocation counter for compPonent’s symbol section,

symb_length - length of component’s symbol section,

—

Multics Standard QObJect Sagment = Maprch 6, 1972 Page 27

lefblock _ptr - if non=-zeron, this is a pointer (relative to the
base of the definition section) to the component's definition
block (first class=3 segname definition of that component’s
jefinition bloeck),

2a4a8, Debug’s Symbol Block

I'> BE SUPPLIED

Multics Standard ObJect Segment ~ March 6, 1972 Page 28
3. GENERATED CODE

This sectlon describes those parts of the generated conde
(othar than the structural parts discussed in section 2) which
have to confofm ¢t0 a systemwide standard because they interface
with systam tools sUch as the hinder, the Aefault error hanilar,
jebug etz,

3.1 The Text Section

The text Sectlion contains a numbel of sequences where it is
ajvantageous tO0 have all generators produce identical code
pattarns, s8uch as the ¢call, save and return sequences, For the
purpose of this documant, however, only the entry seauence and
the Jenerated relocation codes are of interest,

3.1.1, Tha EntrY Sequence (NEW)

The entry seqlence must fulfil two requirements, a) that at
the location preceding the entrypoint (i,e.,» (entrypoint=1))
thera s a Jleft adjusted 18=bit Telative pointer to the
jefinition of that entrypoint (withim the 4definition section),
ani b) that the save sequence executed within that entrypoint
store an ITS pointer to that entrypoint at spi22 8o that by
inspecting the proceduvre’s current stack frame one may determine
the adiress of the entrypoint at which it was invoked, and then
recoastruct that entry's symbolic namg through use of {ts
jefinition pointer,

3,1.2, The RelocCation Codes (NgW)

The followling list 2pfines the only relocation c¢odes vhich
nay be generated in conjunction with the text section, and then
only within the scoPe of the restrictions specified,

Absolute = no restriction
Text = no restriction
Negative Text « no restrictien

Link 13 = may only be a direct (i,e,, unindexed) reference to a
link,

Link 15 - may only appear within the address £field of a
(pasa/offset) type instruction (bit29="1"p), The instruction
nust not be 4ndexed, and must not contain a "10"b tm
noiifier. Alsos the following instfuction codes may not have

Yultics standard ObJect Segment = March 6, 1972 Page 29

this relocation code,

STBA (5519)8
STBY (552)8
STCA (751)8
STCY (752)8

Natg: the peculiar restrjctions 4imposed upon the 1link=15 and
int=15 ralocation codes stem from the fact that these relocation
zoies apply to base/offset type address fields encountered in the
3ddrass portion of machine instructions; the effective value of
such an address (8 Computed by the harivware at execute ¢time, To
that eni, certain hardware restrictions are imposed on such
instructions, When the Muitics Binjer processes these
instructions, &t often resolves them into simpleecaddress format
and has to further Modify information in the orwcode (riaght hand)
portion of the instruction word. Therefore, these relocation
zodes nust only be Spacified in a conteXt which is comprehensible
to the 645 contFol unit,

Pefinition = No restriction

Symbol =~ no restriction

Internal Storage 18 » no restriction

Internal Stor8ge 15 = may only appear within the address field
of a (baBSe/cffget) type 4instruction (bie29=%"1%p), The
instruction must not contain a "10"b tm modifier, hovever it
nay be indexed, The 4instruction codes excluded from the
Link=15 relocation may also be used.,

Self Kalative = no restriction

Expanded AbSolute = no restriction

3,2, The Definition Saction

There are No relocation codes associated with the definition

section, Item "rel_3ef’ 4in ¢tha 9ymbol block header has been
provided for the sake of completeness and may be uSed in ¢the
future.,

3.221. Tplicit Definitions (NEW)

All generadated ohject segments must feature the following
implicit definition,

Yultics Standard OhJect Ssgment = March 6, 1972 Page 30

"symbol_table” = defining the base of the symhol hlock
Jenerated Dy the current language ProcesSsor, relative to the
base of the symbel section,

Additionally, obdjects created by the binder have the
inplicit Jdefinition “pind_map” which points to the hase of the
symb2l block Qenerated by the hinder, relative te the hase of the
symbol saction,

3,3, The Linkage SeCtion

The linkage Section c¢onsists of four distinct hlocks:! the
linkage section header, the internal stOrage, the links and the
first reference traps,, The format and value of the linkage
saction header are as defined in section (2,3,1),

3.3,1, The Internal Storage

The internal storage is a repository for items of the
internal static storage class, It maY contain data items only;
aven though access to the linkage section is of the “‘revw’ type,
it may not contain any executahle code,

Text = no restrictions

da3a2se The Links

The 1link &rea may only contain an array of links as defined
in section (2,3.,3), The links must be considered as distinct
unrelateyd item8, ani no structure (e,y., array) of links may be
agsuneld, They must be accessed explicitly and individually
throggh an unindexed internal reference featuring the link~18 or
the Link=15 relocation coies.

