
Section 1

Section 2

Section 3

Section 4

01 October 1985

YFORM
Table of Contents

Introduction and Overview .

Form Definition Statements
form Form Statement
column Form Statement
end Form Statement . .
exit_proc Form Statement
height Form Statement
row Form Statement .
width Form Statement .

Field Definition Statements
field Field Statement
attributes Field Statement
charset Field Statement
check_proc Field Statement
class Field Statement
column Field Statement .
length Field Statement .
mapping Field Statement
next_field Field Statement
row Field Statement . . .
translate_proc Field Statement
value Field Statement . . .

vform_ Subroutine Entry Points
vform_$assign_values
vf orm_$class_blank_f ield_count
vf orm_$class_is_all_blank
vf orm_$class_is_all_non_blank
vform_$class_non_blank_f ield_count
vf orm_$clear_screen
vf orm_$clear_unprotected_fields
vf orm_$close_debug_f ile
vf orm_$close_f orm
vf orm_$debug_atd
vf orm_$debug_off
vf orm_$debug_on
vform_$disable_exit_proc
vf orm_$display_form
vform_$enable_exit_proc
vform_$extract_class_values
vform_$extract_values . . .
vform_$get_attributes
vform_$get_class_modified_flag
vform_$get_field_modif ied_flag
vform_$get_modified_flag
vform_$get_value
vform_$open_form
vform_$position_cursor .

i

1-1

2-1
. 2-6

2-2
2-3
2-4
2-7
2-8
2-9

3-1
3-3
3-4
3-6
3-8
3-10
3-11
3-13
3-14
3-15
3-16
3-17
3-18

4-1
4-2
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-21
4-22
4-23
4-24
4-25
4-26
4-27

VFRG-05c

Section 5

Section 6

Appendix A

01 October 1985

vform_$read_form
vform_$read_transmit_form . . .
vform_$reset_class_modified_flag
vform_$reset_f orm
vf orm_$reset_modif ied_flag .
vform_$set_attributes . . .
vf orm_$set_class_attributes
vform_$set_class_value . . .
vform_$set_value
vform_$test_attributes . . .
vf orm_$test_class_attributes
vform_$update_form

Form Related Commands
cv_form
display_form
list forms .
print_f orm .
vf orm_create_include file

Keyboard Functions
abort_f orm . .
back tab
backward_ char
backward_ word
beginning_of_f ield
delete_ char
end_of _field
end_of _form
error_abort
f irst_f ield_on_next_line
forward_char . .
forward_word . .
insert_mode_off
insert_mode_on
kill_to_eof
next line
nop
previous_line
redisplay_form
reset_f orm .
rubout_char
tab
top_of_form
twiddle_ chars
yank

Form Definition Efficiency
Preplanning
Screen Layout
Blocks of Fields
Attributes
Errors

ii

4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40

5-1
5-1
5-3
5-5
5-6
5-7

6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5

A-1
A-1
A-1
A-1
A-1
A-2

VFRG-05c

Appendix B

Appendix C

Appendix D

01 October 1985

Program Efficiency Using Forms

Writing a Terminal Controller
Entry Points
Required Entry Points.

ini t
bell
clear_attributes
clear_screen . .
clear_to_end_of_line
clear_to_end_of_screen
display_text
get_one_unechoed_char.
position_cursor ..
set_attributes . .

Optional Entry Points.
delete_chars .
display_field. . .
insert_text
interpret_string .
return_clear_attributes_string
return_set_attributes_string
set_forms_modes ..
unset_forms_modes
video_system_init

Display Attributes Handling.

vform_ Subroutine Entry Point Include Files
assign_values
class_blank_field_count
class_is_all_blank . . .
class_is_all_non_blank .
class_non_blank_f ield_count
clear_screen
clear_unprotected_f ields
close_form
disable_exit_proc
display_form . . .
enable_exit_proc .
extract_class_values
extract_values . . .
get_attributes . . .
get_class_modif ied_flag
get_f ield_modif ied_flag
get_modif ied_flag
get_ value
open_form
position_cursor
read_f orm
read_transmit_form
reset_class_modif ied_flag
reset_form
reset_modif ied_flag

B-1

C-1
C-2
C-2
C-2
C-5
C-5
C-6
C-6
C-6
C-6
-C-7
C-7
C-7
C-8
C-8
C-8
C-8
C-9
C-12
C-12
C-12
C-13
C-13
C-14

D-1
D-1
D-1
D-1
D-1
D-1
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-3
D-3
D-3
D-3
D-3
D-3
D-3
D-3

iii VFRG-05c

01 October 1985

set_attributes
set_attributes_and_value
set_class_attributes . .
set_class_value
set_value
test_attributes
test_class_attributes
update_form

iv

D-3
D-3
D-4
D-4

. D-4

. D-4
. . . D-4

D-4

VFRG-05c

' '

Multics Virtual Forms Reference Guide

Section 1

Introduction and Overview

Introduction

The virtual forms or vform_ package is designed to provide an
asynchronous, device independent forms capability for a wide variety
of terminal types. This is accomplished by providing a terminal
controller for the various different terminal types supported. This
terminal controller provides information necessary for the various
terminal functions and screen attributes. Limited support, that is,
support without any screen attributes such as inverse video, etc., i3
provided for any terminal capable of running with the Multics video
system. A hardware forms capability is not required and is not
utilized if it exists. It is a totally asynchronous, software driven
package.

Use of the form software is divided into two major areas: form
definition and form manipulation. Each of these areas is discussed
below.

Form Definition

A form is defined by specifying the various properties of the
form using "form" statements and "field" statements. The details of
these statements are discussed in Sections 2 and 3 respectively. The
"form" statements specify information that applies to the form as a
whole such as the height and width of the form. The "field"
statements specify information that is relevant to each field of the
form such as its location on the screen, its screen attributes,
whether or not it is protected, etc. Fields can even be defined
"like" other fields.

A form definition segment must have a ''.form" suffix, and is
translated to a machine readable segment of the same name as the form
definition segment but without the ".form" suffix (see Form
Translation below). For example, for a form called "input", the form
definition segment would be called "input.form", and the machine
readable form segment would be called "input''. The form designer
should be careful to avoid conflicts when naming the form, the
database, the programs using the forms, etc.

Form Translation

Once all of the information about a form has been defined in the
form definition segment, it may be translated to its machine readable
counterpart using the translator program "cv form". The "cv_form"
translator produces the machine readable form segment with the same

01 October 1985 1-1 VFRG-05c

name as the form definition segment but without the ".form" suffix.

This machine readable form segment defines the initial state of the
form whenever the form is opened.

Form Manipulations

Once a form is defined and converted to a machine readable
format, there are numerous operations that the applications programmer
can perform on the form. A typical scenario is for an application
program to:

1) open the form (vform_$open)
2) display the form (vform_$display_form)
3) read the form (vform_$read_form)
4) interpret the data (part of applications program)
5) display the form again if step 4 could affect the screen in

ways other than using the form (vform_$display_form)
6) go to step 3 if not done

Normally, an application displays a form once, and does not use the
vform_$display_form subroutine unless the screen image has been
destroyed by output external to the forms software, such as error
messages, questions, etc. This is because displaying the screen
requires considerable time, both processing time and real time.
Calling the vform_$read_form subroutine updates the screen with any
changes that may have been made to the fields of the form since the
last call to vform_$read_form, vform_$update_screen, or
vform_$display_form. Such changes to the fields of a form could have
been made with the vform_$set_value, vform_$set_attributes, etc. The
vf orm_$update_screen subroutine will force a screen update of all
changes-to the screen, but its use is not usually needed since the
next time vform_$read_form is called, it updates the screen. The
vf orm_$update_screen subroutine should only be used when some
information must be presented to the user before the next
vform_$read_form operation.

Other form manipulations are performed during the
vform_$read_form. At this time, control is taken from the
applications program, and the forms package is in control. For each
field defined in the form, the designer may specify a "check_proc".
This is a procedure (program) that will be called when the user leaves
the field for any reason. The program may validate the data in the
field and may change the values or attributes of the current field or
any other field of the form to convey an error message to the user.
Entry points into the vform_ subroutine are provided for these
manipulations. A "check_proc" may signal the "abort_form" or
"exit_form" conditions to simulate the user pressing the appropriate
key sequence or function key.

A provision similar to the "check_proc" is provided for use when
exiting a form. This is called an "exit_proc'' and may be used to
ensure that various relationships between fields are maintained. For

01 October 1985 1-2 VFRG-05c

example, an "e:x:it_proc" could enforce the rule that if
given a value. then field B must also be given a value
date in field C must be less than the date in field D.
errors in the same way as a "check_proc".

field A is
or that the
It may report

A description of the "e:x:it_proc" and "check_proc" statements is
provided in Sections 2 and 3 respectively.

Other manipulations are done at various times to change the
attributes of fields, the values of fields, and to activate or
deactivate fields on the screen. These, and all manipulations
performed by the vform_ subroutines, are performed on a copy of the
data. The converted, machine readable form segment always defines the
initial state of the form whenever it is opened, and can only be
changed by modifying the ".form" source segment and reconverting it.
Section 4 describes the various vf orm_ subroutines used for these
manipulations.

01 October 1985 1-3 VFRG-05c

Section 2

Form Definition Statements

The first section of a form definition segment contains
statements that describe the various properties of the form. These
statements describe properties such as the name of the form, the
location of the form on the screen, the size of the form, and a
procedure to be called to validate the data in the form when the form
is exited by the user. The form definition segment is created by the
applications programmer using any text editor and is converted to a
machine readable, binary form segment by a program called "cv_form"
described in Section 5 of this manual.

When the various form and field statements are referred to, the
following format is used:

"<name-of-statement>" <type-of-statement> statement

Such as:

"row" form statement

Which refers to a statement that defines the "row" property of the
form. This format allows the above statement to be distinguished from
the statement:

"row" field statement

which refers to a statement that defines the "row" property of a
field. This convention is adhered to throughout this manual.

A "form" form statement is required to be the first statement in
a form definition segment and an "end" form statement must be the very
last statement of the segment.

Each statement in the form segment begins with a keyword,
followed by a colon(":"), followed by the information pertaining to
the keyword (sometimes required to be in quotes), and ending with a
semicolon. The exact syntax of the various form and field statements
is given below. The "Notes" section for each statement indicates
whether or not a given statement is optional and states the default
value, if any.

01 October 1985 2-1 VFRG-05c

column Form Statement:

Syntax:

column: <unsigned_decimal_integer>;
·col: < unsigned_decimal_integer > ;

Example:

column:
col: 1;

Description:

l · '

The "column" form statement is used in conjunction with the "row" form
statement to define the origin of the form on the screen. This field
defines the column on the.screen where the form is to begin. All
fields defined within the form will have their column positions placed
relative to the column defined in this statement.

Notes:

The "column" form statement is optional, and the default column is 1.

The "column" and "row" form statements are designed to allow a
programmer to define multiple forms that can be active and on the
screen simultaneously.

This feature is not currently implemented. Currently, the form column
statement is checked for validity and ignored.

01 October 1985 2-2 VFRG-05c

.e.nd Form Statement:

Syntax:

end;

Description:

The "end" form statement specifies the end of the form definition
segment. This statement is required to be the last statement in a
form definition segment.

Notes:

Realize that this statement is the only "form" statement that is not
placed at the beginning of the form definition segment. It must be
the last statement in a form definition segment or an error will occur
in the translation.

01 October 1985 2-3 VFRG-05c

exit proc Form Statement:

Syntax:

exit_proc: "<Multics_pathname>";

Example:

exit_proc: ">udd>UserProj>UserName>form_utils_$input_form_exit_pro

Description:

The "exit_proc" form statement is used to define an application
specific program that is to be called whenever the user transmits the
form. This procedure may be used in conjunction with "check_proc"
field statements for the various fields that are defined in the form
to insure that all data is valid before the user is allowed to exit
the form.

Notes:

The "exit_proc" form statement is optional. If an "exi t_proc" form
statement is not specified, then no application specified procedure
will be called when the user transmits the form.

The "<Multics_pathname>" must be a quoted string and may be either a
relative or absolute pathname. If the pathname is a relative pathname
(begins with a "c"), the exit procedure is searched for in the
directory specified relative to the current working directory. If the
pathname is absolute (begins with a">"), the exit procedure is
searched for in the directory specified. If the pathname is simply an
entry name (no ">" or "<"'s), the exit procedure is located using the
vform search paths. See the add_search_paths command in the manual
AG92, Multics Commands and Active Functions, for more information
about search paths.

It is recommended that a standard system error code be returned even
though no action is currently taken to convey any information other
than "beeping" the user's terminal. This is because it is planned
that at some time in the future, a "status line" may be implemented as
one of the screen lines that will display these messages in their text
form. An error code called vf_et_$invalid_data whose message is
"Invalid data for this field" has been provided for this purpose. For
a discussion of creating customized error codes and a partial list of
available error_table_ codes along with their text messages, see the
manual AG91, Multics Programmer's Reference Manual, Section 7.

An "exit_proc" is called with three arguments: the form index of the
form, the name of the form, and a standard system error code. A
non-zero error code indicates that the data did not meet the
requirements of the exit_proc, and the user is not allowed to exit the
form until the data in error is corrected.

01 October 1985 2-4 VFRG-05c

It is the responsibility of the "exit_proc" to inform the user of the
nature and location of the error that causes the exit_proc to return a
non-zero error code. An "exit_proc" may inform users of errors in the
form by using the various vform_ subroutine entry points to manipulate
the attributes of the fields in the form. For example, if field A is
to contain a date which must be less than the date in field B, then
"exit_proc" may activate an error field and set its value to something
like "Date in field A must be less than the date in field B". The
"exit_proc" may do other things like set the offending fields to
inverse video, or change the value and/or attributes of any field of
the form.

