
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 Project MAC

May 1968 MAC-M-372

 SOME CONSIDERATIONS OF SUPERVISOR PROGRAM DESIGN

 FOR MULTIPLEXED COMPUTER SYSTEMS*

 by F. J. Corbató
 J. H. Saltzer

 Abstract

 One of the principal hurdles in developing multiplexed computer

systems is acquiring sufficient insight into the apparently complex

problems encountered. This paper isolates two system objectives by

distinguishing between problems related to multiplexing and those

arising from sharing of information. In both cases, latent problems

of noninteractive systems are shown to be aggravated by interacting

people. Viewpoints such as reversibility of binding, and mechanisms

such as segmentation, are suggested as approaches to acquiring insight

It is argued that only such analysis and functional understanding can

lead to simplifications needed to allow design of more sophisticated

systems.

 P R E P R I N T

This memo is a preprint of an invited paper to be delivered

at the International Federation for Information Processing

4th Global Conference, Edinburgh, Scotland, in August 1968.

* Work reported herein was supported by Project MAC, an M.I.T. research
 program sponsored by the Advanced Research Projects Agency, Department
 of Defense, under Office of Naval Research Contract Number Nonr-4102(01)
 Reproduction in whole or in part is permitted for any purpose o£ the
 United States Government.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

 IFIP CONGRESS 68 February 29, 1968

 P R E P R I N T

 SOME CONSIDERATIONS OF SUPERVISOR PROGRAM DESIGN

 FOR MULTIPLEXED COMPUTER SYSTEMS*

 by F. J. Corbató†
 J. H. Saltzer†

 Workers developing multiplexed computer systems, whether multi-

programmed, batch processing, or time-sharing, have encountered a great

deal of difficulty‡. This difficulty has been overcome neither by

"human waves" of system programmers nor by teams of a few brilliant

performers. Much of the difficulty probably stems from a need for

insight into the principles underlying the multitude of mechanisms

commonly comprising such systems. One reason for the lack of insight

has been that system programming is so new that conventional tools for

developing insight have not been brought fully to bear. Particularly

* Work reported herein was supported by Project MAC, an M.I.T. research
 program sponsored by the Advanced Research Projects Agency, Department
 of Defense, under Office of Naval Research Contract Number Nonr-4102(01).
 Reproduction in whole or in part is permitted for any purpose of the
 United States Government.

† Massachusetts Institute of Technology, Cambridge, Massachusetts U.S. A.

‡ Examples of such multiplexed systems currently under development or in
 use include OS/360, for the IBM 360 line of computers [2], TSS/360, for
 the IBM 360/67 [3], Multics, for the General Electric 645 [4], and EXEC-8,
 for the Univac 1108.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 2

powerful tools are (1) strong modularity with clearly identified and

functionally appropriate properties attached to each module, and

(2) economy in the number of mechanisms so that a few do most of the

work. A further reason why the problems have been difficult to unravel

has often been confusion as to which objectives are wanted. With the

exception of a few papers such as the recent one by Dijkstra [1] very

little light has been shed on the differing objectives of different

parts of supervisor programs.

 One useful approach is to isolate the objectives of the system

as well as possible so that whatever insight can be gained from the

resulting less complex problems can be brought to bear on the system

as a whole. As an example of this approach, this paper distinguishes

sharply between two kinds of ideas encountered in a modern day computer

system. One of these ideas, automatic resource allocation, we name

multiplexing; the other idea, conscious communication and exchange of

programs and data, we name sharing. For these two ideas in turn, we

discuss what they are, why they are wanted, the kind of complexity

they generate, and a specific example of organization which helps provide

insight. The first topic is multiplexing.

Multiplexing and Its Contributions to Complexity

 A basic question is "Why should one attempt to multiplex

computing equipment at all?" The argument has three steps: (1) The

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 3

range and quality of hardware, supervisor, and library services that one

desires for his full collection of problems is usually quite large.

(2) Any single calculation is usually organized in a rather serial

fashion and cannot make effective use of all components of the equipment

and features of the operating system simultaneously. (3) There is a

strong economic incentive to use the otherwise idle components and com-

puting time for other users with calculations which similarly do not by

themselves exhaust the resources of the system. This economic incentive

is increased in an interactive system where a user has human reaction

times and periods of thinking. Thus, a first level of complexity is

injected by economically motivated multiplexing of the computing system.

