
(

. /
USER CONSIDERATIONS

AND THEIR IMPACT ON AN
EXPERT SYSTEM BUILDING TOOL FOR WAR GAMING

Jon Franklin Buser and Paul E. Rubin, Ph.D.
Computer Sciences Corporation

304 West Route 38, P.O. Box N
Moorestown. NJ 08057

ABSTRACT

The Tactical Control Directive (TCD) envir<?nment is
an extension to the Enhanced Naval Warfare Gaming
System (ENWGS). TCOs let the user create new system
commands by combining and reusing primitive building
blocks provided with the underlying simulator. The
environment's primary components are a custom rule-based
programming language and the associated inference engine
for executing these programs. Other components include:
user reports, a data input form generator, and configuration
management tools.

TCD writers are rela.tively inexperienced at
programming. Their inexperience has a significant impact
on the system's architecture and design. This paper
describes how the TCD language, development environment,
and runtime gaming environment have all been driven by
this paramount requirement.

INTRODUCTION

Every computer system has numerous interfaces
where a human must interact with the machine: the end
user running applications, the programmer implementing and
debuuing code, and the configuration manager producing
deliverable software releases. Significant effort is required to
design the interface between application programs and the
end user on most modern computer systems. One reason
this effort is invested is to allow effective use of these
systems by people who have only minimal· amounts of
specialized training. Fourth generation languages and
operating systems, like UNIX with its' extensive tool set
and pipe facility, can reduce the level of specialized
knowledge that a person needs to develop certain
applications. These are examples of user interfaces that
reduce the· gap between end users and programmers.

The Tactical Control Directive (TCD) environment is
another system whose goal is to reduce the gap between
the end user and programmer. TCDs provide users of an
existing computer simulator, who are relatively inexperienced
at programming, with an integrated environment for
developing, managing, and executing new application
programs (Rubin and Buser 1987).

TCOs are an extension to the Enhanced Naval
Warfare Gaming System (ENWGS). ENWGS is a large
scale, computer based, interactive simulator that supports
curricula and studies at the Naval War College and Tactical
Training Groups. ENWGS is a general war gaming utility
that provides players with primitive operations such as
launching aircraft, acquiring detections. and engaging in
combat. System models calculate platform kinematics,
detections, battle damage, and logistics expenditures.
ENWGS can support a vast range of gaming activities.
Scenarios can be constructed with up to 64 players, 3
sides, and 2000 individual platforms.

There is no such thing as a typical ENWGS game.
Training objectives vary at the different sites with each
game. Small games may be concerned with the
coordination of several platforms performing anti-submarine
operations, while large games could deal with the
complexities of global warfare. It is this diversity of
gaming objectives that drives the TCD development effort.

In general, ENWGS commands request that a single
platform perform one action. Some typical commands are:
change the course and speed of a platform, intercept
another platform, launch an aircraft, or engage in combat.
In some game scenarios, training objectives are satisfied by
controlling platforms at this level. For other games, a
higher level of control is more appropriate. For example, a
player may want to put a carrier defense doctrine into
effect that would automatically intercept and follow any
hostile air detections. The more complex commands are
analogous to the orders of a high ranking officer who
delegates operational details to his/her subordinates.

Tactical Control Directives provide the user
community with a general utility for combining primitive
system operations and previously defined TCDs into new
and increasingly more complex tactical and doctrinal
procedures. The developers view each TCD as a
mechanism to emulate the expert behavior of a naval
officer over a very limited domain. They have drawn
heavily from expert systems' technology to develop a rule­
based definition language for this purpose.

TCDs interact with the system in much the same
manner as a game player. The building blocks available to
the TCD writer are similar to the actions a player can
schedule, observe. or report from a gaming console. TCDs
use a forward chaining inference strategy to make
decisions similar to those a naval officer would make given
the same circumstances.

The greatest challenge facing the developers is that
these expert systems will be written primarily by the user
community who are not experienced programmers. Creation
and installation of new TCDs will be an ongoing user
activity that will not require intervention by the system
maintenance staff.

