
Multics
Data

Security

7 6 5 4 3 2 0

A---s---c~~~--o~~~--c---s---A

2 3 4 5 6 7

*This paper is based on an
article in the June 1981 issue of
SCIENTIFIC HONEYWELLER
(Vol.2 No.2)

Computer security is
a general term which
can be used to
describe defenses

against everything from wire
tapping to sophisticated
software attacks, like "Trojan
horses" and "trap doors:'
Data security is concerned
with internal rather than
external attack, that is, with
the mechanisms which pre­
vent users from obtaining
unauthorized access to the
data stored in the system.
The consensus is that Honey­
well's Multics system has the
best data security of any
large, general-purpose com­
puter system available today.

Data security is usually
enforced by the specialized
software called the operating
system, which coordinates
and oversees the sharing of
the computer's resources,
programs and data. On
Multics, as on many systems,
the first line of defense is a
set of tables which lists users
and their access rights to
data. These tables are
scanned by the operating
system on each user's refer­
ence to a block of data. In
theory this is a simple and
unbreachable defense. In
practice it is often very vul­
nerable, for three reasons:
1. The hardware architecture

may contain exploitable
behavior (or misbehavior).
For example, the hardware
implementation may offer
opportunities for trap
doors, which can be opened
under specific conditions.

2. The software utilization of
the table look-up mecha­
nisms may contain exploit­
able errors.

3. The table mechanism may
be completely circum­
vented by implementation
errors in the system's
operating software.

Operating systems are
prone to error because
they are composed of many
complex computer pro­
grams and, because they are
repeatedly altered to extend
the functions available to
the user and patched to cor­
rect the problems discov­
ered in the software
extensions. The complexity
of the system makes it
impossible to predict all of
the effects of a proposed
change with any degree of
accuracy, so the effective­
ness of the security mecha­
nisms tends to decrease as
the number of changes and
patches increases.

When Multics was devel­
oped, an attempt was made
to design a system, including
security mechanisms, which
could grow without system
reorganization. The design­
ers recognized that it would
be impossible, at the design
stage, to anticipate all the
problems which would crop
up when the software was
written. Therefore, if prob­
lems arose as a module of
the system was imple­
mented, it was redesigned, a
process which served to
reduce the convolution and
complexity of the final soft­
ware system. In addition,
provision was made to allow
functions to be added to the
system as subsystems rather
than as modifications of the
operating system itself.

© Honeywell lnfonnation Systems Inc., 1983

D iscretionary
Access Control.
One generic data
security mechanism

is a table of users and blocks
of data. The table defines
which users may have ac­
cess to a given block of data
and what kind of access
they are allowed. On
Multics, the table used to
determine access is the
Access Control List, or ACL,
associated with each block
of data, or segment (file), in
the system. The security
policy enforced by this table
is "discretionary:" Those who
"own" the segment decide
who is to have access to it.
Another, nondiscretionary
mechanism, which enforces
military security policy; is
also available and is used at
Multics locations where

security is critical.
The Access Control Lists

are built into the file system
and are maintained by the
secondary storage subsys­
tem of the operating system,
which keeps track of the
locations of segments in
peripheral storage devices
and transfers them in and
out of main memory as
needed. The storage system
maintains a hierarchy of
segments and directories,
which resembles an inverted
tree branching out from a
single root directory. Each
segment under any given
directory has a unique
name. Thus each segment
can be located by a unique
search strategy or path
name consisting of the
series of directories under
which it is located and its

Figure 1. Hierarchical Storage System Structure.

Each segment in the storage system has a unique
path name or search strategy, which lists, in turn, each
of the directories under which it is located and its
name, which is always unique among the segment
names stored in the last directory in the sequence.
The path name for seg2 in this example is: Root>
libraries>commands >seg2. Access control informa­
tion for each segment is stored with the information
about its location in the directory containing the seg­
ment. Thus the access information must be scanned
when the storage system locates the segment
for the user.

name. Thus, in Figure 1,
"seg2" in directory "com­
mands" has the unique path
name: Root> libraries>
commands> seg2.