The vform software calls the "exit_proc" internally, so it should be
written as to accept parameters as if it were declared and called as
follows:

dcl exit_proc entry (fixed bin(35), char(*),
fixed bin(35));

call exit_proc ((form_index), (form_name), code);

This is not to imply that the applications program needs to call the
exit procedure. This information is provided to describe the
interface used by the vform_ software to call the exit_proc so that
the application programmer will know how to design the exit procedure.
The exit_proc should expect these parameters and handle them
accordingly.

The form index and form_name are passed by value (in parenthesis) so
that any modifications made to these parameters to the "exit_proc" are
ignored. Notice that the code parameter is not passed by value but by
reference since the "exit_proc" is allowed to modify its value. See
AM83, Multics PL/I Reference Manual, Section 12 for a discussion of
passing parameters by reference and by value. See the vform_$open
subroutine entry point described in Section 4 of this manual for more
information about a "form_index".

01 October 1985 2-5 VFRG-05c

.f.ol:.m Form Statement:

Syll-tax:

form: <valid_form_name>;

Example:

form: input_form;

Description:

'l'he "form" form statement defines the beginning of a form in the form
definition segment. It is required to be the first statement in a
form definition segment. If this statement is not the first statement
in a form definition segment, then all statements in the form
definition segment a.re ignored until a;- "form" statement is found.

A <valid_form_name> is a character string of 32 or less characters,
but cannot be the null string. The first letter of the
<valid_form_name> must be alphabetic, and all subsequent characters
(if present) must be alphabetic, numeric, or the special character
It II

Notes:

The "form" form statement is required.

The "form" form statement is designed to give a form a name, and to
separate multiple forms should they be defined within the same form
definition segment.

The feature of allowing multiple forms within the same form segment is
currently not implemented. Therefore, each form must be defined in a
separate segment.

A good rule of thumb to follow when choosing the name of a form is the
name of the segment minus the ".form" suffix. Remember that the
vf_create_include_file uses the name specified by the "form" form
statement when choosing its default output file name.

01 October 1985 2-6 VFRG-05c

height Form Statement:

Syntax:

height: <unsigned_decimal_integer>;

Example:

height: 23;

Description:

The "height" form statement describes how large the form is on its
vertical axis, that is, how many lines on the screen the form may
occupy. It is used to be sure that the form will fit on the screen of
the intended terminal, so its value should not be larger than the
number of lines on the smallest terminal the form may possibly be used
with.

An error is reported if the row specified for any field of the form is
greater than the value of the height of the form.

Notes:

The "height" form statement is optional and the default value is 20.

01 October 1985 2-7 VFRG-05c

.i:QX Form Statement:

Syntax:

row: <unsigned_decimal_integer>;

Example:

row: l;

Description:

The "row" form statement is used in conjunction with the "column" form
statement to define the origin of the form on the screen. The "row"
form statement defines the row on the screen on which the form is to
begin. All fields defined for the form will have their row positions
defined relative to the value of this statement.

Notes:

The "row" form statement is optional and its default value is 1.

The purpose of the "row" and "column" form statements is to allow
multiple forms to exist on the screen simultaneously. This feature is
not currently implemented. Currently, the "row" and "column" form
statements are checked for syntax, but ignored.

01 October 1985 2-8 VFRG-05c

width Form Statement:

Syntax:

width: <unsigned_decimal_nwnber>;

Example:

width: 60;

Description:

The "width" form statement describes the number of columns used in the
form. The value of this statement is used to insure that the form
will fit on the screen of the intended terminal, and should be set to
the number of columns of the smallest screen that the form may be used
on.

An error is reported if part of any field extends beyond the column
specified by the "width" form statement.

Notes:

The "width" form statement is optional and the default value is 79
columns.

01 October 1985 2-9 VFRG-05c

Section 3

Field Definition Statements

The second section of a form definition segment contains a
description of each field in the form and all of its properties. This
section of the form definition segment begins at the first "field"
statement. It ends at the end of the form definition segment with an
"end" form statement. See the description of the "end" form statement
in section 2 for details. Only one "end" form statement is allowed,
and it must be the last statement of the form definition segment.

When the various form and field statements are referred to, the
following format is used:

"<name-of-statement>" <type-of-statement> statement

Such as:

"row" form statement

which refers to a statement that defines the "row" property of the
form. This format allows the above statement to be distinguished from
the statement:

"row" field statement

which refers to a statement that defines the "row" property of a
field. This convention is adhered to throughout this manual.

Each field definition consists of a "field" field statement
followed by various other field statements that describe the name,
location, and other properties of the field.

The field statements allow the designer to define the current
field "like" another field. When this is used, the field that the
current field is "like" must be previously defined in the current
form, and the definition must have been valid. If not, an error will
occur when the form is translated to its binary form using the cv_form
command. It is likely that one error can cause many error messages if
fields are defined "like" other fields. See the description of the
"cv_form" command in section 6 for more information.

If a field or one of its properties is defined "like" another
field, the new field or property takes on all of the attributes of the
field or property which it is "like". Defining a field "like" another
field basically just sets the default properties of the new field to
be the same as the properties of the old fields. These "defaults"
may, of course, be overridden by simply redefining any property with
the appropriate field statement. Defining a property "like'' the
corresponding property of another field copies. the property from the

01 October 1985 3-1 VFRG-05c

previously defined field into the new field. The only exception to
this is the "active" attribute (see the attribute field statement
lilelow). A field is always considered "active" unless explicitly
de.fined otherwise using an "attribute" statement. Any changes to the
properties of a field which is "like" another field replace the values
set up by the "like", that is, specifying a "check_proc" for a field
which is like another field will replace the "check_proc" obtained by
the "like" attribute, not called in addition to the "check_proc" of
the field that the current field is "like".

Certain field properties are "required" to insure that the
information pertaining to a field is valid. Whether or not a field is
required is described in the Notes section of each statement along
with the default, if any. It should be noted, however, that if a
field is defined "like" another field, then even these required
properties are obtained from the "like" field.

Remember that an "end" form statement must be present after all
fields have been defined. See page 2-3 for a desoription of the "end"
form statement.

01 October 1985 3-2 VFRG-05c

field Field Statement:

Syntax:

field: <field_name>;
field: <field_name> like <previously_defined_field>;

Example:

field: date;
field: date like first_date;

Description:

The "field" field statement is used to begin the definition of a field
in a form. A "field" field statement must be the first statement
after the various properties of the form are defined (See Section 2).
A "field'' field statement is also used to separate each field in the
form, that is, a "field" field statement marks the beginning of the
definition of a new field.

A field may be defined to be "like'' another field in which case the
new field takes on all of the properties of the field which it is
"like" which are not explicitly redefined. The only exception to this
is the "active" field attribute (See the "attribute" field statement
below). All fields are active unless specifically defined otherwise
in an "attribute" field statement.

A field name is a character string of 32 characters or less, the first
of which must be an alphabetic character. Any additional characters,
if present, must be alphabetic, numeric, or the special character " "

Notes:

The "field" field statement is required for each field defined in the
form.

Once the first "field" field statement has been encountered, none of
the properties of the form (as described in Section 2) may be defined
or changed.

01 October 1985 3-3 VFRG-05c

attributes Field Statement:

Syntax:

attributes: <attribute_list>;
attribute: <attribute_list>;
attr: <attribute_list>;
attributes: like <previously_defined_field>;
attr: like <previously_defined_field>,<attribute_list>;

Example:

attributes: underlined,Aprotected,active,inverse;
attribute: underlined,Aprotected,active,inverse;
attr: u,Aprot,active,inv;
attributes: like first_field;
attr: like field_x_title,active,prot;

Description:

The ''attributes" statement describes the various attributes of the
field. These attributes describe the characteristics of the field.
Below is a list of the attributes that are available. An attribute
may be negated by preceding it with a "A" (caret) character. The
items of an attribute_list are separated by commas and must be
terminated with a semicolon.

Field attributes may also be defined "like" those of another
field, optionally adding other attributes as shown above.

The attributes that a field may have are listed below. Short names or
abbreviations (if any) are listed in parentheses.

active (act, a): Whether or not the field will appear when the
form is displayed. For example, fields used only to display
error information would be inactive until the error occurs.
This may be accomplished by using check_proc's for the field
or exit_proc's for the form.

protected (protect, prot, p): Whether the data in the field is
protected or whether it may be modified. When moving the
cursor around on a form, it is not possible to position the
cursor in a protected field. However, routines such as
check_proc's or exit_proc's are free to modify the values of
these fields.

hold_at_end (hold): If a field has the "hold_at_end" attribute,
then the forms package will not automatically tab to the
next field when the field is full, that is, after inserting
data into the last character position of a field. The
default mode is "Ahold_at_end", which means that, by
default, once data has been placed in the last character
position of the field by the user, the forms package
automatically tabs to the next active, ~p·rotected field.

01 October 1985 3-4 VFRG-05c

overflow (over): If a field has the "Aoverflow" attribute, then
the user is not allowed to insert characters out of the end
of the field. This is useful to insure that data is not
lost in text fields. When an overflow of data does occur,
the sub_error_ condition is signaled. The application
program may trap this condition and handle the condition
appropriately. See the "Notes" section for more
information.

The following attributes are available to the form designer, and are
available only when the terminal is able to support the attributes:

blinking (blink, b)
dotted_underlined (dotted_underline, du)
half_bright (half, h)
inverse_video (inverse, inv, i, reverse_video, reverse, rev, r)
underlined (underline, under, und, u)
vertical_separator (vs)

Notes:

The "attributes" field statement is optional, and the default is:

When the "Aoverflow" attribute is specified for a field, and the user
attempts to make an insertion into a field that would cause data to be
pushed out of the field, the sub_error_ condition is signaled so that
the applications program can be notified of this event. The
sub_error_ condition is signaled with the error code
vf_et_$field_overflow and the condition name "field overflow". This
condition is also signaled with the quiet_restart flag enabled which
means that if the application does not intercept the condition, then
it will simply be ignored. See AG91, Multics Programmer's Reference
Manual, section 7 for a discussion of conditions and their handling.

01 October 1985 3-5 VFRG-05c

charset Field Statement:

Syntax:

<quoted_string_or_valid_keyword>;
like <previously_defined_field>;

charset:
charset:
charset: like <previously_defined_field>,<quoted_string_or_valid_k

Example:

"1234567890";
upper;

I* a numeric field */
I* UPPER CASE field */

charset:
charset:
charset:
charset:
charset:

numeric," .e+-";
like other_data;
like other_data," ";

I* Numeric, blank, ". e+-" *I
I* Same as field "other_data */
I* Same as "other_field" plus "

Description:

The charset field statement defines the allowable set of characters
for a field. The argument to the statement is a quoted string that
contains the set of allowable characters or a designated keyword
(described below). If a user types a character not in the defined
character set while in the field, the terminal's bell is rung and the
character is not entered into the field.

Notes:

The default is no "charset" which accepts all characters.

Certain keywords are provided for ease of use for often used character
sets. The acceptable keywords are described below with their short
names or abbreviations (if any) in parentheses.

alphabetic (alphabet, alpha, a): The field must contain only
lower or upper case characters (a-z and A-Z).

alphanumeric (an): The field must contain upper case characters,
lower case characters, or numbers. Note that this does not
include a sign or decimal point, thus only unsigned integers
are allowed in addition to the upper and lower case
characters.

lower (1): The field must contain all lower case (a-z)
characters.

numeric (numbers, n): The field may only contain numbers. Note
that this does not include a sign or decimal point, thus
only unsigned integers are allowed when this keyword is
specified.

text (printable_chars, printables, any, ascii): This allows any

01 October 1985 3-6 VFRG-05c

printable, ASCII character. This is the default if no
charset statement is given.

upper (u): The field must contain all upper case (A-Z)
characters.

Also, remember that these keywords are not the only way to define
"charsets". Any set of characters may be specified by placing the
desired character set in quotes as the argument to this keyword.

Note that "charset" and "mapping" apply to each individual character
that is entered into the form, while "translate_proc" and "check_proc"
apply to the field as a whole and are only applied when the field is
exited.

01 October 1985 3-7 VFRG-05c

check proc Field Statement:

Syntax:

check_proc:
check_proc:

Example:

check_proc:
check_proc:
check_proc:

Description:

"cMultics_pathname>";
like cpreviously_defined_field>;

">udd>UserProj>UserName>form_utils_$check_this_one";
"form_utils_$check_this_one";
like date_field;

The "check_proc" field statement is used to define a procedure
(program) that is called to validate the contents of the field upon
exiting the field. The program is called with four parameters: the
form_index, the field_name, the field_value, and a standard error
code.

If the returned error code is non-zero, the user is not allowed to
exit the field until the data is corrected. Currently, there is no
means of communicating the nature or location of the error to the user
directly, however, the "check_proc" is free to modify any attribute of
.a1lJl field, such as activating an error control field to inform the
user of the nature of his error using any of the vform_ subroutines.

Notes:

The default is no "check_proc".

The "<Multics_pathname>" must be a quoted string and may be either a
relative or absolute pathname. If the pathname is a relative pathname
(begins with a "c"), the check procedure is searched for in the
directory specified relative to the current working directory. If the
pathname is absolute (begins with a">"), the check procedure is
searched for in the directory specified. If the pathname is simply an
entry name (no">" or "c"'s), the check procedure is located using the
vform search paths. See the add_search_paths command in the manual
AG92, Multics Commands and Active Functions, for more information
about the search path facility.

If both a "translate_proc" and a "check_proc" are defined for a
particular field in the form, the ''translate_proc" is called before
the "check_proc" .