THE DEVELOPMENT AND RUNTIME ENVIRONMENTS

The TCD environment consists of six major
components: TCD language (TCDL), TCDL compiler,
inference engine, TCD configuration management library,
automatic user input form generator, and various user
reports. Figure 1 shows these components and their
interactions. Note that some components run in the
development environment and others run in the ENWGS
game environment. The TCD library links the two
environments.

• '

(

•

Is TCD Valid?
TCD

Compiler

TCD
Writer

Usage
Info.

Is
TCD
Valid?

Request
Form
Generation

Form
Generator

Development
Environment TCD

Library
Forms

ENWGS
Game
Environment

TCD
Rules lLoad

~''''''''''''''''''''''''''"

Runtime
Reports

Event
Monitor Wait

Functions

Inference
Engine

Game
Participant

Game
Data

Execute
TCD

Execute TCD Primitives

TCD
Primitives

Read and Write
Game Data

Figure 1.

In the development environment, TCDs are written,
compiled, and loaded into the TCD library. The TCD
development process is like other computer programming
exercises, except that TCD •programmers• have a limited
computer background (knowledge of one computer language
is recommended), and a very good understanding of the
ENWGS simulator. The TCD language, compiler, and
library have all been designed with these users in mind.
The developers have tried to minimize programming effort
by defining simple language constructs and maximizing the
correspondence between these constructs and the game play
commands. Emphasis has been placed on static error
validation to reduce runtime errors in the game
environment.

TCO Environments

When the game environment is initialized, a TCD
library is selected and its TCD forms are downloaded to
each participant's workstation. To execute a TCD, a
participant fills in and transmits a TCD form. The subject
TCD is loaded from the TCD library into the Inference
Engine and execution begins. While executing a TCD, the
Inference Engine may call TCD primitives, extract game
data information using View functions, or monitor
asynchronous events that trigger Wait functions. The TCO
primitives make changes to game data, the same game
data used by the ENWGS models for their operation.
Execution reports are provided to the game participant by
the Inference Engine. The format and content of these
reports are very important, because the game participants
do not, generally, have any knowledge of the TCD
development environment.

(

(

..
USER CONSIDERATIONS AND THE DEVELOPMENT
ENVIRONMENT

The TCO development enviro~ment is a second
generation system whose design has grown out of a careful
examination of user needs and abilities, and an analysis of
the strengths and weaknesses of the previous system. The
environment's goal is to allow a person with a good
understanding of the simulator (but limited programming
experience) to create new system commands, an activity
that would generally be the domain of experienced software
developers.

The functionality of any given TCO, once specified,
could easily be implemented by the development staff in
PL/1. ENWGS's development language. However, there are
a number of barriers preventing this more conventional
approach.

First, it is difficult to obtain concurrence within the
user community as to exactly what should happen in
response to varying tactical situations, and once agreement
has been achieved, it is possible for requirements to change
with the introduction of new military doctrine. New TCDs
are also needed, sometimes on short notice, to support
specific game objectives. Shifting requirements are a
fundamental aspect of the problem, and are not caused by
user indecision. ENWGS is used by a variety of different
users whose training goals vary, even at a given site, with
different game scenarios.

Second, ENWGS software is developed in accordance
to a strict development methodology (DOD-STD-1679A)
that follows the waterfall model (Royce 1970, Fairley 1985).
In general, the methodology specifies that for each release:
requirements will be established prior to implementation,
design reviews will be held for each functional area, · and
testing will be performed both by the developer and by an
independent test agent. Following this methodology aids
the production of high quality software, but requires half a
year to produce and distribute even a small maintenance
release. Since the elapsed time required to produce a
system release is greater than the time used to plan and
develop many game scenarios, the normal software
development cycle will not support the end user's need for
new and varying TCDs.

The volatility of user requirements combined with the
relatively long elapsed time between system releases
suggests that the user community requires a way to
produce their own TCDs. It is unreasonable to ask the
users to encode their TCDs as PL/1 system code. This
would require a detailed understanding of the underlying
data base structure, communication message protocols,
coding standards, configuration management practices, and
other details that are the domain of the professional
software developer. Instead, the developers sought a way
to provide the user community with a high level
programming capability that corresponded with the user's
view of the simulator: the existing game play interface.