 The simplest form of multiplexing is with fixed time and space

allocations. That is, each user is served by a processor in turn with

fixed and unvarying time periods. Each user has a fixed invariant

section of secondary storage at his disposal, and preassigned tape

drives, card readers, printers, etc. The result is that each user

receives a small virtual machine with an apparently slow processor and

fixed equipment assignments; however, the problems of organization have

been limited. In return for simplicity of organization, one pays a

fairly high price, since there is no way to reallocate unused resources

to another user who could take advantage of them.

 A new order of complexity arises when one tries to eliminate

the constraint of a small machine by introducing multiplexing with variable

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 4

allocations made on demand from pools of resources. In the most general

form one has several processors and a variable number of jobs[5]. Each

job has primary memory requirements which are possibly large, and in any

case independent of the amount of primary memory actually available. A

variety of new complications are introduced by this new set of conditions.

For example, if there is more than one processor, it is necessary to

interlock information such as supervisor data bases, and for this purpose

it is convenient to have special hardware instructions. The variable

number of jobs is often handled with software queues with ordinary list

structuring. Since jobs are of variable length and are run for varying

times, one must make proper use of an interrupting clock so that no job

exceeds its own expectations. But this point is subtle since one must

also ensure that excessive calculation time for one job does not cause

another job to be completed unduly late. Thus, one must introduce the notion

of scheduling and preemption. Finally, the problem of allowing the user

a very large primary memory is commonly solved by means of paging hard-

ware[6]. This hardware allows a job to be initially allocated any avail-

able noncontiguous blocks of primary memory. It also allows the job to

be removed from primary memory and reintroduced elsewhere as it becomes

necessary for scheduled switching from one job to another. With a minor

addition to the hardware and appropriate supervisor procedures, the user

job may even operate without all of its pages in primary memory with the

expectation that some pages may not be needed before the next input-output

wait or job switch occurs.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 5

 All of the above aspects of multiplexing, with variable alloca-

tions complicate the system but also enhance the richness of the capabili-

ties of the virtual machine that the user job sees. In addition, an

important property has been introduced: the system is capable of growth

of processor and memory capacity without modification of user programs

or awareness on the user's part. We consider a critical property of

such a multiplexed system to be that the user be unconcerned with the

intricacies of multiplexing. He should have the illusion of a private

computer at his disposal.

 An important thing to notice is that so far there has been

nothing to distinguish an interactive time-sharing from a batch processing

system. In fact, we do not believe there is any basic distinction to be

made. To a first approximation, one can consider a person as a kind

of erratic input-output device. But there are certain problems which

are seriously aggravated by the introduction of interacting people. These

problems are only latently present in a batch processing system and often

go unrecognized. They arise from the need to stop a job unexpectedly and

then restart it at a later time. It is obvious that interacting users

may have this need since they frequently make mistakes, are called to tele-

phones, remember other engagements in the midst of a calculation or are

still busy working when the computer must be shut down. In a batch system,

one sees the same effect with the sudden introduction in the midst of

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 6

a production calculation of a high priority job which must be completed

within a fixed deadline. Such preemptive priorities can, of course,

be handled easily if the preempted job is destroyed. Destruction, how-

ever, is wasteful, and moreover, jobs working with a stored data base may

not be able to start over later if they have changed the data base. To

ensure that these unexpected interruptions and restarts of programs do

not cause difficulty, one must anticipate a requirement for what one

may call "reversibility of binding".

 The term binding is applied here to an operation which occurs

at a variety of levels in a computer system: the choosing of a particular

hardware and supervisor environment with which to implement a program con-

struct. Thus a compiler binds a source language program to the instruction

set of a particular computer and a specific set of library routines, paging

hardware binds a program address to a particular absolute location, and

when an instruction is in the midst of execution it is bound to a processor

with a particular internal logic. A look at a computer system from the

point of view of binding provides insight into the nature of several

complex problems because the requirement of reversibility of binding comes

up in many aspects of the system. The simplest case occurs when a

processor is interrupted for a moment to attend some input-output device.