3.3.3. The Relocation Codes [NEW)

Only the linkage section header and the 1links may have
relocation codes aSsociated with them (the internal storace area
has assoc-iated with it a single Expanded Absolute relocation
item), '

Absolute - no restriction; mandatory for the 4internal storage
araa,

—
/

Pl

Multics Standard ObJject Segmént = March 6, 1972 Page 31

Link 18 =« no restriction

Negative Link 18 = no restriction
Definition = no restriction

Internal Storage 33 = no restriction

Expanded AbSolute = no restriction
3.4, The Symbol Section

The symbol section may contain information related to Some
sther section (Such as a symbol tree defining relative offsets of
symbolic items), and therefore maY have relocatien <coies
aggociated with it,

3.4,1, The Relocation Codes (NEW)
Absolute = no restriction
Text = no restriction
Link 18 « no restriction
Definition = No restriction
Synbol = no restriction
Negative SymbOl = no restriction
Internal Storage 18 =~ np restriction

self Ralative » no restriction

Expanded AbSolute = no restriction

Multics staniard OhJect Segment = March 6, 1972 paze 32
4, FUNCTIONAL INTERFACES

This section Driefly d4escribes & number of ¢the object
seymaent’s functional interfaces in order to give the reader some
tiea as to how certain structures and formats, described in
sections (2, 3) are used, Also, a list of standard system tools
i3 proviied in Order to allow a Subsystem or compiler writer to
acguaint himself with existing facilities on Nultircs,

4.1, Dynamic Linking

one 92f the basic principles of Multics is that information
is always accesSed Dy its symholic file system name, and that
segments are assigned a machine address (i,e,, segment number) at
the moment of eXecution only, It followS that any inter=segment
raference MuSt be resolved prior to 1ts aexecution into a machine
ajiress which 18 a priori unknown, Certain computer systems
raguire that 8Such address resolution be vperformed, prior to
execation, by a proCese commonly known as "loading", whiech may be
thought of as a "poSt~compilation” in which several independently
complled procedlUres are assembled into a single procedure in
which all previous symbolic 4intersprocedure references are
convertel into internal relative addresSes,

In YMultics, such loajing i8S unneceSsary because the dymamic
linking mechanism allows symbolic references to be evaluated and
resolved wheneVer they are encountefed Auring eXecution, 1
hardware register, known as the linkagae pointer (1p) {s always
set to point to the base of the currently eXecuting procedure‘s
linkage sectiol, All references to external symbols are made in
the form (lpins”) where pn 48 a relative offset within that
procedura‘s linkage ssction, and notation *,*’ {ndicates
indirection (i.e,, address substitution), Location (1p(n)
contains an unSnappPei link, as defined in section (2,3,3), which
features a linkfault (u6)g tag, When the processor attempts to
execute the ibdirection and recogniZes the fault tag (46)8,
execution is interrupted and the procesSor faults (i,e.s forces
control) to the Multics linpksr.

Sata? In the following description of the linking mechaniam,
referencs is made tO items defined in sgections 2.2.2. 2.2.3,
2.2¢4 and 2¢3¢3, The repader may wish to consult Figure=2 which
illustrates the strUcture of a link,

The linker’s ofRly input is a pointer to the unsnappred 1link
which initiates the linkage fault, By using ¢the 1link's
‘healer_pointer’ the linker is able to Ccalculate the address of
the 1linkage sectjon header which in turn contains in its first

—

LN

Multics Standard ObJect Segment = March 6, 1972 Pave 33

two words an ITS pointer to the object Sseagment’s definition
saction (this pointer is get when the prfocedure is referenced for
the first time, as is explained balow),