Primitive operations (e.g .. engage a target) in the
TCD development environment correspond (in name and
arguments) with the ENWGS commands that players
execute in the game environment. Conditional events (e.g ..
upon receipt of a hostile detection) are also available and
correspond to their game play counterparts. A Model
Outcome capability is provided to pass data generated from
a condition (e.g .. what track was detected) to primitive
operations. A simple TCO could direct an aircraft to wait
on station until it receives a hostile air detection, then
vector the aircraft towards the target and engage when at
an appropriate range for the weapons on board. Given a
complete set of

primitives and conditions, fairly complex, and seemingly
"intelligent" tactical missions can be developed.

The original Naval Warfare Gaming System (NWGS)
was delivered with a subsystem that implemented similar
functional requirements. Composite Verbs were built by
linking the form arguments of one Verb to those of
another. A Verb could be a primitive operation, a
condition, or a previously defined Composite. Composites
were built from the bottom up creating a binary tree
structure. The user interface was form driven and would
prompt the user to supply the source of each argument:
user input, a link to another argument, or a model outcome
value. The system was a success in the sense that
previously defined Composite Verbs were regularly used by
game players. The Composite Verb writers, however. found
the definition interface clumsy and unnatural and, as a
result, very few attempts were made to expand the set of
available composites beyond those originally delivered with
the system.

Feedback from Composite Verb users suggested that,
for the next generation system, a definition approach that
used text files would be easier to manage. The original
TCDs were envisioned as an interpreted language that
would look vaguely like UNIX shell scripts. However,
because the TCD scripts would be executed a line at a
time, it was determined that this approach would not
satisfy an implicit requirement to simultaneously wait on
multiple conditions. Conventional procedural languages were
also investigated, but multiple conditions caused TCDs
represented in this way to become very deeply nested and
unmanageable. Finally, a rule based production language
approach was adopted.

Once the language issue was settled, the developers
focused on other aspects of the development environment.
It was clear that two additional components would be
needed to provide a truly integrated environment: the TCD
library and the Form Generator.

The TCD library acts as the interface between the
development environment and the game play environment.
The library is used to assure TCD quality. Game players
cannot use a TCD unless it has already been entered into
a library. Before a TCO can be entered into the library, it
must pass a number of validation checks that ensure library
integrity: the TCD must compile without errors, the TCD
cannot invoke another TCD unless it already exists in the
library; and, if a TCD is being replaced by a new version
and it is invoked by another TCD, the new TCD must
maintain the same input parameters as the original.

The development environment supports multiple
libraries. This allows TCDs to be written and tested
without running the risk of damaging TCDs that are being
used in active games. It also allows special libraries to be
used for different games.

The Form Generator is a critical link in the TCD
development environment. It ensures that the data input
form displayed to the game player is in exact
correspondence with the TCO that will be executed. The
distributed nature of the ENWGS hardware architecture
makes this a challenging problem. ENWGS uses a
Honeywell MULTICS mainframe to execute simulation
models and up to « 80286-based workstations for
accepting user inputs, map displays, and status board
reports. The user input forms and the message protocol
database, used to transmit form data, reside on the
workstations. Though good tools exist to help system
developers and maintainers modify these databases, the
process is too involved for

(

(

TCD writers. A system was required that would
automatically ensure that each TCD would get the correct
form, and that the form would continue to be correct upon
subsequent modification of the TCD.

The Form Generator has two parts: the generator
itself and a form downloader used to transmit forms to the
workstations. The generator is executed when the TCD is
entered into a library. It creates an abstract form that
contains all of the information needed by the workstation
to prcJuce an actual form and data transaction. The form
download software is run whenever a game participant logs
into the simulation. An additional performance feature of
the download mechanism queries the workstation to find
out what TCDs are resident. Only those TCD forms
whose correct versions do not already reside on the
workstation are downloaded.

The TCD definition language, library, and form
generator combine to produce an integrated environment
that allows the definition of new system commands without
any knowledge of the simulator's underlying software
architecture.

USER CONSIDERATIONS AND THE TCD LANGUAGE

The TCD language (TCDL) was designed explicitly
for the definition of Tactical Control Directives. During the
specification process all language constructs were scrutinized
for relevance to the functional requirements and ease of use
by the TCD writers. TCDL is a rule-based or production
language that also incorporates features from more
conventional procedural languages.