01 October 1985 3-8 VFRG-05c

It is recommended that a standard system error code be returned even
though no action is currently taken to convey any information other
than "beeping" the user's terminal. This is because it is planned
that at some time in the future, a "status line" may be implemented as
one of the screen lines that will display these messages in their text
form. An error code called vf_et_$invalid_data whose message is
"Invalid data for this field" has been provided for this purpose. For
a discussion of creating customized error codes and a partial list of
available error_table_ codes along with their text messages, see the
manual AG91, Multics Programmer's Reference Manual, Section 7.

All parameters to the check_proc except for the "code" parameter are
passed "by value" which means that when the check_proc returns, any
modifications to parameters other than the "code" parameter will be
ignored when the check_proc returns. If the programmer wishes to
change the value of the field for which the check_proc was called, the
programmer should call the vform_$set_value subroutine from within the
check_proc.

The vform_ software calls the "check_proc" internally, so it should be
written to accept parameters as if it were declared and called as
follows:

dcl check_proc entry (fixed bin(35), char(*), char(*), char(*),
fixed bin(35));

call check_proc ((form_index), (form_name), (field_name),
(field_value), code)

This is not to imply that the applications program needs to call the
"check_proc" procedure. This information is provided to describe the
interface used by the vform_ software to call the "check_proc" so that
the applications programmer will know how to design the the check
procedure. The "check_proc" should expect these parameters and handle
them accordingly.

01 October 1985 3-9 VFRG-05c

class Field Statement:

Syntax:

classes:
class:
classes:

Example:

<class_list>;
like <previously_defined_field>;
like <previously_defined_field>,<class_list>;

class_l,error_class,upper_class;
like first_field;

classes:
class:
classes: like other_field,class_2,lower_class,middle_class;

Description:

The "class" field statement is used to define one or more classes to
which the current field belongs. Operations can be performed on the
fields in a class as a group, rather than performing the operation on
each field separately.

Notes:

This feature can be quite useful for combining several functions into
one form or may be used in situations that require different
additional information depending upon the value of a specific field.

This feature may also be used to change the attributes or values of
all the fields belonging to the specified class with one vform_ call.

01 October 1985 3-10 VFRG-05c

column Field Statement:

Syntax:

column:
col:

Examples:

col:
column:
column:
column:
col:
col:

Description:

<column_expression>;
<column_expression>;

5;
data_field;
overlay other_field + 3;
like title_field;
like another_field - 2;
overlay data_field - 2;

The "column" field statement is used to define the column on the form
(relative to the form origin).

The <column_expression> which describes the location of the field on
the screen may be expressed in several forms. It may be:

o An unsigned decimal integer specifying the exact location on
the screen

o Defined to be "like" or "overlay" with respect to a previously
defined field in the form. The "like" and "overlay"
keywords are synonymous.

o Defined to begin in the column immediately following the end of
a previously defined field.

o Defined relative to the beginning or the end of a previously
defined field using expressions of simple addition or
subtraction.

See the "Notes" section for some examples that further explain the
usage.

A field may also be defined relative to the end of a previously
defined field exactly as described above, but leaving out the "like"
or "overlay" token. See the Notes section for more information.

Notes:

Some examples follow to attempt to clarify the use of the various
options to the column statement.

01 October 1985 3-11 VFRG-05c

[1] field:
column:
row:

field:
column:
row:

old_field;
5;
2;

new_field;
like old_field;
3;

Example [1] will result in new field existing in the same column
(column 5) as old_field.

[2] field:
col:
row:

field:
col:
row:

old_field;
5;
2;

new_field;
overlay old_field + 2;
3;

Example [2) will result in new_field being two columns over from the
beginning of old_field (column 7);

[3] field:
col:
length:

field:
col:

old_field;
5;
3;

new_field;
old_field + l;

Example [3] will result in new_field being located in screen location
1 column beyond the end of old_field (column 9);

01 October 1985 3-12 VFRG-05c

length Field Statement: Syntax:

length: <unsigned_decimal_integer>;
len: like <previously_defined_field>;

Examples:

len: 12;
length: like data_field;

Description:

The "length" field statement determines the length of the field that
is being defined.

Notes:

A "length" or a "value" field statement is required for each field.

If a "value'' field statement is specified, there is an implicit
"length" field statement whose value is the length of the string
specified in the "value'' field statement. This default can be
overridden with an explicit "length" field statement.

01 October 1985 3-13 VFRG-05c

mapping Field Statement:

Syntax:

mapping: <quoted_string_or_keyword>,<quoted_string_or_keyword>;
map: <quoted_string_or_keyword>,<quoted_string_or_keyword>;

Examples:

map: upper.lower;
mapping: "xyz" , "ABC" ;

Description:

The "mapping" field statement is used to indicate that one set of
characters is "mapped" or translated to another set of characters as
they are entered. This capability allows the implementation of upper
case only fields, etc.

Notes:

The "mapping'' field statement is optional, and if omitted, no mapping
is done. The keywords provided are "upper", and "lower", thus the
following "mapping" field statement would indicate that all lower case
characters are mapped (or translated) to upper case characters.

mapping:
mapping:

lower, upper;
"abcdefghijklmnopqrstuvwxyz","ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Note that "charset" and "mapping" apply to each individual character
that is .entered into the form, while "translate_proc" and "check_proc"
apply to the field as a whole and are only applied when the field is
exited.

01 October 1985 3-14 VFRG-05c

next field Field Statement:

Syntax:

next_field: <field_name>;
next: <field_name>;

Examples:

next field: data_field;
next: data_field;

Description:

The "next_field" field statement provides a mechanism for defining
"connected" fields. A set of connected fields might be used to define
a group of fields on a form that, together, make up a piece of text.
It may also be used to hold data that is made up of more than one line
on the form. Connected fields are special in that deleting a
character from the first, causes a character to be moved up from the
second, and so on. Inserting characters in a connected field causes
characters which are pushed off the end of the first field to be
inserted in the beginning of the second, and so on.

Notes:

It is often necessary to place a block of text on a form, and
"next_field" is the facility that allows a user to enter and edit that
data. The capabilities provided are primitive, but should allow a
user to accomplish most editing necessary for a forms application.

The last field in a chain of fields with "next" fields may have the
"Aoverflow'' attribute. If this is the case, and the user attempts to
insert data that would cause data to be pushed off the screen, the
sub_error_ condition is signaled as described in the "attributes"
field statement above.

01 October 1985 3-15 VFRG-05c

l:IDl Field Statement:

Syntax:

row: <unsigned_decimal_integer>;
row: like <previously_defined_field>;
row: like <previously_defined_field> ± <unsigned_decimal_integ

Example:

row: 4;
row: like other_field;
row: like other_field + 2;
row: like field_x - l;

Description:

The "row" field statement defines the row on the screen (relative to
the origin of the form) where the field is to be placed. The row may
be specified "like" that of another field, and it will be on the same
row. The row may be specified "like" that of another field, but with
an additional offset, in which case, the field is defined relative to
the field it is "like".

A "row" statement is required for each field, unless it is "like"
another field in which case the row is the same as that field.

01 October 1985 3-16 VFRG-05c

translate proc Field Statement:

Since a check_proc may now modify its "field_value" parameter,
translate_proc's are obsolete.

01 October 1985 3-17 VFRG-05c

value Field Statement:

Syntax:

value:
val:

Example:

value:
value:
val:

Description:

<quoted_string>;
like <previously_defined_field>;

"Part Number";
like data_fieldl;
"Purchase Order"

The "value~· field statement gives a particular field its initial
value. Thi$ statement is generally used to give protected (or title)
fields their values, or to give unprotected (or data) fields their
initial values.

Notes:

A "value" or a "length" field statement is required for each field.

Specifying a value for a field implies a length for the current field
equal to the length of the string specified in the "value" field
statement. This length may be overridden with an explicit "length"
field statement.

01 October 1985 3-18 VFRG-05c

Section 4

Subroutines

This is a description of the various subroutine entry points
available to the forms programmer. These subroutine entry points
allow the programmer to open, close, and manipulate the various
properties of a form.

A simpler method for calling each of the subroutines described in
this section is available when a call to sub_err_ is appropriate when
an error occurs. The call to sub_err_ prints the error message and
places the user at a new command level. See Appendix D for details.

01 October 1985 4-1 VFRG-05c

' .

Entry: vform_$assign_values

This entry point is designed to allow a programmer to assign
values to the fields of a form. It is passed an array of the names of
the fields that are to be given values and an array of the values to
be assigned.

Usage

dcl vform_$assign_values entry (fixed bin(35),
(*) char(*) aligned, (*) char(*) aligned, fixed bin(35),
fixed bin(35));

call vform_$assign_values (form_index, name_array, data_array,
error_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. name_array (Input)
is an array of the names of the fields which are to have
values assigned to them. This array must be aligned on a
word boundary and the lower bound of the name array must be
equal to the lower bound of the data_array. The names in
name_array may be in any order and any number of fields may
be assigned with one call. It is recommended that the
dimension of the name_array and data_array be identical.
The upper bound of the data_array may be larger than the
upper bound of the name_array but if so, these elements will
be ignored

3. data_array (Input)
is an array containing the values of fields to be assigned
whose names are contained in the corresponding element of
the name_array. See name_array above for a description of
the alignment and dimension of the arrays.

4. error_index (Output)
is valid only if the code (see below) is not zero. If an
error occurred while assigning a value to a field in the
name_array then the error index will be the index into the
name_array of the field name that caused the error. See
Notes below.

5. code (Output)
is a standard status code.

01 October 1985 4-2 VFRG-05c

Notes:

The arrays which are passed to this subroutine entry point must
be aligned so that the vform_ package will be compatible with Fortran
77 and Cobol. Both Fortran 77 and Cobol arrays are aligned on word
boundaries and cannot be forced otherwise. PL/1 arrays are by default
unaligned, so PL/l programs using this subroutine entry point must
force the alignment of the arrays which are used as parameters to this
subroutine entry point.

The error_index parameter is used to indicate to the programmer
which of the field names in the field array caused the error to occur.
Thus, this parameter has no meaning when code is equal to zero. For
example, if the name_array has 10 elements, but the name of the field
specified in name_array(4) is not a valid name of a field of the form,
then code will have a value of vf_et_$field_not_found_in_form, and
error_index will have a value of 4.

If error_index is zero, code is not necessarily zero. There may
be other errors not related to a specific field name specified in the
name_array.

If any error is detected, processing of the arrays stops, and no
further fields are assigned.

The command vf_create_include_f ile may be used to create an
include file which defines data structures suitable for use in
conjunction with this subroutine entry point. This command is
documented in section 5.

01 October 1985 4-3 VFRG-05c

Entry: vform_$class_blank_field_count

This entry point returns the number of fields in a given class
whose value is blank.

dcl vform_$class_blank_field_count entry (fixed b!n(35),
char(*), fixed bin(35), fixed bin(35));

call vform_$class_blank_field_count entry (form_index,
class_name, blank_field_count, code);

where:

1. form_inde:x: {Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. class_name (Input)
is the name of the class whose blank field count is dBsired.

3. blank_field_count (Input)
is the number of fields in the given class whosB valuB is
blank.

4. code (Output)
is a standard status code.

Notes:

The programmer should be aware that ALL fields in a class are checked,
not just the active or non-protected ones.

01 October 1985 4-4 VFRG-05c

E»try: vform_$class_is_all_blank

This entry point is used to determine if all the fielas in a
class have values of blanks only.

Usage

dcl vform_$class_is_all_blank entry (fixed bin(35), char(*),
fixed bin(35), fixed bin(35));

call vform_$class_is_all_blank (form_index, class_name, is_blank,
code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. ~lass_name (Input)
is the name of the class whose values are to be checked.

3. is_blank (Output)
has the value of 1 if all of the fields in the class are
blank and has the value of O if at least one field in the
class is non-blank.

4. code (Output)
is a standard status code.

Notes: .

The programmer should be aware that ALL fields in a class are checked,
not just the active or non-protected ones.

01 October 1985 4-5 VFRG-05c

Entry: vform_$class_is_all_non_blank

This entry point is used to determine of all of the f ielas in a
given class have non-blank values.

d.cl vform_$class_is_all_non_blank entry (fixed bin(35), char(*),
fixed bin(35), fixed bin(35));

call vform_$class_is_all_non_blank (form_index, class_name,
is_non_blank, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. class_name (Input)
is the name of the class whose values are to be tested.

3. is non blank (io)
has a value of 1 if all fields in the given class have
non-blank values and has a value of 0 if at least one field
in the given class has a blank value.

4. code (Output)
is a standard status code.

Notes: _

This entry point can be used to determine if all values in a given
class have been filled in, that is, it can be used to implement
"required fields".

The programmer should be aware that ALL fields in a class are checked,
not just the active or non-protected ones.

01 October 1985 4-6 VFRG-05c

Entry: vform_$class_non_blank_field_count

This entry point is used to determine how many fields in a given
class have non-blank values.

Usage

dcl vform_$class_non_blank_field_count entry (fixed bin(35),
char(*), fixed bin(35), fixed bin(35));

call vform_$class_non_blank_field_count (form_index, class_name,
non_blank_field_count, code);

where:

l. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. class_name (Input)
is the name of the class whose non-blank field count is to
be returned for.

3. non_blank_field_count (Output)
is the number of fields in the given class whose value is
non-blank.

4. code (Output)
is a standard status code.

Notes:

The programmer should be aware that ALL fields in a class are checked,
not just the active or non-protected ones.

01 October 1985 4-7 VFRG-05c

Entry: vform_$clear_screen

This entry point clears the screen of the terminal. It should
not be used from a check_proc or an exit_proc unless it also restores
the image of the screen using vform_$display_form.

Usage

dcl vform_$clear_screen entry (fixed bin(35), fixed bin(35));

call vform_$clear_screen (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

The form_index is required for this entry point so that the
vf orm_ software can be sure that the terminal type information has
been initialized in the process.