The program that was running should not be so tightly bound to the processor

that it must run to completion before interruption can safely occur with-

out aborting the program. Typically, at least the instruction in progress

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 7

does have to run to completion; this requirement is sometimes overlooked

in specification of elaborate multi-cycle instructions. In the example

of paging already mentioned, a program which has been removed from the

machine will be reloaded at a time when the primary memory allocations to

other users are not the same as before and there may be new physical

memory binding required. Similarly, if the system is shut down and a

user with work in progress has his service temporarily disrupted, there

is a need to allow his computation to continue when system service is

restored. However, during this shutdown it may have been necessary to

reload the secondary storage in a different physical arrangement. Changes

to the system library or supervisor may also occur during the break. The

possibility of such changes requires that when user programs are stopped,

they be unbound from all dependence on the specific version of library

programs or supervisor. Such unbinding and subsequent rebinding can

succeed only if the overall functional properties of the hardcore super-

visor and machine do not change in the interim. Of course, there is an

intrinsic requirement of a compromise between the desire to have all pro-

grams continue to run no matter what happened while they were interrupted

and the desire to be able to upgrade the machine or modify the supervisor,

Good functional design emphasizing modularity can minimize this problem by

reducing the chance that a desired change in a module requires a change

in some interface specification to which a user may be bound.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 8

 The foregoing discussion of reversibility of binding illustrates

how a single viewpoint can illuminate several complicated problems arising

from the objective of multiplexing. This illustration completes our

discussion of multiplexing and we now turn our attention to a second idea

which is gaining rapidly in importance: sharing.

Sharing and Its Contribution to Complexity

 An important opportunity arises in a time-sharing system in

which different individuals operate programs simultaneously. This

simultaneity allows them to interact with each other, to share and

exchange information, and in general to operate collectively rather

than individually[7]. This conscious sharing is in contrast to the

hidden multiplexing which is also occurring. There are many examples in

which sharing is desirable: members of a research group working together

on a project; system programmers developing a new computer operating

system; airline reservation clerks using a common data base; and students

using a common compiler. It is our belief that sharing among users is

going to become one of the more important properties of multi-access

computers and that the difficult problems which accompany sharing will

become the more critical in the system programming field.

 For an example of the difficulties, all-or-nothing sharing, which

is relatively easy to implement, is inadequate on grounds of privacy

and the need for selective permission to access information. This

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 9

permission must be grantable both to individuals and to groups of indi-

viduals with common attributes, not all of whose members may be known

at the time permission is given.

 An often overlooked further problem of sharing is one of

credibility: there is a need to have confidence in a computing system.

One can identify a need for varying levels of confidence ranging from

the presumably high confidence one has in the supervisor to the nearly

total lack of confidence one has in his own untested program. This

confidence varies through the layers of software in the system, from the

official program library, through the local user community library and

to a friend's private programs which may or may not be well done.

Certification that a program works as expected, whatever its needed

level of confidence, is a seriously difficult problem of systems which

permit sharing. The current solution to this problem is based on judg-

ment and experience with the programs in question, much as research

articles are formally accepted by journals or drugs are used in the

medical profession.

 A further observation about sharing is that day-by-day changes

which occur during any programming project introduce a strong incentive

to avoid having multiple copies of programs and data. For example,

when a programming mistake is found in a widely used library procedure

such as the square root program, one needs to replace this program in such

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 10

a way that no future computations will use the erroneous copy. More

significantly, since a large project cannot be done all at once, there

is a need to be able to start writing and testing some programs with dummies

and shortcuts replacing others. As different members of a programming

group replace dummies and improve modules to remove shortcuts, each must

have available other members' latest module versions for testing and

integration, rather than copies which may be quickly outdated.

 The impact of an evolving set of programs on sharing highlights

the existence of a general problem of sharing: the minimization of undesired

multiple copies of shared information. The reason for avoiding multiple

copies is clear; updating or revision of one does not automatically imply

updating of the other copies. Worse, if two people attempt to update dif-

ferent copies, catastrophe generally results when one or the other (but

not both) replace the master. Throughout a system which has shared infor-

mation, mechanisms for avoiding multiple copies abound. For example, a

processor is conditioned to ignore interrupts (inhibited) at times when

it is holding a copy of some system-wide datum in its registers, to

guarantee that an interrupting routine does not look at the now obsolete

copy in primary memory. Hardware instructions which permit read, alter,

and rewrite of a memory cell in a single processor instruction are similarly

provided to avoid the extra copy of the memory cell briefly required to

implement the same sequence with conventional read and write instructions.

The existence of a look-ahead scheme or an associative memory in a processor,

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 11

which allows it to quickly obtain contents of primary memory cells soon

to be or recently addressed, must be taken into account as a potential

multiple copy of information changed in primary memory by another processor.