The following section describes a number of the
language features and explains how user considerations
affected their design. (See Example 1)

Each TCD contains Form Description Data that is
used by the form generator to create game environment
data input forms. This data is also used to generate game
play reports. The TCD writer can specify form directions,
summary text. a four letter abbreviation, and prompt text
and default values for each input parameter. Prompt text.
initial values, and abbreviations will be given default values
by the compiler if not supplied. Specifying form description
data within the TCD text centralizes modifications. All
changes to a TCD, whether to modify program
functionality, to change the appearance of the input form.
or to modify report text. are made by modifying the TCD
program and reentering it into the library.

Strong Typing is an unusual feature for a rule-based
language, but is used extensively by TCDs. The TCD
writer must supply a data type for each input parameter
and local variable. Some data types parallel those found in
other programming languages: integer, boolean, and string.
However, the majority of types such as latitude, longitude.
altitude, actor track (those tracks under my command), any
track (those tracks I have detected and do not control),
and weapon name are specific to war gaming. Data types
are use for static and runtime error detection. They are
also used by the form generator to determine the length
and transmission type of each form parameter, saving the
TCO writer from having to supply these low level details.

ln0ut Parameters are listed within the first statement
of a TC • The order of the parameters in this list
determine the order in which they will appear on the input
form. Each parameter' s data type, and optional prompt
text and default value, is supplied later in the TCD
program.

Local variables behave much like their counterparts in
conventional programming languages, allocating one storage
location for each variable. The developers debated at
length on whether to support multiple instantiation of
variables as is more common in Al languages. Finally, it
was determined that this would be too alien a concept for
programmers whose prior experiences focused exclusively on
procedural languages.

The TCO Rule Structure was inspired by the
language OPSS (Brownston 1985): each rule contains a set
of left hand side (LHS) conditions and a set of right hand
side (RHS) actions. On every inference engine cycle each
rule's LHS conditions are tested. If a rule's LHS evaluates
to true, the rule is marked eligible to fire. If more than
one rule is eligible on any given cycle, the inference engine
will determine which rule is most appropriate to fire.

The TCD rule syntax has been augmented with
Situation and Action text. The Situation text is associated
with the rule's LHS and the action text with the RHS.
The text is used to document the functionality of each
rule. Building the rule documentation into the language
syntax has several advantages: it promotes self-documenting
code. it melds the knowledge acquisition and coding phases.
and it can be used to produce static and runtime summary
reports with a natural language flavor.

TCOs support four different Rule Types: Single-fire
rules. Multiple-fire rules, Action-only rules, and Validation
rules. Single-fire rules will only fire one time. After its
first firing, the Inference Engine will no longer evaluate the
LHS of a Single-fire rule. Multiple-fire rules, on the other
hand, will fire each time a new set of game circumstances
match the LHS. Action-only rules have no LHS, their only
precondition is that the TCO has begun execution. Each
TCO is allowed one Action-only rule, which is fired
immediately after TCO initialization. Validation rules are
used to validate TCD input parameters. The only action
allowed in a Validation rule is to call a service routine that
will redisplay the user input form along with an error
message. Validation rules are used to write TCO specific
error checks. For example. if a particular TCO is intended
for use with air tracks only, the TCD can test that a
particular input parameters is, in fact, an aircraft,

Substantial effort went into developing a simple but
effective Inference Strategl for TCOs. The developers
considered using criteria like recency of events and priority
of condition types. Both these criteria were dropped
because of unanswered important questions such as: is it
more important to process an old detection or a new one?
and, is a hostile detection more important than an
indication of low fuel? The inference strategy finally agreed
upon was based on specificity. A rule with more
conditions has greater priority than a rule with less. If
two rules have an equal number of conditions, the order of
the rules in the program is used. This strategy has two
advantages: it is easy to explain and the relative priority of
rules can be calculated when the TCO is compiled.
Calculating the rule priority at compile time allows use of a
much more efficient runtime conflict resolution algorithm.