This procedure does not communicate the fact that the screen has
been altered to other form software, so it should not be used from a
check_proc or exit_proc unless the check_proc or exit_proc is prepared
to restore the screen.

01 October 1985 4-8 VFRG-05c

. .

Entry: vform_$clear_unprotected_fields

This entry point clears all of the unprotected fields in the
specified form. Clearing a field is equivalent to its value to
blanks.

dcl vform_$clear_unprotected_fields entry (fixed bin(35),
fixed bin(35));

call vform_$clear_unprotected_fields (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code
is a standard status code.

Notes:

Although the routine is quite effective, it is more efficient to
define a "class" of fields which contains all of the unprotected
fields of the form and use the vform_$set_class_value subroutine entry
point to set the value of all fields in the class to blanks.

01 October 1985 4-9 VFRG-05c

Entry: vform_$close_debug_file

This entry point closes the debugging file attached with the
vform_$debug_atd entry point.

Usa~e

dcl vform_$close_debug_file entry ();

call vform_$close_debug_file ();

Notes:

The debugging feature should be disabled using the vform_$debug_off
subroutine entry point before the debugging file is closed to prevent
the debugging feature from displaying information on the user's
terminal.

See the entries for vform_$debug_atd, vform_$debug_on, and
vform_$debug_off for more information.

01 October 1985 4-10 VFRG-05c

Entry: vform_$close_form

This entry point closes a form that has been previously opened by
the vform_$open_form subroutine entry point. Closing a form
invalidates the form index and frees a considerable amount of storage
used for each form. Since the amount of temporary storage available
to a user is finite, it is highly recommended that forms be closed
after the application is done with it, and that cleanup handlers be
used to insure that a form is closed if a program is interrupted and
its stack frame released. Again, closing a form frees a considerable
amount of storage.

dcl vform_$close_form entry (fixed bin(35), fixed bin(35));

call vform_$close_form (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

If the form is successfully closed, the form index will be set to
zero.

It is not possible to over-emphasize the importance of closing forms
when the program has finished with them. Not closing the forms may
cause serious debugging problems as open forms take up considerable
space in the process directory. Not closing the forms may cause fatal
process errors when too many forms are opened or when the user runs a
program too many times. The moral of the story is, close all forms
when done, and establish cleanup handlers to close forms if/when a
program terminates unexpectedly.

01 October 1985 4-11 VFRG-05c

Entry: vform_$debug_atd

This entry point is used to attach the vform_debug_ I/O switch
with the specified attach description. This entry point is used in
conjunction with the vform_$debug_on and vform_$debug_off entry points
to produce a tracing of what is happening with the various forms
subroutines.

Usage

dcl vform_$debug_atd entry (char(*));

call vform_$debug_atd (attach_desc);

-or-

call vform_$debug_atd ("vfile_ debug_output_file");

where:

1. attach_desc (Input)
is an attach description acceptable to the iox_$attach_name
or iox_$attach_ptr subroutines.

Notes:

See the Multics Programmers' Manual Reference Guide (AG91) Section 5
for a discussion of I/O switches. See the Multics Programmers' Manual
Subroutines (AG93) Section 2 for a discussion of the iox $attach name - -
and iox_$attach_ptr subroutines.

The vform_$debug_atd entry point simply sets up the vform_debug_ I/O
switch. The vform_$debug_on subroutine must be used to start the
tracing, and the vform_$debug_off subroutine will stop the tracing.

The applications program is welcome to output its own tracing
information on the vform debug iocb, but it is suggested that the
applications program not modify the attributes of the iocb. The iocb
is called vfs_$debug_iocb and should be declared:

dcl vfs_$debug_iocb pointer external static;

01 October 1985 4-12 VFRG-05c

Entry: vform_$debug_off

This entry point turns off the tracing started with
vform_$debug_on. It does not close the debug output file.

Usa~e

dcl vform_$debug_off entry ();

call vform_$debug_off ();

Notes:

The vf orm_$debug_of f entry point is used to stop the tracing
information from being written to the debugging iocb. This is so
tracing may be stopped and later restarted. It does not close the
debugging file. The vform_$close_debug_file must be used to close the
file.

See also the vform_$debug_on, vform_$debug_atd, and
vform_$close_debug_file subroutine entry points for additional
information.

01 October 1985 4-13 VFRG-05c

Entry: vform_$debug_on

This entry point enables (or reenables) various forms of tracing
to be sent to the vform debugging iocb. See the vform_$debug_atd
subroutine entry point for more information.

Usage

dcl vform_$debug_on entry();

call vform_$debug_on ();

Notes:

The tracing that is enabled by this entry point is quite extensive,
and could take up quite a bit of disk space.

This entry point is provided mostly for the use of developers of the
vform_ package, but may be of some use to the applications program.
Most of the events that happen with respect to the forms software are
logged and a great deal of other information is recorded. However, it
should be noted that all events are not recorded in the debugging log.
A more complete and/or selective logging may be provided as a future
enhancement.

It is recommended that the vform_$debug_atd subroutine entry
point be called before tracing is started to prevent information from
being sent to the user's terminal. The I/O switch user_output is used
by default.

01 October 1985 4-14 VFRG-05c

Entry: vform_$disable_exit_proc

This entry point is used to disable the calling of the
"exit_proc" for a form when the form is exited. This is particularly
useful for the case when the same form is used for input and
retrieval. In this case. some data fields may be protected and
contain invalid data. The "exit_proc" would find the invalid data and
would prevent the user from exiting the form normally.

Usage

dcl vform_$disable_exit_proc entry (fixed bin(35),
fixed bin(35));

call vform_$disable_exit_proc (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

The calling of the exit_proc may be enabled with a call to
vform_$enable_exit_proc.

01 October 1985 4-15 VFRG-05c

Entry: vform_$display_form

This entry point is used to display a form on the screen. This
operation should be done before a call to vform_$read_form. It causes
a complete redisplay of the screen and should only be done when
necessary such as the first time a form is displayed on the screen or
when some output external to the forms package may have damaged the
screen contents as this operation is both processor and real time
consuming. It is not necessary to re-display a form after each
modification This may be useful to display a form that contains
information and does not require any user interaction, or to insure
that the screen is in a known state.

Usage

dcl vform_$display_form entry (fixed bin(35), fixed bin(35));

call vform_$display_form (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

The vform_$display_form routine may be used in cases where the
programmer simply wants to display the form on the screen, such as
after a different form has been on the screen or when the program has
caused output to the screen other than output from the forms package.

01 October 1985 4-16 VFRG-05c

Entry: vform_$enable_exit_proc

This entry point is used to enable the calling of the "exit_proc"
for a form after the feature has been disabled with
vform_$disable_exit_proc.

Usage

dcl vform_$enable_exit_proc entry (fixed bin(35),
fixed bin(35));

call vform_$enable_exit_proD (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

The calling of an exit_proc is enabled by default, but can be
disabled with the vform_$disable_exit_proc subroutine entry point.

01 October 1985 4-17 VFRG-05c

Entry: vform_$extract_class_values

This entry point is used to extract the values for a class of
fields into the given data array. Since the order in which the data
is returned is not defined, this entry point is of little use.

Usa~e

dcl vform_$extract_class_values entry (fixed bin(35), char(*),
(*) char(*), fixed bin(35), fixed bin(35));

call vform_$extract_class_values (form_index, class_name,
data_array, nused, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name of the class whose values are to be extracted.

3. data_array (Output)
is an aligned array whose dimension should be large enough
to accommodate all of the fields in the given class. The
array must be word aligned.

4. nused (Output)
is the number of entries in the array that were used. This
allows the programmer to pass in an array larger than is
necessary with no loss of efficiency since those elements of
the array that are not needed are not used.

5. code (Output)
is a standard status code.

Notes:

For a discussion of the required alignment of the array
parameter, see the description for the vform_$extract_values
subroutine entry point.

The order in which data is returned is not defined, and the only real
use for this entry point would be to test to see if all of the fields
in a particular class have the same value.

01 October 1985 4-18 VFRG-05c

Entry: vform_$extract_values

This entry point is designed to allow the programmer to retrieve
the data entered into the form. It is passed an array of the names of
the fields that are to be returned, and returns an array of the data
corresponding to the name array.

Usage

dcl vform_$extract_values entry (fixed bin(35),
(*)char(*) aligned, (*) char(*) aligned, fixed bin(35),
fixed bin(35));

call vform_$extract_values (form_index, name_array, data_array,
erTor _index!.. code) ;

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. name_array (Input)
is an array of the names of the fields to be returned. This
array must be aligned on a word boundary and the lower bound
(lbound) of the array must be equal to the lower bound of
the data_array. The names in name_array may be in any order
and any number of fields may be returned with one call. It
is recommended that the dimension of the name_array and the
data_array be identical. The upper bound (hbound) of
data_array may be larger that the upper bound of name_array,
but these elements will be ignored, and thus their values
will be undefined.

3. data_array (-Output)
is an array that the data in the field specified by the
corresponding item of the name_array is returned into. This
array must be aligned on a word boundary, and the lower
bound (lbound) of the array must be equal to the lower bound
(lbound) of the name_array. The upper bound (hbound) of the
data_array must be greater than or equal to the upper bound
(hbound) of the name_array. It is recommended that the
dimension of the name_array and the data_array be identical.

4. error_index (Output)

5. code

is valid only if the code (see below) is not equal to zero.
If an error occurred while extracting one of the values for
a field specified in the name_array (see above), then the
error_index will be the index into the array of the field
that caused the error. See Notes below.

(Output)

01 October 1985 4-19 VFRG-05c

is a standard status code.

Notes:

The arrays that are passed to this routine must be aligned so
that the vform_ package will be compatible with Fortran and Cobol.
Both Fortran 77 and Cobol arrays are aligned on word boundaries, and
cannot be forced otherwise. PL/l arrays can be made to be aligned or
unaligned, and unaligned is the default, therefore, PL/l programs must
force alignment of the arrays used in this entry point.

The parameter error_index is used to indicate to the programmer
which of the field names in the field array caused the error to occur.
Thus, this parameter has no meaning when code is equal to zero. For
example, if the name_array .. has 10 elements, but the name of the field
specified in name_array(4) is not a valid name of a field of the form,
then code will have a value of vf_et_$field_not_found_in_form, and
error_index will have a value of 4. The value of error_index being
zero is not an indication that no error occurred. There may be other
errors not relating to a specific field name specified in the
name_array.

The command vf_create_include_f ile may be used to create an
include file which defines data structures suitable for use in
conjunction with this subroutine entry point. This command is
documented in section 5.

01 October 1985 4-20 VFRG-050

Entry: vform_$get_attributes

This entry returns the attributes of a given field.

dcl vform_$get_attributes entry (fixed bin(35), char(*),
char(*), fixed bin(35));

call vform_$get_attributes (form_index, field_name, attributes,
code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. field_name (Input)
is the name of the field whose attributes are to be
retrieved.

3. attributes (Output)
is the current attributes of the specified field. This
string should be 256 characters long to accommodate the
longest mode string ever anticipated.

4. code (Output)
is a standard status code.

Notes:

The attributes returned may be any of the names described in the
attributes field statement in Section 3. Their order and which
abbreviations are returned is not defined. Use the
vform_$test_attributes to test to see if a field has a given set of
attributes.

The string returned will be acceptable to as input to
vform_$set_attributes.

01 October 1985 4-21 VFRG--05c

Entry: vform_$get_class_modified_flag

This entry point is used to determine whether or not the value of
·any field in the specified class of fields was modified during the
last call to vform_$read_form or vform_$update_form.

Usa~e

dcl vform_$get_class_modified_flag entry (fixed bin(35),
char(*), fixed bin(35), fixed bin(35));

call vform_$get_class_modified_flag (form_index, class_name,
modified, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name of the class whose modifi.ed flags are to he
checked.

3. modified (Output)
is an integer number whose value will be O if no fields in
the specified class were modified, and 1 if any of the
fields in the class have been modified.

4. code (Output)
is a standard status code.

Notes:

The modified parameter is a fixed bin(35) number, but its value will
be either O or 1 only.

The internal modified flag is automatically reset with each call to
vform_$read_form or vform_$update_form.

01 October 1985 4-22 VFRG-05c

Entry: vform_$get_field_modified_flag

This entry point is used to determine whether or not the value of
a field was modified since the last call to vform_$read_form or
vform_$update_form.

Usage

dcl vform_$get_field_modified_flag entry (fixed bin(35),
char(*), fixed bin(35), fixed bin(35));

call vform_$get_field_modified_flag (form_index, fi.eld_name,
modified, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. field_name (Input)
is the name of the field whose modified flag is to be
checked.

3. modified (Output)
is an integer number whose value will be O if the field has
not been modified and l if any of the field has been
modified.

4. code (Output)
is a standard status code.

Notes:

The modified parameter is a fixed bin(35) number, but its value will
be either 0 or 1 only.

The internal modified flag is automatically reset with each call to
vform_$read_form or vform_$update_form.

01 October 1985 4-23 VFRG-05c

Entry: vform_$get_modified_flag

This entry point returns information telling the caller whether
any of the data in the fields of the form has been modified since the
last call to vform_$read_form or vform_$update_form.

Usage

dcl vform_$get_modified_flag entry (fixed bin(35),
fixed bin(35), fixed bin(35));

call vform_$get_modified_flag (form_index, modified, code);

where:

l. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. modified (Output)
is an integer whose value is O if no data in the fields of
the form has been modified, and 1 if any of data in the
fields of the form has been modified.

3. code (Output)
is a standard status code.

Notes:

The modified parameter is a fixed bin(35) number, but its value will
be either O or 1.

The modified flag is an indication of the data in a field changing,
not its attributes, thus if a field changes from blinking to
Ablinking, its data modified flag will not change.