The directories are seg­
ments containing branches
to other segments, which
consist of the address of a
segment under the direc­
tory, and other information
about it, such as its ACL.
Therefore, the ACL is inex­
tricably linked with the
address of the segment.
Since it lies on the path to
the segment, it must be
"found" if the segment is to
be found.

The ACL is a list of indi­
vidual users or user groups
and the access modes, such
as read access, allowed each
user. Individual users are
identified by a person I.D.,
unique among users, and a
project I.D. that groups
users from the same depart­
ment or location for
accounting and access con­
trol purposes. Thus, user
Jones of the Budget project
would be identified as:

Jones.Budget
Since it is often desirable to
specify access to a segment
for a class of users rather
than for individuals, either
part of a user identifier can
be replaced by a special
character,*, which repre­
sents a universal match.

project
directory

Thus ACL identifiers
Jones~

and
*.Budget

identify groups of users
which include Jones.Budget.
The access modes associated
with each user identifier can
be either null, indicating that
the user is not allowed
access to the segment, or
combinations of the letters
"r;• "e;' and "w;' which stand
for read, execute, and write.

For example, if user Jones
wants to limit read and exe­
cute access to users on the
Budget project, he ntight
create an ACL like the
following:

rew Jones~
re *.Budget
null * *

The default access mode for
a user whose I.D. does not
match any ACL entry is null,
so the final entry in the ACL
could have been omitted
(Figure 2).

Access rights to a seg­
ment are determined by
looking up a user I.D. in a
segment's ACL. The identity
of the user as far as the sys­
tem is concerned is estab­
lished by the user name he
provides and is authenticat­
ed by a password. When he
logs in, each user must pro­
vide a valid user I.D., gener­
ally his last name or last
name and first initial, and a

Smith
sma Smith. Budget

s *. *

password. He may also spec- an encrypted form. The
ify which project he wishes algorithm used to encrypt
to log in on. If the I.D. sup- the passwords is a one-way
plied is unknown to the sys- algorithm; there is no algo-
tem or the password rithm (other than exhaustive
supplied does not match the search) for recovering the
stored password for that clear form of the encrypted
user I.D., he is denied access. password.

Because user I.D.'s are ACLs are associated with
public information, the secu- the directories in the stor-
rity of user passwords is age system hierarchy as well
vital and several steps have as with the segments. It is
been taken to help ensure that important that access to the
they are not compromised. directories be controlled
For example, the passwords because the directories con-
are stored on the system in tain the AC Ls of the di.Tee-

Figure 2. The Access Control Lists.

The ACLs enforce a security policy based on the con­
cept of(nonexclusive) "ownership." Each segment
has an Access Control List which gives the access
modes allowed users and groups of users. The ACLs
are stored in the directory containing the segment
and the directories themselves have ACLs, which are
stored in the next highest directory. Because of the
hierarchical nature of the storage system, users with
access to high level directories can force access to
subordinate segments by altering, in turn, the ACLs
of all the containing directories and that of the seg­
ment itself. Thus, in the example, a system adminis­
trator with modify access to the project directory
could obtain access to one of the segments belonging
to Jones, even if Jones had written an ACL for the
segment denying him access. ht effect, therefore,
everyone with modify access to a containing directory
"owns" a segment, in the sense that they control it.
While modify access to directories close to the root is
limited to a few system administrators, the power this
confers on them constitutes a security risk.

Jones
sma Jones. Budget

null ·.'

tories and segments below
. them and thus a user with
the appropriate access to a
directory can change access
to any subordinate segments
or directories by modifying
the ACLs in the directory.

Directory ACLs, like seg­
ment ACLs, are composed of
user identifiers and access
modes. The access modes
for directories are either
null or combinations of the
letters "s;' "m;' and "a;'
which stand for status, mod­
ify, and append. Status
access allows a user to list
the contents of the directory
and to examine most of the
storage system attributes,
such as ACLs, associated
with each entry in the direc­
tory. Modify access allows
the user to change many of
the attributes of an entry,
while append access allows
a user to create entries in
the directory. Just as a seg­
ment ACL is stored in the
directory which contains the
segment, the directory ACL
is stored m the next highest
directory (closer to the root).
Access to the root directory
is restricted to the system
itself since there is no con­
taining directory for the root
directory, which therefore
cannot have an ACL.