Let us name the pointer to the definjition section defp; the
3iirass calculation

addrel(defp, expression_ptr)

prodices a pointerl! to the link’s expression word, Given a
pointer to the expression word, the address calculation

adirel(defp, type_palir_ptr)

produces a pointer to the link's type~pair, whereupon 4in turn
334dress calculations

aldrel(defp, segname_ptr)
anj
adirel(defp, entryname_ptr)

yiell pointers to the respective ‘acc’ strinags which define the
2xternal symbol,

The linker first interrogates the ‘trap_rctr’ 4item ¢&n the
link’s type~-pair, and {f that item’s value is unequal ¢o "0"p
then the linker effects a call to (lpi(trap.ptr),*), a call vhich
in turn may proOvoke a linkage fault (in Multics. dynamic linking
ray be recursive),

If the ‘trap_ptr’ is null (or upon return from ¢the trapo
procedura) the linksr proceeds to oObtain a pointer to the
referencad obJject segment, For link types 1 and 5
(selfreferencing 1links) ¢this 48 a pointer to the referencing
procedura, For link types 3 and 4 the pointer is ohtained by
zalling the MUltics filg system with the symholic ‘segmentname’
portion of the exterInal symbol, The linker is nov in possession
°>f the sagment nNumber portion gra# for the referenced symbol,.

The linkel alsSo obtains from the file system a value lenzth
which is the lefgth (in words) of the referenced object segment,
By convention, (langth~1) is the offset within the object segment
2f a pointer to the object map, vwhich contains the offset of the
reaferencad obdject’s definition section, The l1linker computes a
pointer to the target Aefinition section, searches 4it¢t, and
locates the definition for “‘entrypoint' vhich designates the
2ffg2t ©of that Symbol within the object segment, Goine back to
the link’s exPressSion word, the linker performs the computation
(gffset+expression) to obtain the final relative address portion
o5f the referenfced symbol, It now inserts values ggaun# and offset
into the correspPonding ‘header _pointer' and ‘expression_ptr’ of
the unsnapped 11ink, <changes the 1link‘’s tag to (43)8 and thus
converts the original unspapped link into a valid (executable)

Multics Standard ObJect Seagment - March 6, 1972 Page 34

ITS pointer, Whereupon the referencing procedure’s executinn is
rasuned at the Point of interruption.

BY zonverting thas original linkfault into an ITS pointer ir
is assurei tnat only ¢the very first reference to an extarnal
synbol will invoke the dynamic 1linking mecharism, and the
3ssoziatas cost of linking, Future refefences to (lpin,*) will be
lirectly executed,

By definition, an executable object segment is pure
(non=selfmodifying) procedure and may Not be altered. AS we nave
seen, tha proceSs of jvynamic linking reJuires that an unsnacned
link he overwritten with an ITS pointer; also, that ITS ooinrer
contains a geg# whicCh may assume different values depending uson
the circunstances under which 1linking took place, Therefore,
vhensver the linker attempts to link to an obiect Segment which
has navar befofe been referenced within that Multics orocess, 4+t
fnitiates that Segment (i,e,, requests the file sYster to nake
the segmnent khown within that MulticS process under some geq#)
and zcopies its entire linkage section into a writable database
known a3 the camhined lipkage sectian. The (1lp) register will
always point to the linkage section copY, and {t 4is <this capy
vnich 15 modified during the procedure’s execution, The process
of copying includes the appropriate setting of the
‘definition_ptr’ (¥words O0&1), ‘linkage_rctr’ and ‘object_seqg’
items in the coPied linkage section healer,

It is sometimes lesirable to reverSe the process of dyvynanric
linking (unsnaP a 1link) and restore ¢the original linkfault
information, Given an offset p t5> a link in the combined linkage
saction, unsnapping {s trivially achieved by 1locating ¢the
sriginal linkage section in the object segment <through the
‘linkajge_ptr* item {n the copied linkage section header, ani by
svaerariting the snaPped link wvith its ofiginal value found at

addrel(linkage_ptr, 3)

Fijure~4 i3 a flow chart illustrating the overall 1logic of ¢the
linkear,

P Lo

o

r“

Multics Standard ObJect Segment - March 6, 1972 Page 35
3.2. Binling

Dynamic linking is a very useful and powerful capability; it
provides the caSuyal user with the convenience of not having to
explicitly asseMble all of the modules related t2 his proqgram and
"loail” them befOre being able to execute 4it, Rather, he needs
only to be conCerned with specific modules which are of interast
to him, leaving it Up to Multica to locate and link to all other
nojules which may he pither his own, or perhaps library procedure
provided as standard tools, Moreover, he nead not even be aware
of cartain modules ¥which are invoked by the system in his hehalf.