The internal modified flag is automatically reset by each call to
vform_$read_form or vform_$update_form. The modified flags may also
be reset by a call to vf orm_$reset_modif ied_f lag or
vform_$reset_class_modified_flag.

01 October 1985 4-24 VFRG-05c

1/-) Bntry: vform_$get_value

0

This entry point returns the current value of a specifLed field.

dcl vform_$get_value entry (fixed bin(35), ~har(*), char(*),
fixed bin(35));

call vform_$get_value (form_index, field_name, value, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a. form with the
subroutine entry point vform_$open_form.

2. field_na.me (Input)
is the name of the field whose value is to be retrieved.

3. value (Output)
is the value of the specified field.

4. code (Output)
is a standard status code.

01 October 1985 4-25 VFRG-05c

\") ktry: vf orm_$ open_f orm

(:J

(~)

This entry point is used to perform the necessary initialization
of ~ £orm. It returns a form_index to be used by all other subroutine
entry points dealing with forms.

usai?e

del. vform_$open_form entry (char{*), f1.::x:ed bin(35), fixed
bin(35));

call vform_$open_form (form_path, form_index, code);

where:

l. form_path (Input)
is the pathname of a converted form segment. A converted
form segment is created by the cv_form routine. Archive
component pathnames and either absolute or relative
pathnames are allowed.

2. form_index (Output)
is a number unique to the current opening of the form. This
index is used by the other vform_ subroutine entry points to
identify this opening of this form.

3. code (Output)
is a standard status code.

Notes:

A particular form may be opened several distinct times by one or more
applications. Each opening will have its own copy of the initial data
from the form segment and each opening is independent of the others.

If the form_path is an entry_name (contains no "<" or ">" characters),
then the "vform" search paths will be used to locate the form. See
the add_search_paths command in the manual AG92, Multics Commands and
Active Functions for a discussion of the search path facility.

01 October 1985 4-26 VFRG-05c

\)

0

I~)

Entry: vform_$position_cursor

This entry point allows the programmer to specify the initial
fie1d (and column within the field) to place the cursor 1n when a..call
to vform_$read_form, vform_$read_transmit_form, or vf-0rm_$upiate_form
is made. The field specified must be active and Aprotected when the
call to vform_$read_form, vform_$read_transmit_form, or
vform_$update_form is made.

Us~e

dcl vform_$position_cursor entry (fixed bin(35), char(*),
fixed bin(35), fixed bin(35));

call vform_$position_cursor (form_index, field_name, column,
code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. field_name (Input)
is the name of the active, unprotected field that the cursor
is to be placed in.

3. column (Input)
is the column (relative to the beginning of the fieLd) that
the cursor is to be placed in.

4. code (Output)
is a standard status code.

Notes:

The "column" specified is relative to the beginning of the field, not
to the edge of the screen.

The field specified must be active and ""protected when a call to
vform_$read_form or vform_$read_transmit_form is made or the cursor
will be automatically placed to the first field that is active and
"protected.

The cursor position specified is stored internally to the Virtual
Forms software and is remembered until the next call to
vform_$read_form, vform_$read_transmit_form, or vform_$update_form.

01 October 1985 4-27 VFRG-05c

'•

\)

C)

Ca11s to vform_$rea.d_form or vform_$rea.d_transm1t_form position the
cursor to the specified field once, then forget the specified position
1.e. the cursor is only placed in the specified field once and then
forgotten. Calls to vform_$update_form honor the cursor position
specified, but do not erase it which basically passes 1t through to
-the next call to vform_$read_form or vform_$read_tra.nsm1t_form.

01 October 1985 4-28 VFRG-05c

/-) btry: vform_$read_f orm

(,)

Thi.s entry point processes the user's 1.nput from a. f<>i:'m already
9ll ''"'8 screen until the time that the proper key sequence or function
key ts sent to exit (transmit) or abort the form. This routine
ass~s that the form specified by the f orm_in<iex is currently
dispiayed on the screen, that is, i.t does not display the form for
you.

Usa~e

dcl vform_$read_form entry (fixed bin(35), fixed bin(35));

call vform_$read_form (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form wi~h the
subroutine entry point vform_$open_form.

2. code (Output)

Notes: -

is a standard status code.

The set of possible error codes includes, but is not limited
to:

vf_et_$form_aborted
when the user aborts the form

It is necessary that the form be correctly displayed on the
screen when this routine is called. This subroutine entry point
updates the screen with any changes since the last call to
vform_$display_form, vform_$read_form, or vform_$update_form, but it
does not display the form on the screen.

The vform_$read_form entry point resets the modified flag for all
the fields in the form.

01 October 1985 4-29 VFRG-05c

Entry: vform_$read_transmit_form

This entry point is like the vf orm_$read_f orm except that the
only allowed operations are "TRANSMIT FORM" and "ABORT FORM". No data
may be entered when using this entry point. This entry point should
be used when the program wishes to display the data of a f o1'm to the
user when there are no unprotected fields in the form.

Usage

dcl vform_$read_transmit_form entry (fixed bin(35), fixed
bin(35));

call vform_$read_transmit_form (form_index, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open.

2. code (Output)
is a standard status code.

Notes:

This entry point would be used for situations when all the data on a
form is protected and the programs wishes the user to "view" the data
without being able to modify any of it. This could be used to
implement a "browse" mode or in read-only retrieval mode.

01 October 1985 4-30 VFRG-05c

Entry: vform_$reset_class_modified_flag

This entry point resets the data modified flag for each field in
the given class of fields.

Usage

dcl vform_$reset_class_modified_flag entry (fixed bin(35),
char(*), fixed bin(35));

call vform_$reset_class_modified_flag (form_index, class_name,
code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name of the class of fields for which the data
modified flags will be reset.

3. code (Output)
is a standard status code.

Notes:

The modified parameter is a fixed bin(35) integer whose value will be
O or 1.

Note that the modified flag indicates whether or not the data in the
field has been modified, not whether the attributes of the field have
been modified. Thus, changing a field from "inverse" to ""inverse",
does not affect this flag.

The internal modified flag is reset automatically by the
vform_$read_form and the vform_$update_form entry points.

01 October 1985 4-31 VFRG-05c

0

Bntry: vform_$reset_form

This entry point resets the specified form to its initial state,
~hat is, the state at the time that the form was opened.

4cl vform_$reset_form entry (fixed b1n{35), fixed bin(35));

call vfo~m_$reset_form {form_index, code);

where:

1. form_index (Input)
is a valid form .,,index obtained by opening a. form with ithe
subroutine entrj·point vform_$open.

2. code (Output)
is a standard status code.

Notes:

This entry point gets its information from internally maintained
information. It does not go back to the converted form segment for
its information, thus reconverting the form then using the
vform_$reset_form entry point will not reflect these changes. To do
this, the form must be closed and re-opened.

01 October 1985 4-32 VFRG-05c

Entry: vform_$reset_modified_flag

This entry point resets the data modified flag for all fields in
the form.

dcl vform_$reset_modified_flag entry (fixed bin(35),
fixed bin(35));

call vform_$reset_modified_flag (form_index, code);

where:

l. form_index {Input)
is a valid·form ind.ex obtained by opening a form with the
subroutine entry point vform_$open_form.

2. code (Output)
is a standard status code.

Notes:

Note that the modified flag indicates whether or not the data in the
field has been modified, not whether the attributes of the field have
been modified. Thus, changing a field from "inverse" to ""inverse",
does not affect this flag.

The internal modified flag is reset automatically by the
vform_$read_form and the vform_$update_form subroutine entry points.

01 October 1985 4-33 VFRG-05c

intry: vform_$set_attributes

This entry point is used to change the attributes of a field in a
specified form.

Usa~e

dcl. vform_$set_attributes entry (fi.::x:ed bin(35), char(*),
char(*), fi::x:.ed bin(35));

cal.J. vform_$set_attributes (form_index, field_name,
new_attributes, code);

-or-

;call vform_$set_attributes (form_index, 11 input_date 11 ,

"active, inv, "'prot 11
, code) ;

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. field_name (Input)
is the name of the field whose attributes are to be changed.

3. new_attributes (Input)
is a string describing the new attributes that the field is
to take on. This string has the same format as the
<attribute_list> described in the attribute field statement
in Section 3.

4. code (Output)
is a standard status code.

01 October 1985 4-34 VFRG-05c

Bntry: vform_$set_class_attributes

This entry point is used to change the attributes of a class of
fields in a specified form.

Usage

dcl vform_$set_class_attributes entry (fixed bin(35), char(*),
char(*), fixed bin(35));

call vform_$set_class_attributes (form_index, class_name,
new_attributes, code);

-or-

call vform_$set_cla.ss_.attributes (form_index, "input_dat.e",
"active,inv, Aprot", code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name of the class of fields to be modified.

3. new_attributes (Input)
is a string describing the new attributes that the class of
fields is to take on. This string has the same format as
the <attribute_list> described in the attribute field
statement in Section 3. Only those attributes specified are
modified. All other attributes remain unchanged.

4. code (Output)
is a standard status code.

01 October 1985 4-35 VFRG-05c

Entry: vform_$set_class_value

This entry point is used to change the value of, a class of
ft.elds. Fields may be modified regardless of their attributes, tha.t
1.s, the data in a protected field may be modified with a call to thi.s
pr-0gram.

dcl vform_$set_class_value entry (fixed bin(35), char(*),
char(*), fixed bin(35));

call vform_$set_-0lass_value (form_index, class_name, new_value,
code);

where: --

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name -Of the class whose value is to be changed.

3. new_value (Input)
is the new value that the class of fields is to receive.

4. code (Output)
is a standard status code.

01 October 1985 4-36 VFRG-05c

.) JJatry: vform_$set_value

()

This entry po1nt is used to change the value of ;a field. Fields
ma.y Ile modified regardless of their attributes, that is, the data in a
pro$eoted f1eld may be modified with a call to this program.

u:sage

dcl vform_$set_value entry (fixed bin(35), char(*), char(*),
fixed bin(35));

call vform_$set_value (form_index, field_name, new_value, code);

-or-

cail vform_$set:_value Cform_index, "data_title"' "Enter data: II'
code);

where:

1. form_index (Input)

2.

3.

4.

is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

field_name (Input)
is the name of the field whose value is to be modified or
obtained.

new_value (Input)
is the new value to be given to the field.

code (Output)
is a standard status code.

01 October 1985 4-37 VFRG-05c

:)

()

Entry: vform_$test_attributes

This entry point 1s used to test a f1.eld to see if that f1.ea.d has
the g1ven set of attributes.

dcl vform_$test_attributes entry (fixed bin(35), char(*),
char(*), fixed b1n(35), fixed bin(35));

call vform_$set_attributes (form_index, field_name, attributes,
return_value, code);

-or-

ca.11·-·vform_$set_attribtites·'" ('form_index, "input_date" ,
"active,inv,"'prot", return_value, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. field_name (Input)
is the name of the field whose attributes are to be changed.

3. attributes (Input)
is a string describing the attributes to be tested for in
the current field. This string has the same format as the
<attribute_list> described in the attribute field statement
in Section 3.

4. return_value (Output)
is an integer whose value is 1 if the field has all of the
attributes specified and O otherwise.

5. code (Output)
is a standard status code.

Notes:

The value of return_value is undefined if the error code is non-zero.

01 October 1985 4-38 VFRG-05c

Entry: vform_$test_class_attr1butes

This entry point is used to test all of the f ield.s in a cl.ass to
see if they have a given set of attributes.

Usage

dcl vform_$test_class_attr1butes entry (fixed bin(35), char(*),
char(*), fixed bin(35), fixed bin(3o));

call vform_$test_class_attributes (form_index, class_name,
attributes, return_value, code);

-or-

call vform_$set......:class_attributes {form_index, "input_date",
"active, inv, "prot", return_ value, code);

where:

1. form_index (Input)
is a valid form index obtained by opening a form with the
subroutine entry point vform_$open_form.

2. class_name (Input)
is the name of the class of fields to be modified.

3. attributes (Input)
is a string defining the list of attributes to be tested for
in the class. This string has the same format as the
<attribute_list> described in the attribute field statement
in Section 3. Only those attributes specified are tested
for.

4. return_value (Output)
is an integer whose value is 1 if all of the fi.elds in the
specified class have all of the attributes as specified in
the attributes list. Its value is O otherwise.

5. code (Output)
is a standard status code.

Notes:

The value of return_value is undefined if code is non-zero.

01 October 1985 4-39 VFRG-05c

C)

CJ

Entry: vform_$update_form

This entry point forces a screen upd.a.te to having with-0ut passing
control to the user.

usa.ce
dcl vform_$update_form entry (fixed bin(35), fixed bin(35));

call vform_$update_form {form_1ndex, code);

where:

1. form_index (Input)
is a valid form ind.ex o~ained .hy opening a f~rm with the
subroutine entry po·1nt vform_$open.

2. code (Output)
is a standard status code.

Notes:

This entry point is useful when it is desirable to convey some
information to the user, without passing control to the user such as
is done with vform_$read_form. An example of this may be to let the
user know that the program is alive and well when the program is doing
a long data base retrieve. Often the programmer may put a message in
the form saying "Retrieving ... " while the program is doing this to
prevent the user form hitting keys with the feeling that the program
has either died or is waiting for them to do something. This entry
point allows the programmer to set the value of that field, then call
vf orm_$update_f orm to make the changes appear on the screen
immediately.

Calling this entry point also resets the modified flags for
fields in the form.

01 October 1985 4-40 VFRG-05c

()

Section 5

Form Related Commands

Name_: cv_form

SyJltU

cv,..,.form pa.th {-control_a.rgs}

Function: Translates (converts) a form definition segment into a
machine readab1e form segment suitable for use with the vform_
subroutine entry points.