This hierarchy of control
allows system administra­
tors to handle any user
directory and allows project
administrators to handle any
directories or segments
within their project. While
the systeIIl is very practical
and flexible, it involves some
security risk, since a user
can grant access to seg­
ments without the authori­
zation or knowledge of the
users who originally set the

ACLs for the segments. The
ACL mechanism enforces a
security policy based on the
concept of ownership. But
the hierarchical organization
of the storage system makes
the definition of ownership
very broad. In effect, any
user who has modify access
to any directory in the stor­
age system hierarchy which
contains a segment, owns
the segment. In other words,
it is not possible to ensure
exclusive ownership. In fact,
one user could potentially
alter the ACL to a segment
to deny access to the user
under whose directory
it is listed.

However, the extended
access control system used
on some Multics systems,
AIM, or Access Isolation
Mechanism, to a large extent
solves the security problem
posed by users with access
to high-level directories by
increasing the number of
attributes of each segment
and each user, and by
enforcing a stricter set of
rules for matches between
the two. N on discretionary

Access Control.
The Discretionary
Access Control

mechanism assumes that
each user can be trusted to
protect sensitive data. AIM
assumes that the user may
release sensitive data either
by accident or intent, and is
designed to prevent such
releases. AIM was imple­
mented in response to a Pen­
tagon request for a mecha­
nism which would enforce
military security policy. On
systems which use both the
ACL and AIM mechanisms,
the user's effective access
to a segment is determined
by the most restrictive of
the two.

AIM determines access
on the basis of the classifica­
tion of the segment, and the
clearance and need-to-know
of the user. 'I\vo types of AIM
classification information

are maintained for each seg­
ment in the storage system:
• a classification level, a

number from 0 (least sen­
sitive) to 7 (most sensitive)

• a set of up to 18 categories
to which the information in
the segment belongs
The categorization of

segments (and of users)
enforces a policy of granting
access only when there is a
need-to-know, and helps to
prevent users from deduc­
ing data stored at a higher
clearance level from combi­
nations of data at their
clearance level. A company
might classify information
according to the levels and
categories listed below:
Security Category
Level Description

0 Public 0 None
1 Confidential 1 Budget
2 Proprietary 2 Payroll
3 Secret 3 Engineering

4Assembly
5 Distribution
6 Marketing

Marketing data for a well
established product, for
example, might be consid­
ered confidential information
(level 1) in the marketing
category (6). On the other
hand, a budgeting report for
an engineering project likely
to affect company operations
for the next decade might be
classified as secret informa­
tion (level 3) within both the
budget and engineering cat­
egories (1,3).

AIM clearance informa­
tion, consisting of both a
clearance level and a cate­
gory set, is also maintained
for each active user of the
system. System tables main­
tain lists of maximum clear­
ance values for each user
and project and the user may
specify any clearance level,
up to his maximum authori­
zation, when logging in.

Access to any given seg-
. ment is calculated at the
same time that the ACL is
checked. The user's clear­
ance (A) is compared to the
segment's classification (B)
to determine the user's effec­
tive access to a segment. The
clearance and classification
can have one of four differ­
ent relationships:
1. A equals B if:

a) The level of A equals
the level of B, and

b) The category set of
A is identical to the
category set of B.

2. A is greater than B if:
a) The level of A is

greater than or equal
to the level of B, and

b) The category set of B is
a subset of the category
set of A or is identical
to the category set
ofA,and

c) A is not equal to B
(according to # 1
above).

3. A is less than B if B is
greater than A (according
to #2 above).

4. A is "isolated" from B if
none of the above apply.
When a user references a

segment, two tests deter­
mine what, if any, access will
be allowed. First, read and
execute access require that
the user's clearance be
greater than or equal to the
segment's classification.
Thus, a user may read or
execute any segment at or

below his current clearance,
but may not read or execute
any segment at a higher or
isolated classification. In
other words, he may "read
down" but not "read up."

The second test is for
write access. For the user to
have write access, his clear­
ance must exactly equal
the segment's classification.
This prevents the user from
declassifying information
by "writing down" and alter­
ing more highly classified
information by "writing up:'
The write access rules, in
combination with the read/

execute rules allow infor­
mation to flow only within
a level or to a higher level
of classification.