Somatimes, however, a large subsystem whieh by right should
be <coiel as a single procedure is in effect subdivided into
3istinct smallerl mecdules, mostly for reasons of coding (anad
debuyging) conVenience, This collection of procedures may now bhe
executed, and will be 4interlinked by the dynamic linking
nechanisn, In ¢this casa, however, it is known in advance that
this collection of physically distinct vprocedures effectively
forms a single 10gical unit, The c0s8t of dynamic linking, no
natter how trivial it may be, will be 4ncurred whenever this
subsysten is invoked for the first time py some Multics process,
Suppose that we have 3 compiler named *‘compScomp® WwWhich was coded
nddularly in R Alstinct modules, each of which features an
avetage 3af elhtryPoints; further suppase that 4in erder to
execute the compiler all entrypoints muagt be linked to by the 1
noiules, The coSt of a single compilation will thus be {nereased
by the overhead coS8t of invoking pn*m linkage faults, vhereas the
only linkage fallt that npeds to be taken is that of 1inking to
‘compScomp’e all oOthers being dinternal to the compiler and
annezessary, in the sanse that the compiler’s modularity is a
convenience to the writer of the compiler but an Unnecessary and
expensive penalty to the usgasr,

The Multic8® binder is a "post processor"™ which, given an
input of n object segments combineSs and reduces them into a
single new “"bound’ object saegment, One of the functions of
bindiny is to reduce all internal intersegment references from
linkfaults to relative internal addresses, Thus, by binding all
components of oUr compiler, we would produce a new object seagment
namei ‘compScompP* whose execution provokes none of the oprevious
g*m linkage faules,

Another reason for binding is that in a paged virtual memory
such as Yultics’, pn distinct object segment would incur the extra
expense o2f an aVera¢e 1/2 a page of lost gtorage per segment, By
binding many comMponent objects (even if ¢they perhaps are only
narginally related to one anothar) one May make substantial gains
in storage space,

BY binding several ohject segments, whether related or not,
one loses none of the carabilities asSociated with those ohject

Yultics Standard ObJect Segment = March 6, 1972 Page 36

sagmants {in thelr fres standing form, The only discernible effact
°f binding is that the storage requirements of the hound obiact
segmant area lesS then the combined storage requirements of all
the component object segmants, and that any internal interseguent
references will be Pre~linked automatically, Funectionallys, the
axecytion of a collection of hound object segments is guaranteed
to be ldesntical to the execution of thoSe same object seagment in
free-gtanding form,

4.3, Naming ConVentlions

Multics segmenNts have symbolic nameg which may be from 1 to
32 charazters 19ong, By convention, such namas may be compound,
consisting of a cohcatenation of two orf more sub=names where the
point 2f concatenation is flagged by tha insertion of a ","
zhavracter; the numbaer of subenames within a compound name is
linited only Dby the 4imposed maximum total 1length of 32
characters,

It 4is often Aesirable to give similiar names to two or more
logizally related segments, For example, if we have a segment
containing the Symbolic source language of some program ‘prog’
ani we compile &t to produce two more segments, namely the object
segment and a Segmant containing a printable listing of the
zompilation, we wouUlid 1like ¢o0 indicate that theSe two new
sagments are in effect a deriviative of ‘prog' and give thenm
names {n which the symbol fprog’ is featurel,

By convention, it is alwvays the oObject segment which s
Jiven tha priMary name ‘prog’, All Other related Segments are
given zomnpound NameS consisting of the primary (first sub=) name
‘proy’ and one or more standard suffixes, Thus if the source
langaage in our example is PL/1, the segment containing that
sourze code 18 bY convantion named 'Prog,pl1°, and the listing
segmant produced by the PL/1 compiler is named ’‘pProg,.list’, By
using this syStemwide convention, we may nov invoke the PL/1
compiler by typing

pl1 prog
ani the zompilelf will automatically construct the name ‘pProg,pii1’

and locate that segmnent which it knows by convention to econtain
the sourze code for ‘prog’,

4,4, Standard SYstem Tools

I BS SUPPLIED

&