Arguments:

path
is the pathname of the form definition segment t~ be converted.
A ".form" suffix is required on the form definition segment. If
a ".form" suffix is not specified on the pathname, it is assumed.

Control Ar~uments:

-brief, -bf
causes error messages to contain a brief description of the error
instead of the full error message text. The default is to output
the long form of the error message the first time and the short
form of the message each additional time that the same error
message is used.

-debug, . -db
causes additional information about each field of the form to be
printed on the screen. Be warned that there is considerable
output from this control argument. It is designed to aid in
translator debugging.

-defau1t
resets the values of all previously defined control arguments,
that is, negates the effects of any other control arguments.

-long, -lg
causes the text of the error messages produced to always contain
the long form of the error message. The default is to output the
long form of the error message the first time and the short form
of the message each additional time that the same error message
is used.

-list, -ls
causes an expanded listing of each field defined in the form to
be created. This listing contains each field and all statements
for that field. A field that is defined "like" another field
will not appear with a "like" statement, but will have each

01 October 1985 5-1 VFRG-05c

..

(J

"

property of the field explicitly defined. '!'he 11st1ng segment
name is the same name as the form input segment name, but with
the ".form" suffix replaced with a ".11st" suff'!x.

-meter, -mt

N.otes

causes some metering information about the searching for
previously defined fields to be printed at the end of the
translation. This information 1s primarily useful to developers
of the forms software.

It should be noted that one error on the form definition input segm.ent
tends to propagate itself and cause other errors to appear later,
especially if many fields are defined "like" other fields. Due to
this "feature", one small error at the beg~nning -Of the input ~ment
may cause literally hundreds of error messages.

01 October 1985 5-2 VFRG-05c

Name: display_form, dform

Syntax:

display_form <path> {-control_args}

F\lij.Qtion: Displays a form on the screen as it would appear if the
for$ has been opened and displayed with vform_$display_form. The
program also optionally clears the s,creen when it is d.one and
optionally performs a vform_$read_form operation.

Arguments:

path
is the pathname of a converted form segment. Archive oomponent
pathnames are supported.

Control Ar~uments:

-brief, -bf
Causes the message "Processing of the form has been aborted." to
be suppressed when -read is given and the user aborts the form.

-clear
causes the program to clear the screen after the program is
finished. This is the default if "-read" is specified.

-long, -lg
Negates the operation of the -brief control argument. This is
the default.

-no_ clear
causes the program not to clear the screen after the programs
completion. This is the default if "-no_read" is specified.

-no_read
causes the program not to perform the vform_$read_form operation
after displaying the form. This is the default.

-output_file, -of
causes the form to be displayed into a file in the working
directory called <entry portion of path>.formout. Any blank
unprotected fields will be displayed with "underscore"
characters.

-read
causes the program to perform a vform_$read_form operation after
the form is displayed.

01 October 1985 5-3 VFRG-05c

Motes:

This program is particularly useful when debugging a form. It allows
the user to perform the vform_$display_form and/or vform_$read_form
op~i-ations on the form without writing any software.

01 October 1985 5-4 VFRG-05c

Hame.: list_forms, lforms

Syntax:

1ist_f orms

Function: Lists all open forms. It also lists those forms that have
been closed, but whose control segment entries have not been reused.
This command takes no arguments.

Notes:

This command does not list all forms that have ever been opened.
Rather, it lists all open forms, as well as those that have been
closed, but their control segment entries not reused.

This command is useful in finding out whether or not an application
has left any forms open. Forms should always be closed when their
usefulness is over to free the considerable amount of storage occupied
by an open form.

01 October 1985 5-5 VFRG-05c

Name: print_form, pform

Syntax:

print_form path {-control_args}

FUQQ~ion: Given a converted form segment, the program produces a
complete view of the form definition segment as it would look with all
"like"s and expressions expanded and evaluated.

Arguments:

path
is the pathname of a converted form segment. Archive -component
names are allowed.

Control Arguments:

-brief, -bf
Suppresses the printing of the header and presents the data in a
shorter form.

-header, -he
Causes a header consisting of the information about the form (the
form statements) to be printed along with the information about
each field. This is the default if no specified fields are
specified.

-header_only, -heo
Causes only the header information to be printed.

-long, -lg
Causes a header to be printed and the long information about each
field to be printed.

-no_header_only, -noheo
Negates the effect of the "-header_only" control argument.

-output_file path, -of path
Causes the output to go into a file instead to the terminal.
This control argument must be followed by an absolute or relative
pathname of a segment to which to output should be directed.

01 October 1985 5-6 VFRG-05c

Na.me: vform_create_include_file, vfcif

Syntax:

vfQrm_create_include_file path {-control_args}

Fu~otion: Creates an include file containing two arrays and
(optionally) a structure that can be used when referencing the names
of fields in the form and their data. The two arrays are an array of
names of fields for the form and an array to hold the data for these
fields. If the structure is generated, it is a structure that
overlays the data array and whose level 2 names correspond to the name
array.

Arguments:

path
is the pathname of a converted form segment. Archive component
names are allowed.

Control Ar~uments:

-all, -a
Causes all fields (protected and unprotected) to be included in
the name array and the structure (if generated). The default is
to include only unprotected fields.

-brief, -bf
Inhibits the creation of a structure overlaying the data array
with names corresponding to the name array.

-long, -lg
Causes the creation of a structure overlaying the data array with
names corresponding to the name array. This is the default.

-output_file path, -of path
Causes the output file to be generated to have the specified name
rather than the default name which is the name of form as
specified by the "form" form statement. A ".incl.pll" suffix is
added if not present.

01 October 1985 5-7 VFRG-05c

Section 6

Keyboard Functions

The forms package is designed to be compatible with a wide
variety of terminals and to, whenever possible, make use of the
terminals function keys. For this reason, it is not possible to give
a complete list of all function keys and escape sequences for all
terminals. The reason for this is that function keys generate escape
sequences, and in order for a given terminal to use its function keys
to their fullest potential, the terminal driver software sometimes has
to redefine the meaning of a given escape sequence. What is provided
is a list of the default key sequences to produce a given function.
As a rule, these escape sequences will work on any terminal, but for
the reason mentioned above, they may be different for certain
terminals. ,

The notation used for control and escape sequences is the same as
the notation used for the emacs text editor, but before this notation
is defined, a description of control and escape sequences seems
appropriate. A control sequence is a series of keystrokes that
produces a control character. A control character is generated by
depressing and holding the control key (sometimes marked CTL or CTRL
on the keyboard) and then pressing another key. For example, to
generate a control-A character; the user would depress and hold the
control key and press the "A" key. Thus, a control character is
generated much the same way as a "shifted" or "capital" letter.

An escape sequence is produced in a slightly different manner.
An escape sequence is generated by pressing and releasing the escape
key and then pressing and releasing another key. For example, to
generate an escape-x, the user would depress and release the escape
key (sometimes marked ESC) and then depress and release the "x" key.
Thus, entering an escape sequence is like sending two distinct
characters.

This distinction is crucial and thus should be committed to
memory. A control sequence is like a "shifted" or "capital" letter,
that is, depress and hold the control key while pressing another
character. An escape sequence is similar to sending two characters,
that is, depress and release the escape key then depress and release
the other key.

The notation used for a control sequence is a caret or circumflex
character (A) followed by the proper character. Thus, the notation
AX, pronounced "control X", would mean to depress and hold the control
key while pressing the "X" key.

The notation used for an escape sequence is the letters "esc"
followed by a dash ("-") followed by the additional character. Thus,
the notation esc-B, pronounced "escape B", would mean to depress and
release the escape key, then depress and relea!3e the "B" key.

01 October 1985 6-1 VFRG-05c

Key sequences are composed of multiple escape and/or control
sequences. For example, the key sequence for the "transmit_f-0rm"
function is a "X (control-X) followed by a "C (control~C) whose
notation would be ""X "C" and which would be pronounced "control X
control C". The key sequence for the "abort_form" function is the
escape key followed by a control-Z whose notation is "es-0-"Z" and is
pronounced "escape control Z". Some terminal contr-0llers, in order to
support the function keys, will require even more complex escape
sequences such as: "esc-- 1 "Z "V" which is pronounced "escape minus
one control Z control V". Note that "esc--" means to depress and
release the escape key then to depress and release the "-" key.

Available Functions and Keyboard Sequences

abort form (esc-"Z): aborts processing of the form. The "normal" way
to exit a form is with the "transmit_form" function (see below).

backtab (esc-A): moves the cursor to the first character position of
the previous active, unprotected field of the form. If there is
no previous active, unprotected field, then the terminal bell is
rung and the function aborted.

backward_char ("B): moves the cursor backward one character position
in the current field. If the cursor is already at the beginning
of the current fi.eld, then one of several actions is performed.
If the "hold_at_end" field attribute (See the "attribute" field
statement in section 3) is enabled, then the terminal bell is
rung and the function aborted. If the current field is a "next"
field (See the "next" field statement in section 3) for another
field, then the cursor is moved to the ~ character position of
that field. Otherwise, the cursor is moved to the last character
position of the previous active, unprotected field of the form if
one exists. If not, the terminal bell is rung and the function
is aborted.

backward_word (esc-B): moves the cursor backward one "word". A
"word" is delimited by one or more characters that are neither
numeric or alphabetic. If the current field is the "next" field
of some other field, then the word may cross field boundaries.

field 1
field 2

1---- Field Boundary ----1
Now is the time for all go
od men to come ...

If field 1 is connected to field 2, that is, field 1 has a "next"
field statement of whose value is "field 2'', then if the cursor
was positioned after the "od" at the beginning field 2 (which is
actually the word "good" broken between field 1 and field 2) and
the user invoked the backward_word function, then the cursor
would be positioned at the beginning of the "go" at the end of
field 1.

01 October 1985 6-2 VFRG-05c

beginning_of_field (AA): moves the cursor to the beginning of the
current field.

delete_char (AD): deletes the character at the cursor and moves the
characters in the f 1eld to the right of the cursor one space to
the left. If the field has been defined in the form definition
segment to have a "next" or connected field, then a character is
moved from the beginning of the next field to the end of the
current field. This process is repeated again if the next field
has a "next" field until the list is exhausted.

end_of_field (AE): moves the cursor to the last position of the
current field.

end_of_form (esc->): moves the cursor to the first character position
of the last active, unprotected field in the ~orm.

error_abort (AG): cancels the current key sequence. If the user
begins a control sequence and realizes that an improper key
sequence is being entered, then he may use the "G key to cancel
the processing of the sequence. The effect of this key is to
ring the terminals bell and to abort the current function. This
key may also be used to determine when the computer is ready to
accept input from the terminal by hitting the AG key and waiting
for the "beep" .

first_field_on_next_line (CR or RETURN): moves the cursor the the
first character position of the first active, unprotected field
on the next line (or row).

forward_char (AF): Moves the cursor one character position forward in
the current field. If the cursor is already at the end of the
current field, the action depends on several parameters. If the
"hold_at_end" field attribute has been enabled, then the terminal
bell will be rung and no further action taken. If the current
field has a "next" fi.eld defined, then the cursor will be moved
to the next active, unprotected field in the next list.
Otherwise, the cursor is moved to first character position of the
next active, unprotected field of the form, unless there are no
more active, unprotected fields in the form in which case the
terminal bell is rung and no further action is taken.

forward_word (esc-F): moves the cursor forward one "word". A word
delimiter is any character that is neither alphabetic or numeric.
See "backward_word" (Page 6-2) for a description of the behavior
of word commands with respect to connected fields.

insert_mode_off (esc-I): turns off insert mode. With insert mode
off, character typed when the cursor is over another character
replace that character. Insert mode is off by default.

insert_mode_on (AX I): turns on insert mode. With insert mode on,
characters typed when the cursor is over another character are

01 October 1985 6-3 VFRG-05c

\)

···~

inserted into the text before that character. If the current
field has been defined to have a "next" field, then the character
that was inserted off the end of the current field is 1n~erted at
the beginning of the "next" field. What happens to the last
character of the chain of "next" fields is determined by the
"overflow" field attribute. If the last field of the "next"
field chain has the ""overflow" field attr1bute, then the
term.1.nal hell is rung, and the "sub_error_" condition is
signalled with a specific error code. If there are no "next"
fields, then the insertion is only within the current field. See
the attribute field statement description in Section 3 for
details. Insert mode is off by default.

kill_to_eof ("'K): takes the data from <the cursor position to the end
of the current field and places it in a "kill ring" then deletes
the data. The data placed on the "kill ring" maY. he retrieved
using the "yank" function described below. The data. may be
"yanked" into the current field or into any other field.

next_line ("N): moves the cursor to the beginning of an active,
unprotected field on the next line (row) of the form that is
closest to the cursor position of the current field. If the next
line (row) has no active, unprotected fields, then the next line
(row) after that is used until a line (row) with an active,
unprotected field is found. If there are no lines (rows) in the
form past the current line (row) with active, unprotected fields,
then the terminal bell is rung and the function aborted.

nop ("'J): does nothing.

previous_line ("'P): performs the same function as "next_line" above,
but looks for active, unprotected fields on lines (rows) previous
to the current line (row).

redisplay_form ("'L): clears the screen and redisplays the current
form with all of its active fields. This function is useful if
data extraneous to the forms package has been inadvertently put
on the screen, or if the screen has become garble~ due to phone
line noise, etc.

reset_form (esc-"'L): resets the values and attributes of the form to
the state in which the form was entered. This function is useful
if the user has accidently destroyed some of the data of the form
and wishes to restore it to the initial state.

rubout_char (DELETE (\177)): performs a "delete_char" function on the
character to the left of the cursor.

tab (TAB ("I)): moves the cursor to the first character position of
the next active, unprotected field of the form. If there are no
more active, unprotected fields in the form, the terminal bell is
rung and the function aborted.