One of the major objec­
tives of the Access Isolation
Mechanism is to deal effec­
tively with the "Trojan
horse" problem (Figure 3).
A Trojan horse program is
generally a program which
serves a useful function
and is likely to be referenced
by a wide variety of users,
but which also contains
additional code, completely
unrelated to the docu­
mented function and of

Figure 3. The AIM Mechanism.

The AIM mechanism of access control is more
restrictive than the ACL mechanism. The AIM rules,
which define access rights on the basis of the match
between a segment's classification and a user's clear­
ance, ensure that information cannot flow from a
higher to a lower clearance level, even if the ACLs on
the segment containing the information would allow
this. As a result, AIM blocks attempts to obtain data
illicitly by means of"Trojan horse" code. A Trojan
horse program is a program which serves some useful
function and is therefore likely to be used by a wide
variety of users, but which also contains undocu­
mented code which uses the access rights of the user
who has called the program to obtain information for
the program's author. For example, it might copy seg­
ments to which the user has access but the author
does not into segments beneath the author's direc­
tory. Since AIM does not permit information to be
read or written to a lower clearance level or across
categories, it effectively blocks this kind of attack
on data security.

which the user is unaware.
The additional code might,
·for example, search the stor­
age system for data to which
that user has access, but
which is not available to the
author of the program and,
on finding such data, copy it
to a different location in the
storage system hierarchy. If
user A has written the Tro­
jan horse program to steal
data from user B, user A can
give user B access to create
new segments somewhere
in a part of the hierarchy
which is under user Ns con­
trol. Each time the program
is invoked, it performs its
documented function and
then checks to see if it has
been referenced by user B.
If so, it examines user B's
segments and copies those
which may be of interest
into segments accessible to
user A. Not only does such a
program cause data to be
released, but it has no obvi­
ous side effects, so user B
may never be aware that his
data has been compromised.
Since the nondiscretionary
access controls prevent user
B from "writing down;' it
effectively blocks a Trojan
horse program. As a result,
user B can execute any pro­
gram from any source with
confidence that it will not
cause data to be released to
a lower classification level.

In addition to blocking
attempts to pass informa­
tion directly, AIM blocks
attempts to pass informa­
tion indirectly from a higher
to a lower clearance level.
For example, segment
attributes, such as segment
names, could provide a user
with information. Tu block
this information path, there
are AIM rules for access to
directories parallel to the

AIM rules for access tp seg­
ments. Each directory has
an AIM classification; those
closer to the root have lower
classifications than those
farther from the root. A user
can examine the contents of
a directory only if his clear­
ance is greater than or equal
to the directory's classifica­
tion. In addition, the AIM
rules specify that a user can­
not manipulate the entries
in a directory unless his
clearance is equal to the
directory's classification.
This effectively blocks the
attempts to pass information
to lower clearance levels by
means of data maintained
by the storage system. H ow Access Rights

are Enforced. The
first time a user
process, the surro­

gate for the user on the sys­
tem, requests access to a
segment, the segment is
"unknown" to the process in
the sense that it does not
know the physical location
of the segment in the stor­
age system. To make it
known, it supplies the seg­
ment's path name, its logical
location, to the storage con­
trol subsystem. The subsys­
tem records the path name
and adds an entry, a Seg­
ment Descriptor Word
(SDW) to a special user seg­
ment called the descriptor
segment and returns a seg­
ment number, which is the

location of the SDW in the
descriptor segment, to the
user program (Figure 4).
The user may then refer­
ence the segment by its seg­
ment number. The first time
the user program refers to a
segment, a flag in the SDW
indicates that the segment is
not in main memory. As a
result, the user program is
interrupted until the storage
system locates the segment
(by following the path
name) and loads it into main
memory. The SDW includes
fields for the segment's phys­
ical address in main memory
and for access control infor­
mation. In the course of fol­
lowing the path name, the
storage system examines
the access control informa­
tion for the segment, stored
in the directory which con­
tains the segment, and fills
in the appropriate SDW
access control fields. There
may be several SDWs for the
segment if several users have
referred to it; the address
fields in the SDWs will be
the same, but the access
fields will vary with the user.
For each user, data sharing
is accomplished by the com­
mon address fields; security
is enforced by a specific
access field for each user
in the SDW. After supplying
the program with the seg­
ment number, the storage
system restarts the user
program at the point of inter-

Figure 4. The Segment Descriptor Word.