TCD Primitives are used in the RHS of rules to
request that ENWGS perform some action. These
primitives are patterned in name, functionality and
arguments after the player commands used during gaming.
A parameter list is used to supply arguments to the TCO
Primitives. The data type of each argument is tested for
compatibility at compile time, with the goal of decreasing
runtime errors.

c

..

tcd air_engage (interceptor, roe, target, base);

directiona:
"The TCD air engage is used for air to air";
"and air-to-surface engagements. The systeiu";
"will automaticlly choose the appropriate"
"weapon";

summary:
"The TCD air engage is used for air-to-air";
"and air-to-surface engagements. The TCD will" ;
"recover the interceptor when weapona are low,";
"or when fuel is low."

keyword: "ZAIR";

parameter interceptor act trk;
prompt: "INTERCEPTOR";

parameter roe boolean;
init: "Y";

parameter target any trk;
prompt: "TARGET";

parameter base baae cmd;
prompt: "RETURN BASE";

vrule: validate_ interceptor;
situation: "Interceptor is not an air track";

track_ type (interceptor) "= "air";
action: "Send an error me!!sage" ;

send error_msg (interceptor,"must be air
track");

end.rule;

arule: intercept target;
situation: "At beginning of tcd";
action: "Modify roe and intercept target";

~odify _roe (interceptor, roe);
intercept (target, interceptor, max speed
(interceptor)); -

end.rule;

srule: engage target;
situation: "Rules of engagement = free" · . ' ~oe-:'eapons_free (interceptor) = "true";
action: Engage the target";

take (interceptor, target);
endrule;

srule: weap low recover;
situation: "Interceptor is low on weapons";

~eapon_alert_level (interceptor) = "true";
action: "Recover aircraft, mission complete"·

recover_ac (interceptor, base); '
terminate_ tcd ();

endrule;

srule: fuel low recover;
situation: "Interceptor is low on fuel"·

l~w_fuel (interceptor) = "true" ; '
action: "Recover aircraft, mission complete"·

recover_ac (interceptor, base); '
terminate_ tcd ();

end.rule;

end_tcd;

Example 1. Example TCD

View Functions are analogous to the player's ability
to report dynamic game information. They allow access to
the ENWGS game database for items such as: fuel level
location, track type, current game time, and maximum '
speed. There are also functions to perform simple
calculations (e.g., addition, multiplication, or the distance
between two tracks). View Functions can be used in the
LHS or RHS of rules. Each returns a value of a specific
data type that can be tested in a rule's LHS or used as a
parameter to TCD Primitives, Wait Functions, or other
View Functions.

Wait Functions return a boolean value and can only
be used in the LAS of rules. They test whether certain
conditions have taken place in the game. Wait Functions
emulate a set of conditional events that the game player
can schedule, in the same way as the TCO Primitives
emulate player commands. The Wait Function syntax is
similar to View Functions: however, their implementation is
completely different. Wait Functions are triggered by
asynchronous game events; such as, receiving a detection
completing an intercept, or running low on fuel. It is '
expected that Wait Functions will be the dominant
construct used in the LHS of rules, with View Functions
being used to test very specific conditions beyond the
ability of the Waits. Because Wait Functions are an
implementation of an interrupt handler, they are much more
efficient than View Functions which poll the system for
information.

The Model Outcome construct is used to pass data
specific to Wait Function firing into the TCO. For
example, if a detection Wait Function fires, it is very likely
that the player intends to take some action against the
detected track. This construct corresponds to the player's
ability to observe game events.

To promote reuse of existing TCOs, it is possible to
Invoke one TCO from another. Invoked TCOs execute in
parallel with their parent. When compiling a program with
an. ln~oke statem~nt, the TCO being invoked must already
exist m a TCD Library. The developers have also specified
a . Rule Block construct. Rule Blocks, when implemented,
will allow the TCO writer to group rules into internal
subroutines that will restrict other rules in the TCO from
firing until the Rule Block completes.

A TCO is allowed to Terminate itself or any other
TCO that it has invoked. In this way the TCO can return
platforms to player control when their TCO mission is
complete. Future TCO implementations may include an
On-terminate Wait Function and simple message passing to
report termination reasons.

~ are a simple data structure that can be used
to store collections of homogeneous items. The initial use
of Bags will be to select items from the Bag based on
~ertain selec~ion criteria; for example. select from a Bag of
interceptor aircraft the one closest to an incoming hostile
detection. Future implementations may allow Bags as
arguments to Wait Functions. A useful application of this
construct is to schedule a Wait Function that will return
the name of any interceptor track that has run low on fuel.