01 October 1985 6-4 VFRG-05c

top_of_form (esc-<): moves the cursor to the first active,
unprotected field of the form.

transmit_form ("X "C): "transmits" the data from the form to the
applications program. It is possible for this function t-0 not
•ctually let the user exit the form if there is incorrect data in
~ne of more of the fields. This action is caused by a
"check_proc" or "exit_proc" finding invalid data. in one or more
fields. The proper action at this point is to correct the pad
data and try to "transmit_form" again.

twiddle_chars ("T): exchanges the two characters to the left of the
cursor. For example: "BA<cursor>" becomes "AB<cursor>" where
<cursor> indicates the position of the cursor when the
twiddle_chars functions is perf-0rmed. There must be at least two
characters to the left of the cursor in the current field or the
terminal bell will be rung and the function aborted.

yank ("Y): Retrieves data that has been placed in the "kill ring"
with the "kill_to_eof" function described above.

01 October 1985 6-5 VFRG-05c

Appendix A

Form Definition Design and Efficiency

There are several techniques which can be used to increase the
speed and efficiency of form definition. These techniques a.re not
necessarily designed to increase the program efficiency when
converting a form, but to help the designer to produce the form more
efficiently. Several of these techniques will be discussed below.

Pre planning

One of the most effective ways of increasing the speed of form
development is to first develop the form on paper. A standard coding
form or other· paper with a some 'type of grid works nicely.

Screen Layout

When laying out the form, there are several things to keep in
mind. First, whenever possible, group related fields in the same area
of the screen. The layout of the fields on the form should be so that
the fields seem logical to the user, not in the easiest way for the
program to interpret them. That is, order the fields so that the user
may enter the data in the way the user's data is organized, not in a
manner that is easy for the program to understand. Remember that
forms applications are often targeted for users with little or no
computer knowledge or experience.

Blocks of Fields

Once the form is laid out, the designer should then look over the
form and break the fields into blocks, grouping similar fields and
blocks of fields together. Then, when the fields are defined, they
can be defined relative to the corner of these blocks using the "like"
capability. Defining fields in this manner allows entire groups of
fields to be moved around on the form simply by changing the location
of the corner or origin of the block.

Attributes

Some forms designers feel that it is prudent to define "dummy"
fields, that is, fields that are not active (Aactive), for the common
types of fields such as data_fields, title_fields, error_fields, etc.
Then, when a field is defined, its attributes are defined "like" the
field of appropriate type. This gives the ability to change the
attributes of all data or title or error fields simply by changing one
statement. Thus the designer can experiment with different screen or
form attributes for the various types of fields with little change to
the form definition segment.

01 October 1985 A-1 VFRG-05c

•

0

Errors

When def:1.n1ng a form, espec.1.a.lly when defining a. form with many
"lLk:e" statements, it is likely that many error meBsa.ges will be
pr~uoed. when the form is converted to binary with the -0v_form
com.and. This is due to the fa.ct that 1f a field has a slight error
and llas fields defined "like" it and those fields have other fJ..eld.s
"l~ke" them, then ea.ch of the fields will get one or more error
messages. So don't be alarmed if your first attempt at -0onvertLng a
form produces literally hundreds of error messages. When going
through the error messages, it is often useful to correct the first
few errors and then attempt to re-convert the form.

01 October 1985 A-2 VFRG-05.c

'.~) Appendix B

Program Efficiency Using Forms

+--------------------+
I (<TO Be Supplied>> I
+--------------------+

()

01 October 1985 B-0 VFRG-05c

Appendix C

Writing a Terminal Controller

Support of terminals in Vf orm is accomplished via
ter~inal-dependent subroutines. Vform attempts to locate by using the
regular search rules, based on the terminal type maintained by
Multics.

To support a type of terminal not supported by a supplied
terminal controller, a new terminal controller must be written. A
terminal controller is written as a PL/I source program, named
vf_TTYTYPE_ctl_.pll. If this terminal type is in you site's Terminal
Type File {TTF), the name chosen should appear the same as it appears
in the TTF, except that .the name of the terminal -controller should be
all lowercase.

Terminal .controllers are usually written by example from supplied
terminal controllers. Once the terminal controller is written, it
must be compiled before it can be used. Compilation is performed via
the PL/I compiler, pll. A typical command line to compile a terminal
controller is:

pll vf_vtlOO_ctl_

This produces an object segment, vf_vtlOO_ctl_

The most effective method of writing a new terminal controller is
to take one that was written for a similar terminal and modify it.
Almost all of the extant terminal controllers where written in this
way. The sources are PL/I source segments, generally l0-20· printed
pages long. Good starting points are:

vf_vtlOO_ctl_, typical of terminals that do not have the ability
to insert or delete lines or characters.

vf_nsa7000e_ctl_, typical of terminal that do have insert or
delete lines or characters. The two facilities are independent,
either one, both, or neither may be present.

vf_tek4023_ctl_, typical of terminals that require space on the
screen for display attributes. More about this is discussed in
the section entitled "DISPLAY ATTRIBUTES HANDLING".

01 October 1985 C-1 VFRG-05c

ENTRY POINTS

The entry points in the terminal -controller are standardized.
They have the same names in all terminal controllers. The Vform
screen manager calls these subroutines anonymously after the
appropiate terminal controller has been initialized.

REQUIRED ENTRY POINTS

Entry point init

entry point dcl: init: entry ();

The init entry point is called a form open time; it has the
responsibility of setting various flags, and initializing the
terminal. The init entry.point has the responsibility for
initializing the following·structure. It is declared in
vf_tty_info.incl.pll.

dcl 1 tty_info
2 version
2 terminal_type
2 size

3 height
3 width

2 flags
3 insert_charsp
3 delete_charsp
3 ctl_will_manage_modesp
3 use_display_fieldp
3 interpret_stringp
3 return_attribute_stringsp
3 wipe_attributes_with_spacesp
3 protect_is_display_attrp
3 mbz

2 position
3 row
3 column

2 bell
2 clear_attributes
2 clear_screen
2 clear_to_end_of_line
2 clear_to_end_of_screen
2 delete_chars
2 display_field
2 display_text
2 get_one_unechoed_char
2 insert_text
2 interpret_string
2 position_cursor
2 return_clear_attributes_string
2 return_set_attributes_string
2 set_attributes

01 October 1985 C-2

aligned based (vfs_$tty_info_ptr
fixed bin(35),
char(32) unaligned,
aligned,
fixed bin(l7) unaligned,
fixed bin(l7) unaligned,
aligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(l) unaligned,
bit(29) unaligned,
aligned,
fixed bin unaligned,
fixed bin unaligned,
entry (),
entry (),
entry (),
entry (),
entry(),
entry (fixed bin),
entry (ptr, ptr),
entry (char(*)),
entry () returns (char(l)),
entry (char(*)),
entry (char(*) varying, fixed bi
entry (fixed bin unal, fixed bin
entry (char(*) varying),
entry (ptr, char(*) varying),
entry (ptr),

VFRG-050

2 set_f orms_modes
2 unset_f orms_modes

version

entry (),
entry ();

the version will be set by the Vf orm screen manager and should be
checked for TTY_INFO_VERSION_l.

terminal_ type
should be set to the terminal type that his controller supports.

height
should be set to the maximum number of lines that the terminal has
on its display.

width
should be set to the maximum number of characters across one line.

insert.....:charsp
if set, indicates that character insertion is
permitted/implemented.

delete_charsp
if set, indicates that character deletion is
permitted/implemented.

ctl_will_manage_modesp
if set, indicates that there are entry points that can be called
to set and reset the Multics terminal modes.

use_display_f ieldp
if set, indicates that the Vform screen manager should call
display_field instead of the set_attributes, display_text,
clear_attributes combination.

interpret_stringp
if set, indicates that there is a entry point that can be called
to interpret input from the terminal (function key
implementation.)

return_attribute_stringsp
if set, indicates that there are entry points that can be called
to obtain the proper character strings to set the desired display
attributes.

wipe_attributes_with_spacesp
if set, indicates that the terminal when displaying over a
position on the screen will change the display attributes, of that
position, to the current display attributes in effect.

protect_is_display_attrp
if set, indicates that the controller wants to use protect as a
display attribute. This should only be used in the case where the
terminal does not have multiple display attributes. An example of

01 October 1985 C-3 VFRG-05c

mbz

row

this is the VIP7201 controller, and because it only has one
display attribute only non-protected fields are highlighted.

must be set to "O"b.

i~ the current row position of the cursor. {Does not need t-0 be
$et at initialization).

column

bell

.is the current column position of the cur'Sor. (Does not need to
be set at initialization).

should be set to the entry point to be called when the terminals
bell is to be rung. (See hammer'.T

clear_attributes
should be set to the entry point to be called when the screen
attributes are to be set to their default state.

clear_screen
should be set to the entry point to be called when the screen is
to be cleared.

clear_to_end_of_line
should be set to the entry point to be called when the screen is
to be cleared from the current screen position to the end of the
current line.

clear_to_end_of_screen
should be set to the entry point to be called when the screen is
to be cleared from the current screen position to the end of the
screen.

delete_chars
should be set to the entry point to be called when characters are
to be deleted from the screen. Notes: this only needs to be set
if tty_info.flags.delete~charsp has been set.

display_f ield
should be set to the entry point to he called when a field is to
be placed on the screen. Note: this only needs to be set if
tty_info.flags.use_display_fieldp has been set.

display_text
should be set to the entry point to be called when text is to be
placed on the screen.

get_one_unechoed_char
should be set to the entry point to be called when one character
is to be input from the terminal.

01 October 1985 C-4 VFRG-05c

() insert_ text
should be set to the entry point
inserted into the screen. Note:
tty_info.flags.insert_charsp has

interpret_string

to be called when text is to be
This only needs to be set if

been set.

should be set to the entry point to be called when input from the
terminal is to be interpreted. Note: This only need.s to be set
if tty_info.flags.interpret_stringp has been set.

position_cursor
should be set to the entry point to be called when cursor
positioning.

return_clear_attributes_string
should be set to the entry point that will return a. character
string that will clear the display attributes. Note-:,_.· this only
needs to be set if tty_info.flags.return_a.ttribute_stringp has
been set.

return_set_attributes_string
should be set to the entry point that will return a character
string that will set the display attributes. N-0te: this only
needs to be set if tty_info.flags.return_attribute_stringp has
been set.

set_attributes
should be set to the entry point that will be called to set the
current display attributes.

set_f orms_modes
should be set to the entry point that will be called to set the
Multics terminal modes needed by the Vform package. Note: this
only needs to be set if tty_info.flags.ctl_will_manage_modesp is
set.

unset_f orms_modes
should be set to the entry point that will be called to reset the
Multics terminal modes that where needed by the Vform package.
Note: this only needs to be set if
tty_info.flags.ctl_will_manage_modesp is set.

Entry point bell

entry point dcl: bell: entry ();

The bell entry point rings the terminal's bell. In most cases
this only requires sending 0070 to the terminal.

01 October 1985 C-5 VFRG-05c

()

lltu point clear_attributes

entry point dcl: clear_attributes: entry ();

The clear_a.ttributes entry point sends the cha.raoter str1n.g
req\l.tred by the terminal to clear all the terminal's d1splay
att~~butes. More about attribute handling can be found in the section
entitled Attribute Handling.

Entry point clear_screen

entry point dcl: clear_screen: entry();

The clear_screen entry point sends the character string required
by the terminal to clear the terminal's string. It is assumed by the
Vform screen attributes .manager that at .. ~J:le same time the terminals
display attributes are cleared also. If the terminal d·oe·s · notri ha.ve an
explicit clear_screen escape sequence ~hen you mu.st explicitly clear
the screen by hand.

Entry point clear_to_end_of_line

entry point dcl: clear_to_end_of_line: entry():

The clear_t-O_end_of_line entry point sends the character string
required by the terminal to clear the line from the current cursor
position to the end of the current line. If the terminal does not
have an explicit clear_to_end_of _line escape sequence then you must
explicitly clear from the current cursor position to the end of the
current line.

Entry point clear_to_end_of _screen

entry point dcl: clear_to_end_of_screen: entry ();

The clear_to_end_of _screen entry point sends the characters
string required by the terminal to clear the screen from the current
cursor position to the end of the screen. If the terminal does not
have an explicit clear_to_end_of_screen escape sequence then you must
explicitly clear from the current cursor position to the end of the
screen.

01 October 1985 C-6 VFRG-05c

Entry point display_text

entry point dcl: display_text: entry (A_text);

The display_text entry point places the specified text on the
screen.

A_ text
The characters to be placed at the current screen location. Input
(char (*)).

Note that this entry point does not worry about t.ermina.l display
attributes.

Entry point get_one_unechoed_char

entry point dcl: get_one_unechoed_char: entry () returns (char (l));

The get_one_unechoed_char entry point should get and return one
character of input.

Entry point position_cursor

entry point dcl: position_cursor: entry (A_new_row, A_new_column);

The position_:cursor entry point should send the character string
neccessary to position the terminal's cursor to the location
specified.

A_new_row
Will be the row the cursor is to be placed on. (Input (fixed
binary unaligned)).

A_new_column Will be the column the cursor is to be placed on. (Input
(fixed binary unaligned)).

Entry point set_attributes

entry point dcl: set_attributes: entry (A_field_ptr);

The set_attributes entry point should send the character string
neccessary to enable the terminal's display attributes requested.

A_f ield_ptr
is a pointer to the information for the field that the terminal
attributes are to be set from. The important section of this
structure is described in the section "DISPLAY ATTRIBUTES
HANDLING". (Input (pointer)).

01 October 1985 C-7 VFRG-05c

OPTIONAL ENTRY POINTS

These optional entry points are suppl1ed to allow the Vform
screen manager to use the special features of a terminal and to be.
able to manage different types of terminal. All of these entry points
are controlled by flags in the tty_info structure. If the
corresponding flag is set then the entry po.int must exist.