The Segment Descriptor Word (SDW) contains fields
for the physical address of the segment in main mem­
ory and for access control information. There will be
several SDWs for a segment if several users are refer­
ring to it; the access control fields in these SDWs
will have different settings.

ruption and, if the access
control settings allow it,
the reference continues to
completion. The hardware
mediates every subsequent
reference to the segment,
examining the SDW to
determine whether the ref­
erence is legitimate, but sub­
sequent references need not
interrupt the user program
(Figure 5).

It might seem unneces­
sarily repetitive to verify
access on each reference to
the segment and that it
would be sufficient to have
the operating system verify
only the first access to the
segment. But the fact that
the SDW is checked on
every reference to the seg­
ment allows changes of the
access rights for the seg­
ment to take effect immedi­
ately, rather than after the
segment is no longer in use.
If the segment is in use
when access rights to it are
changed, the storage system
records the change and sets
the flag in any SDWs which
reference the segment to
indicate that the segment is
not in main memory. The
next time the user attempts
to reference the segment,
his program will be inter­
rupted and his access to the
segment will be recalculated.

Figure 5. Referencing the SDW

No user ever has direct access to a segment in the
Multics storage system. The user actually references
the SDW for the segment, which leads to the physical
address of the segment, and is stored in a special seg­
ment the system creates for each user when he logs
in, called the descriptor segment. As a result of this
arrangement, every reference to a segment is medi­
ated by the hardware. The hardware examines the
SDW on every reference by every computer instruction
to a segment to determine its address and checks at
the same time to see that the settings of the access
fields in the SDW allow access.

Brotecting the Data
Security Mecha­

isms. While the
ata security mech­

anisms on Multics are more
difficult to subvert than
most because they are
enforced by the hardware,
much of the data security is
implemented in software.
The software is stored as
information in the system,
and is, therefore, potentially
alterable. Th protect the
software mechanisms, the
operating system must be
protected from accidental or
intentional user modifica­
tions. Intentional modifica­
tions of the operating
system, called "trap doors;'
are activated by a combina­
tion of inputs known only to
the author of the trap door.
They can be used to cause

the release of information
or to interrupt or interfere
with system operation. The
problem of defending the
security mechanism in the
operating system is com­
pounded by the fact that the
users must frequently call
on the operating system to
execute some function on
their behalf, and therefore
the operating system,
including the security mech­
anism, cannot simply be
inaccessible. Instead, the
distinction must be made
between legitimate and ille­
gitimate access to operating
system information.

Figure 7. The Call Bracket.

The call bracket defined by the ring numbers associated with each segment, can be
used to restrict the sequence in which a user process can execute segments, and
therefore, in effect, the programs a user can write. In this example, the user's
process, located at first in ring 6, references in turn segments A, B, C, and D, with
ring numbers [6,6,6], [4,4,6], [2,5,6] and [0,0,4]. When the process calls segment B,
its ring number changes to 4, the highest and only ring number in segment B's exe­
cute bracket. When it calls segment C from B, its ring number remains the same,
but when it calls D from C, its ring number changes temporarily to 0. Because of
the ring numbers on these segments, the user process cannot pass from segment A
directly to segment D. It must pass through segment B, called a gate, because it
has a non-null call bracket, to reach segment D. The ACL and AIM settings on
gates can be used to control access to inner ring programs and data, making it
much easier to protect them from misuse. This structure also protects data in
outer rings from misuse by a process temporarily executing with ring 0 privileges
since it is generally not possible to read or write to outer ring segments from ring
0. Note also that the user's current ring number reverts to its original value when
a called segment has finished executing. In the example, the ring number would
revert first to 4, after segment D had finished executing, and then to 6, after seg­
ment B had finished executing; the privilege conferred by the call is conferred
temporarily.