These language constructs provide the TCO writer
with building blocks for emulating the decision making
process normally performed by a game player. The
developers believe that the language can be used effectively
by the targeted users: persons with a good understanding
of the ENWGS simulator but limited programming
background.

(

(

USER CONSIDERATIONS AND THE RUNTIME
ENVIRONMENT

The runtime environment is used to execute TCDs
during ENWGS games. It consists of the TCO user
interface (as seen by the game participant) •. the l_nference
Engine and various interfaces with the existing simulator.
This s~tion will focus on the user interface issues related
to the runtime environment.

Requirements for the TCD game play interface were
established by the user interface standards for the rest of
the system. ENWGS is a form-driven system whose forms
can be reached by entering a command's name or four
letter abbreviation. The system also supports a set of
selection menus for those less familiar with the system.
ENWGS forms begin with direction text and are followed
by data input fields. The player can request help text for
each input field. If a player transmits a form containing
invalid data, the form is redisplayed with an appropriate
error message. Each data field in error is also displayed in
red. The TCD forms which were automatically generated
in the development environment support all of these
interface conventions.

Input data validation is critical to TCD processing to
ensure that when a rule fires the resulting actions are
supplied with correct data. TCD input data is validated at
three levels. First, simple data format errors are detected
by the workstation software. For example, the software
can test that a latitude field includes a North/ South
indicator. Format information is determined from the data
type of each TCD parameter. The second level of
validation, performed by the host computer, tests whether
the input data itself is correct. Each input parameter is
validated with respect to it' s TCD data type. This level
can test, for example, whether a given platform is
subordinate to a player. The final level of validation is
specific to the TCD and is implemented using validation
rules. The goal of these three levels of data validation is
to detect incorrect data before the TCD is loaded into the
Inference Engine. Once inferencing begins, error detection
and correction become much more difficult.

Reports in the runtime environment were designed
for use by game players with no TCDL background. The
reports fall into two basic categories: static and dynamic.
The static reports provide summary information on the
TCD library and individual TCDs. The dynamic reports
provide information on each instance of TCD execution.
They reports input parameters, the execution progress of
each TCD. and the tracks and participants associated with
the TCDs. The TCD progress report is especially
informative. As each TCD is processed, a record is kept
of the rules executed and the time of execution. The
report lists the situation and action text associated with
each rule tired and each rule pending in the conflict set.
This provides the game participant with a "natural
language" summary of each TCD mission's progress,
without requiring any knowledge of TCDL syntax.

SUMMARY

Shifting requirements are a fundamental aspect of
some computer applications. Instead of attempting to
solidify these requirements, Tactical Control Directives
address the problem by providing the users of an existing
simulator with a high level programming environment. The
primitive syntactical constructs of the TCD Language map
to the commands, conditions, and data observations
normally made by system users. The user is provided wit h
a tool for producing new system commands by combining
familiar components. These new commands can emulate
decision making processes that would normally require
human interaction with the system.

ACKNOWLEDGEMENT

We wish to acknowledge the substantial contributions
of our co-workers: Dr. David Slater, Dr. Joseph Sowers,
Mark Blais, and Denise Roberts.

Work reported in this paper was developed for the
Department of the Navy, Space and Naval Warfare Systems
Command, under contract no. N0003~84-C-0025.

REFERENCES

Brownston, L.: Farrell, R.: Kant, E.: and Martin, N. 1985.
Ex ert S stems in OPS5, An introduction to

.;...;.;;;,;.;;;..,--.--.. ro g..,r a m_m_m_g. Addison-Wesley, eading, Mass.

Fairley, R. 1985. Software Engineering Concepts.
McGraw-Hill. NY. NY.

Rubin, P.E.; Buser J.F. 1988. " Development of an Expert
System Environment for use with a Wargaming System."
In Proceedin~s, SCS Multiconference (San Diego, CA, Feb.
3-5). SCS, an Diego, CA).

Department of Defense. 1983. Militar Standard Software
Development. DOD-STD-1679A avy . overnment
Printing Office, Washington, DC 1983-705-040/ 5447).