Entry point delete_chars

entry point dcl: delete_chars: entry (A_nchars);

The delete_chars entry point should send the terminal's
de1.ete_char control sequence to the terminal.

A_nchars
is the number of characters to be deleted (Input (fixed binary)).

This entry point will only be called by the Vf orm screen manager
when tty_info.flags.delete_charsp has been set to "l"b.

Entry ~oint display_field

entry point dcl: display_field: entry (A_field_ptr,
A_old_field_ptr);

The display_field entry point should display an entire field on
the screen. This includes the display attributes for the field, the
field text, and the display attributes needed to clear the display
attributes.

A_f ield.:_ptr
is a pointer to the field to be displayed on the screen. The
structure pointed to by this pointer is declared in
vf_field.incl.pll. (Input (pointer)).

A_old_field_ptr is a pointer to the old field information of the field
to be displayed on the screen. The structure pointed to by this
pointer is declared in vf_field.incl.pll. (Input (pointer)).

This entry point is only called by the Vform screen manager if
the tty_info.flags.use_display_fieldp has been set to "l"b. This
entry point can also be used in the case that the terminal display
attributes require a character location of the screen. For more
information see the section entitled Attribute Handling.

01 October 1985 C-8 VFRG-05c

Entry point insert_text

entry point dcl: insert_text: entry (A_text);

The insert_chars entry point shollld send the terminal's insert.....:on
co:n:trol sequence to the terminal, the text to be inserted., and then
the ~nsert_off control sequence.

A_ text
is the text to be inserted. (Input (char (*)).

The insert_text entry point will only be called by the Vform
screen manager when tty_info.flags.insert.....;.'Charsp has been set to "l"b.

Entry point interpret_string

entry point dcl: interpret_string (A_char_string, A_action-'code);

The interpret_string entry point interprets input sent by the
user from the terminal. This entry point is used primarily to bind
the terminals function keys to Vform actions.

A_char_string
is the character string to be interpreted. (Input {char (*)
varying)).

A_action_code
should be set to the action that the Vform input manager is to
perform.

This entry point is called with a character string and should
process the character string and return an action code. The following
actions codes are declared in vf_action_codes.incl.pll.

vf s_$more
indicates that the character string is a part of a known control
sequence, but more characters are needed to determine the exact
action to be performed.

vf s_$no_action
indicates that the character string matches no known control
sequence and should be handled by the Vf orm input controller or
discarded.

vf s_$nop
indicates that the character string is valid but nothing should
be done.

vf s_$error_abort
indicates that the previous input (being processed) was in error
and should be discarded (Vform input manager will ring the
terminal's bell.)

01 October 1985 C-9 VFRG-05c

vf s_$backta.b
indicates that the character string maps into a ba-Oktab
operation.

v~s_$backward_char
indicates that the character string maps into a move cursor left
operation.

vfs_$beginning_of _field
indicates that the character string maps into a go to beginning
of field operation.

vf s_$delete_-0har
indicates that the character string maps into a delete character
operation.

vf s_$end_of _form
indicates that the character string maps into a go to end of form
operation.

vfs_$forward_char
indicates that the character string maps into a move cursor right
on character operation.

vf s_$next_line
indicates that the character string maps into a move cursor to
next line operation.

vf s_$previous_line

indicates that the character string maps into a move ·Cursor to
previous line operation.

vf s_$tab
indicates that the character string maps into a tab or next field
operation.

vfs_$top_of_form
indicates that the character string maps into a go to top of form
operation.

vfs_$end_of_f ield
indicates that the character string maps into a go to the end of
this field operation.

vfs_$first_field_on_line
indicates that the character string maps into a go to the first
field on this line operation.

vf s_$twiddle_chars
indicates that the character string maps into a twiddle
operation.

01 October 1985 C-10 VFRG-05c

(J

vf s_$kill_to_eof
indicates that the character string maps into a kill to end of
field operation.

vfs_$rubout_char
indicates that the character string maps into a delete character
operation.

vfs_$first_on_next_line
indicates that the chara-0ter string maps into a go t-0 first field
on the next line operation.

vfs_$forward_word
indicates that the character string maps into a move cursor to
begining of next word operation.

vf s_$backward_word
indicates that the character string maps into a move cursor to
the begining of the previous word operation.

vfs_$insert_mode_on
indicates that the character string maps into a request that
insert mode be enabled.

vf s_$insert_mode_off
indicates that the character string maps into a request that
insert mode be disabled.

vfs_$redisplay_form
indicates that the character string maps into a request that the
form be redisplayed.

vfs_$reset_form
indicates that the character string maps into a request that the
form be reset.

vfs_$transmit_form
indicates that the character string maps into a request that the
form be -0onsidered transmitted. (Actually control returned the
user application.)

vfs_$yank
indicates that the character string maps into a request to "yank"
previously deleted text.

vfs_$abort_form
indicates that the character string maps into an abort form
request.

Care should be that vfs_$more is only passed back when the
current character string is a subpart of a valid control sequence.
Remember, this entry point gets called whenever a character is typed

01 October 1985 C-11 VFRG-05c

C)

. ·~

by the user.· This entry point is only called when
tty_info.flags.interpret_stringp is set to "l"b.

Entry point return_clear_attr.1.butes_s·tring

en:t.ry point dcl: return_clear_attributes_string: en-try
(A_ohar_string);

The return_clear_attributes_string entry point should return the
character string which will clear all display attributes.

A_char_string
should be set to the character str.ing that when sent to the
terminal will clear all the terminal's display attr1butes.
(Output (char (*) varying)).

This entry point is only call if
tty_info.flags.return_attributes_string is set t-o "l"b.

Entry point return_set_attributes_string

entry point dcl: return_set_attributes_string: entry (A_field_ptr,
A_char_string);

The return_set_attributes_string entry point shoul.d return the
character string which will set all the <lesired display attributes.

A_f ield_ptr
is a pointer to the information for the field that the terminal
attributes string is to be set from. The important section of
this structure is described in the section entitled "DISPLAY
ATTRIBUTES HANDLING". (Input (pointer)).

A_char_string
should be set to the character string that, when sent to the
terminal will set the required terminal display attributes.

This entry point is only called if
tty_info.flags.return_attributes_string is set to "l"b .

01 October 1985 C-12 VFRG-05c

Entry point set_f orms-'modes

entry point dcl: set_forms_modes: en(;ry ();

7he set_forms_modes entry point should set the tc.ty_ m<Xies fo.r
CO:lJlMllication with the terminal that the Vform package requires.
Vtoa requires the following tty_ modes:

.tni t, breakall, rawo, rawi, ctl_cha.r, f or-0e, fulldpx,
hndlquit,"11,"pl,"'oflow

This entry point should save the current tty_ modes for
restoration by unset_forms_modes. This entry point w111 only be
called if tty_info.flags.ctl_will_manage_modesp is set to "l"b.
tty_info.flags.ctl_will_manage_modesp is set to "O"b, the ·~tform
manager will attempt to set the proper tty_ modes.

Entry point unset_f orms_modes

entry point dcl: unset forms_modes: entry();

If
screen

'.!-., ,.

The unset_forms_modes entry point should set the tty_ modes for
communication with the terminal to what was saved in the
set_forms_modes entry point. This entry point will only be called if
tty_info.flags.ctl_will_manage_modesp is set to "l"b. If
tty_info. flags .ctl_will_manage_modesp is set to "O"b, then the Vf.orm
screen manager will attempt to restore the proper tty_ modes.

Entry point video_system_init

entry point dcl: video_system_init: entry{);

The video_system_init entry point should initialize the tty_info
structure like the init point does. However, the Vform screen manager
understands how to use the video system for terminal dependent
functions, so most of the entry points mentioned above will not be
used. If you are planning to use the video system with this
controller then the return_set_attributes_string and
return_clear_attributes_string should exist (and work) for effic1ency,
but they are not needed. However, if return_set_attributes_string and
return_clear_attributes do not exist then the set_attributes and the
clear_attributes entry points should exist. The video_system_init
entry point will only be called if the video system is invoked.

01 October 1985 C-13 VFRG-05c

inverse
indicates that the characters should be display in inverse (black
letters on bright background. sometimes called 1.nverse vid.eo.)
Most terminals support this display attribute.

dotted_ underlined
indicates that the characters should be displayed with a dotted
underline underneath them. If the terminal does not -support this
display attribute it should be mapped to an underline attribute
(if the underline attribute does not ext.st it shou:Ld be mapped to
a inverse attribute.)

blink
indicates that the characters when displayed should blink. If
the terminal does not support this disp.lay attribute it should be
mapped to an inverse attribute.

Something to consider also, is that display a.ttribut.es can be
combined. Some terminals allow this and some don't. You will just
have to play with the mappings and combinations until things work the
way you want them to.

01 October 1985 C-15 VFRG-05c

0

0

Appendix D

vf orm_ Subroutine Entry ~o1nt tnclude Fil.es

Ea.ch vform_ entry point has a correspond.lng 1nclude f1le that
de£1aes an internal subroutine that can be •'Sed lnstead of the call to
vforlll_. This method has several advantages. The .code produ,oed. by the
compl,.ler is smaller 1f multiple calls to the same entry point a.re
pr.esent because the compiler can generate internal ca11s to the
subroutine and only one full blown external call ~o the vform_ entry
point. When multiple calls to the same routines are used, the
compiled. code is smaller and compile time is red.uoed.

Another advantage -Of using the i.nteraa.l-su.broutines contained in
.. the inclu<te files is that the caller d.oes not have to w.orry a.bout

checking the error -00des. -If the error· oode was · no'n-zero, then tbe .
system subroutine sub_err_ is called with appropriate arguments to
halt execution of the program and place the user at a new command
level.

The following is a list of the names of the subroutines that are
defined, the corresponding vform_ entry point, the include file which
contains the subroutine, and any notes a.bout the action or parameters
t-0 the subroutine. Unless otherwise specified, the parameters to the
subroutines are exactly the same as the corresponding vf orm_
subroutine entry point described in Secti-0n 4 but the "code" argumen·t
is omitted.

Subroutine: assign_values
vform_ Entry Point: vform_$assign_values
Include File: vform_assign_values.incl.pll
Notes: Both the 'error_index' and 'code' para.meters m~st be omitted.

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

01 October 1985

class_blank_f ield_count
vf orm_$class_blank_f ield_count
vf-0rm_class_blank_count.incl.pll

class_is_all_blank
vf orm_$class_is_all_blank
vform_class_blank.incl.pll

class_is_all_non_blank
vf orm_$class_is_all_non_blank
vform_class_non_blank.incl.pll

class_non_blank_f ield_count
vf orm_$class_non_blank_f ield_count
vform_class_nonblnk_cnt.incl.pll

D-1 VFRG-05c

B\ll>routine:
yi:form_ Entry Point:
rnclude File:

Sub:routine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

get_ value
vform_$get_value
vform_get_value.incl.pll

open_f orm
vform_$open_form
vform_open_form.incl.pll

position_cursor
vform_$position_cursor
vform_position_cursor.incl.pll

Subroutine: read_form
vform_ Entry Point: vform_$read_form
Include File: vform_read_form. incl. pl 1
Notes: The 'code' parameter must not be omitted from this routine,

but its value will only be returned as 0 or
vf_et_$form_aborted. Any other error code will cause it to
abort.

Subroutine: read_transmit_form
vform_ Entry Point: vform_$read_transmit_form
Include File: vform_read_transmit.incl.pll
Notes: The 'code' parameter must not be omitted from this routine,

but its value will only be returned as 0 or
vf_et_$form_aborted. Any other error code will cause it to
abort.

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

reset_class_modif ied_flag
vform_$reset_class_modified_flag
vform_reset_class_flag.incl.pll

reset_f orm
vform_$reset_form
vform_reset_form.incl.pll

reset_modif ied_flag
vform_$reset_modified_flag
vform_reset_flag.incl.pll

set_attributes
vform_$set_attributes
vform_set_attributes.incl.pll

Subroutine: set_attributes_and_value
vform_ Entry Point: vform_$set_attributes_and_value
Include File: vform_set_attr_value.incl.pll
Notes: The set_attributes_and_value combines the function of the

vform_$set_attributes and the vform_$set_value subroutines in
one call. The first argument is the form_index, the second
one is the field name, the third argument as an
<attributes_string> and the fourth argument is the new value
for the field. The fourth argument may be an ioa_ control

01 October 1985 D-3 VFRG-05c

string, in which case there may be additional argument to
accommodate it. See the ioa_ subroutine in the manual
'Multics Subroutines and I/0 Modules' for details.

Subroutine:
vform_ Entry Point:
Inol..ude File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

Subroutine:
vform_ Entry Point:
Include File:

set_class_attributes
vform_$set_class_attributes
vform_set_class_attr.incl.pll

set_class_value
vform_$set_class_value
vform_set_class_value.incl.pll

set_ value
vform_$set_value
vform_set_value.incl.pll

test_attributes
vform_$test_attributes
vform_test_attributes.incl.pll

test_class_attributes
vform_$test_class_attributes
vform_test_class_attributes.incl.pll

update_form
vf orm_$update_f orm
vform_update_form.incl.pll

To use these subroutines, simply include the appropriate include
files using the "%include" pll statement and then call the internal
subroutine that is defined. For example, to use the open_form
subroutine, the following code could be used:

%include vform_open_form;

call open_form (form_path, form_index);

and to use the assign_values subroutine:

%include vform_assign_values;

call assign_values (form_index, name_array, data_array);

Note that the "%include" statement need only be inserted once per
subroutine. Programming convention is to place all "%include"
statements at the very end of the program, or at the end of the list
of declares.

01 October 1985 D-4 VFRG-05c