segment D. Since it is within
the call bracket of segment
D, it is granted access, and
its current ring number
becomes 0. When it finishes
executing D,it is automati­
cally returned first to seg­
ment C in ring 4, then to
segment B in ring 4, and
then to segment A in the
ring in which it began, ring 6.
Note that the process can­
not call A, B, or C, while
executing with privileged
status in ring 0, that it can­
not call segment D from seg­
ment A, and that it cannot
skip the intermediate gate,
B, and still reach the ring 0
segment D by calling C from
A and D from C. This exam­
ple illustrates how the ring
mechanism gives adminis­
trators the ability to deter-

mine the circumstances
under which a sequence of
segments can be called, in
other words, gives them the
ability to determine to some
extent which programs the
user can execute.

To illustrate how the ring
mechanism can be used to
protect the data security
mechanisms, a level of com­
plexity must be added to
the example. Suppose that
the ACL and AIM mecha­
nisms allow the process
read and write access to
segment x, which has ring
numbers [0,7,7). When the
process is executing seg­
ments A, B, and C, it can
read segment x, but cannot
write to it. It can write to
segment x only when it is
executing segment D. Now

suppose that segment D is
the "make known" proce­
dure, and that segment x is
the user's descriptor seg­
mene The user process can
read the descriptor segment
no matter which ring it is in,
as it must in order to refer­
ence any segment. However,
even though it has write
access to the descriptor seg­
ment, it can write to this
segment only when it is

•This example is not accurate. In
fact, the descriptor segments can­
not be read or written to by users
executing in rings outside of ring 0,
and are accessible only to the oper­
ating system and only through a
special hardware register. But the
example does accurately reflect the
manner in which the ring mecha­
nism is used to protect the "make
known" procedure on which the
other security mechanisms depend.

executing in ring 0. This
means that the user can
write to his own descriptor
segment only in the course
of executing the "make
known" procedure or some
other operating system seg­
ment. Therefore the ring
mechanism protects the
ACL and AIM mechanisms
themselves from attack. The
ring mechanism protects
itself from attack; segment
ring numbers can only be
changed by the operating
system and the operating
system checks every
attempt to modify ring
numbers to help ensure
that it is legitimate.

In addition to protecting
the operating system, the
ring mechanism is used to
protect user subsystems
(Figure 8). For example, a
teacher could restrict his
students to ring 5 by asking
a system administrator to
allow users on the teacher's
project to log in only in ring
5. He might then write a gate
segment with ring numbers
[4,4,5) and an ACL granting
execute access to all users
on his project, and a grade-

book segment with ring
numbers [4,4,4) and an ACL
grantmg write access to all
users on his project. When
the students finished home­
work problems in a segment
in ring 5, they could call the
teacher's gate into ring 4.
The gate segment would
examine the student's work,
store a grade on behalf of
the student in the grade­
book segment, and return
to the student in ring 5.
Because the students would
have access to the grade­
book segment only through
the gate, they would not be
able to examine or modify

the grades. The teacher, who
could log on in ring 4, how­
ever, would. Conclusion. Multics

data security is
effective because
there are few, if any,

errors in its software and
because it is enforced, in
part, by the unmodifiable
hardware. Data security
mechanisms, no matter how
ingenious, are only as good
as the software and hard­
ware on which they depend.
It is generally acknowledged
that to date Multics offers
the highest level of data
security available.

Figure 8. The Ring Structure.

The ring structure is used to set up protected user
subsystems, in addition to protecting operating
systems segments. For example, a teacher could
restrict his students to ring 5 but allow them access
to a gate into ring 4. When the students finished
homework problems, they would call the gate seg­
ment, which would examine their work, entering a
grade on their behalf in another segment in ring 4.
Since they would have no access to the grade segment
except through this particular gate, they would not be
able to examine or modify the grades.

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

Auatralla: 124 Walker Street, North Sydney, N.S.W. 2060
U.K.: Great West Road, Brentford, Middlesex TW8 9DH

Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.
S.E. Asia: Mandarin Plaza, Tslmshatsui East, H.K.
Japan: 2·2KandaJlmbo-<:hoChiyoda·ku, Tokyo

Maly: 32 Via Pirelli, 20124 Milano

38083, 1.51083, Printed in U.S.A. GA01-01