We will see below some implications of the desire to avoid multiple

copies of a file of information when that file is placed in primary memory.

 Of course, most of the problems which sharing introduces have

always existed in batch processing and early interactive time-sharing

systems where many users share a supervisor and program libraries. How-

ever, as one introduces an active on-line community which consciously

shares and develops symbiotic relationships, it becomes essential to

solve more generally some of the problems which we have discussed. We

advocate as a sensible starting point the technique of segmentation

proposed by Dennis[8], in which segments are the smallest separately

shareable elements of information.

 In the implementation of these ideas described by Daley and

Dennis[9] segments are kept in an information storage system which gives

the user the illusion that it always remembers perfectly. The critical

properties of a segment in this implementation can be listed:

 1. It is a logically contiguous block of arbitrary length centaining

 addressable data elements, typically the words of the hardware

 configuration.

 2. It has a name and logical location supplied by the user.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 12

 3. It has associated with it a list of users and groups of users

and for each, attributes with which they may enjoy access to

the segment. These attributes, such as reading permitted,

execution permitted, etc., apply dynamically to every reference

made to the segment so that permission may be revoked at sub-

sequent times for any particular user or group of users.

 4. The segment has associated with it a unique identification, such

 as the date, time, place, and processor of creation, so as to be

 able to have a completely specific identification.

It will be noted that the above list of properties can be applied to a

conventional file system using secondary storage only[10]. When one wishes

to extend sharing of segments to the primary memory, so as to avoid multiple

copies there too, then to maintain rapid access it is necessary to have

special hardware. As noted before, if one does not share segments in

primary memory, then many of the problems of temporal change become rampant;

for example, when library subroutines are corrected of errors, not all

occurrences are updated. In addition, lack of sharing in primary memory

requires more primary memory for the redundant copies of programs simul-

taneously needed by different users. As a dividend, hardware to allow

sharing of segments also permits the programming convenience of dynamically

variable segment size in primary memory. When one develops a new algorithm,

a new programming system or a similar application of a computer, there is

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 13

a desire to work out logical consequences without having to wrestle with

storage management. Having available dynamically variable regions of

program memory is of great assistance.

 To illustrate more precisely how the sharing of a single copy

of information in primary memory is accomplished, we examine a technique

of implementing segmentation. This technique requires that the processor

use for each word to be retrieved from primary memory, instead of the usual

single component address, a two component address. The first component

is interpreted as identifying the segment containing the word, the second

as identifying the relative location of the word desired within the seg-

ment. Thus, instead of referring to a memory address as, say, 741, its

position in a linear address space, the program would instead refer to

the address (5,20) where the reference is to the 20th word in segment

five. (Note that for implementation simplicity, segment names are

mapped into numbers typically at the time of first usage in primary

memory. As seen below, the number of a segment is used as an index to

identify its properties in tables, and its value is assigned arbitrarily

by the supervisor. In contrast, word numbers are usually assigned by

compilers and denote position within a linear array.) The basic imple-

mentation of a segmented address space requires that the processor auto-

matically construe the segment number (in our example, 5) to be an index

into a table (the descriptor segment) which contains one entry per segment.

This table is maintained by the supervisor exclusively for this user. Its

location is loaded into a special processor register by the supervisor

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 14

and it contains for each segment both this user's access rights and a

pointer to the actual physical location of the information in primary

memory. Since a second user would have his own supervisor-maintained

descriptor segment even if one of his entries points to the same physical

information in memory, he can have distinct access rights. Further,

there is no requirement that entries be made in the same order in all

descriptor segments, so that each user may have a private address space

with his own naming conventions, yet be using some segments in common

with other users.

 Segments thus offer a natural technique for solving the problem

of shared procedures in primary memory. In addition, they allow a super-

visor protection mechanism to be implemented within the hardware frame-

work. Clearly, the descriptors which refer to supervisor segments can

prevent a user from destroying or tampering with any of the procedures.

Entering the supervisor merely becomes an attempted transfer to one of

the supervisor procedures. One simple form of supevisor/user relationship

is for the access bits to take on a modal interpretation when such an

access is attempted. A description of a mechanism based on this approach,

which allows concentric rings of protection, if found in a paper by

Graham[12]. An alternative segment protection approach has been described

by Evans and Leclerc[13].

 By capitalizing on the flexibility of the descriptor segment,

a supervisor may be composed of an arbitrary but self-consistent set of

modules which are distinct for different users. Clearly, such different

supervisors have to obey the same ground rules and follow common conventions

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 15

on data bases. But it is possible to have different supervisors for each

person with the exception of a hardcore of the supervisor roughly

embodying interrupt handling, primary memory multiplexing and the infor-

mation storage system. Using this technique, system programmers may

develop modifications of supervisor procedures and test them simultaneously

with the operation of the old system.

Summary

 In this paper we have isolated two distinct objectives of

multiplexed computer system design. We have distinguished between those

problems which are exclusively related to multiplexing and those which

arise from conscious sharing of information between users. In both multi-

plexing and sharing we have seen how problems which are latent in noninter-

active batch processing systems are aggravated seriously by people using

the system simultaneously and in concert. Thus on one hand, interactive

time-sharing systems develop a requirement for unpredictable interruptions

of the use of computer resources and these interruptions in turn produce

a need for reversible binding. On the other hand, because individual

members of time-sharing communities are in a position to conveniently

interact and share ideas and programs, the control and exploitation of

sharing is a key idea in system design. Mechanisms such as segmentation

allow solutions of many of the sharing problems that one encounters and

also increase insight into the nature of the difficulties.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68 16

 It is clear that the design of multiplexed systems has not

reached its limit and it is also clear that it will not without further

analysis and functional understanding of the principles underlying the

mechanisms. Only this understanding will make it possible to find the

necessary simplifications in mechanisms which will allow design of more

sophisticated systems.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

IFIP CONGRESS 68 Corbató and Saltzer 2/29/68

 References

[2] Dijkstra, E. W., "Structure of 'THE'-Multiprogramming System,"
 ACM Symposium on Operating Principles, Gatlinburg, Tennessee,
 October, 1967 (to be published in Communications of ACM, May, 1968).

[2] Mealy, G. H., et al., " The Functional Structure of OS/360,"
 IBM Systems Journal, Vol. 5, No. 1, 1966, pp. 2-51.

[3] Comfort, W. T. , " A Computing System Design for User Service,"
 AFIPS Conference Proceedings, Vol. 27 (1965 FJCC), Spartan Books,
 Washington, D. C., 1965, pp. 619-626.

[4] Corbató, F. J. and V. A. Vyssotsky, "Introduction and Overview of
 the Multics System," AFIPS Conference Proceedings, Vol. 27 (1965
 FJCC), Spartan Books, Washington, D. C., 1965, pp. 185-196.

[5] Saltzer, J. H., " Traffic Control in a Multiplexed Computer System,"
 Project MAC Technical Report MAC-TR-30 (Thesis), M.I.T., Cambridge,
 Massachusetts. July, 1966.

[6] Kilburn, T., " One-Level Storage System," IRE Transactions on Electronic
 Computers, Vol. EC-11, No. 2. April, 1962.

[7] Fano, R. M., " The Computer Utility and the Community," 1967 IEEE
 International Convention Record, Part 12, pp. 30-37.

[8] Dennis, J. B., " Segmentation and the Design of Multiprogrammed
 Computer Syatems," Journal of the ACM, Vol. 12, No. 4, October, 1965,
 pp. 589-602.

[9] Daley, R. C. and J. B. Dennis, " Virtual Memory, Processes and
 Sharing in Multics," ACM Symposium on Operating Principles, Gat1inburg,
 Tennessee, October, 1967 (to be published in Communications of ACM, May, 1968.)

[10] Crisman, P. A., ed., The Compatible Tune-Sharing System: A Programmer's
 Guide, 2nd ed., M.I.T. Press, Cambridge, Massachusetts, 1965.

[11] Glaser, E. L., et al., " System Design of a Computer for Time
 Sharing Application," AFIPS Conference Proceedings, Vol. 27 (1965
 FJCC), Spartan Books, Washington, D. C., 1965, pp. 197-202.

[12] Graham, R. M., " Protection in an Information Processing Utility,"
 ACM Symposium on Operating Principles, Gatlinburg, Tennessee,
 October, 1967 (to be published in Communications of ACM, May 1968).

[13] Evans, D. C. and J. Y. Leclerc, " Address Mapping and the Control of
 Access in an Interactive Computer," AFIPS Conference Proceedings,
 Vol. 30 (1967 SJCC). Thompson Books, Washington, D. C. 1967,
 pp. 23-30.

This document was originally prepared off-line. This file is scanned from
an original paper copy, followed by OCR and manual touchup.

