
MTB 602 - - LALR page 1

To: MTB Distribution

From: P. Prange, Benson I. Margulies

Date: October 4, 1982

Subject: LALR, a Translator Construction System

This Technical Bulletin describes the LALR system. LALR translates a BNF-1 ike
language description into a parser for the language. The output from LALR is
a set of tables that control the operation of a parser procedure. Because
these tables are lists of signed integers they can be easily transported to
computers other than Multics. The parser procedure is a simple routine and
versions of it have been coded in PL/I, COBOL and Assembly language. LALR has
options which allow the control tables to be generated as a Multics object
segment, an ALM source segment, a GMAP source segment or a DPS 6 (or Level 6)
Multics Host Resident System object segment.

The parser created by LALR (the tables along with the parser procedure) is a
11 bottom-up11 LALR(k) algorithm that examines the input symbols in a left to
right manner, looks no more than k symbols ahead, does no backtracking and
halts immediately if an input symbol is not acceptable. The size of the
control table and the code for the parser procedure is competetive with
hand-coded methods. LALR is an expedient means to provide parsers for
computer languages.

The attribute of immediate error detection is accompanied by facilities for
error recovery. Because error recovery is language related, no particular
scheme is imposed. The tabular form of parser provides for a variety of error
analyses.

LALR requires that the user provide a description (a grammar) of the language
for which a parser is desired. This also serves as a document to describe the
syntax (allowable symbol arrangements) to people who will use the language.
LALR assures the correspondence between what a language is published to be and
the parser that 11 says 11 what the language 11 is 11 •

Because of LALR's speed of operation, frequent adjustment can be made to the
language description until the user is satisified. Immediate test parses can
be performed to observe the operation of the parser. LALR assures that a
compiler or translator will be constructed in a modular fashion (unless the
user goes out of his way to do otherwise). First the parser can be developed
and checked, next the scanner and finally the semantic routines. Each can be
tested before being incorporated in the translator.

Multics internal working document. Not to be distributed outside of the
Multics Development Center without permission of the author or the director,
MDC.

• •

For comparison purposes, a version of calc was developed using LALR. The
compilation and generation listings are included at the end of this Technical
Bulletin. This version was run against the installed one for a few cases. ~
The execution time of the LALR version was from 98% to 144% of that of the
installed calc. The bound object size of the LALR version was 64% of that of
the installed one. It took 7 1/2 hours to complete.

MTB 602 -- LALR page 3

Glossary

grammar - a formal set of rules that
grammar involves four quanities:
symbol, and productions.

define a 1 anguage. In genera 1, a
terminals, non-terminals, a start

terminals - the basic symbols of which strings in the language are composed.

non-terminals - special symbols that denote sets of strings.

variables - another name for non-terminals.

start symbol - a selected non-terminal which denotes the language we are
truly interested in. The other non-terminals are used to define other
sets of strings, and these help define the language.

sentence - a string of terminal symbols that may be derived from the
grammar's start symbol in one or more steps.

comp I i ca ted term i na 1 - a pseudo-symbo 1 of a 1 anguage. It
terminal in a grammar, but it lexically is one of
e.g., <integer>.

is treated like a
a set of symbols;

rule - a description of a valid combination of symbols in a language.
may be alternatives.

There

production - a single val id combination of symbols.
there are no alternatives. If a rule has

Equivalent to a rule if
n alternatives, it then

represents n productions.

DPDA - Deterministic Push-Down Automata

EOI - end of information. This is the final terminal of an input.

Overview

This document contains information describing Multics commands comprising the
LALR system. The LALR system was originally created by J. Falksen and Dave
Ward of LISD. It has been extensively modified to improve its performance and
to add functionality needed by the Ada/SIL project. You do not have to master
all of this information to attempt a use of LALR. Various parts are of
interest only after you have tried LALR and are selecting among different
approaches in using LALR to aid in the implementation of a translator.

The following are typical steps taken to examine the use of lalr:

1. Prepare a sample grammar, the input to lair.
and Grammar format, page 13).

2. Execute lalr. (See lalr, page 20).

(See Source format, page 6

3. Repair the grammar if it is not acceptable (scratch head). (e.g., use the
ted text editor). See Non-LALR (k) Grammars, page 71, for information on
the interpretation of certain diagnostics.

4. Test the parser by executing lalrp, after the grammar is accepted by lalr.
(See lalr_parse, page 49).

5. If the facilities of lalr_parse are sufficient, you then supply your
semantics for that environment. If desired, write a scanner fo 11 owing the
lalr_parse interface requirements.

6. Otherwise, you supply your semantics and scanner to match whatever
interface requirements you decide on. You then generate your parser
procedure with the macro (See Parser macro, page 56).

Consideration will be needed
(See Error Recovery, page 16).
all circumstances or for all
trade-offs and compromises.

to accommodate error reporting and recovery.
Recovery can not be guaranteed to work under
languages. You can anticipate a need for

If you require unreserved keywords, realization
provision from them by LALR must be understood.
page 16) •

of the limitations of the
(See Unreserved Keywords,

Both error recovery and unreserved keywords are an extension to the context
free parsing that lalr is limited to. Use of these facilities "breaks the
rules".

MTB 602 - - LALR page 5

Processor functions

An LALR language processor is made up of three parts:

scanner parser semantics

The scanner recognizes symbols in the input. It must know what the encoding
of each symbol is to be, but it does not need to know the format of the parse
tables.

The parser recognizes rules, i.e., valid combinations of symbols as defined by
the grammar. It needs to know the format of the parse tables and the encoding
of symbols, but it does not need to know anything about the form of these
symbols.

The semantics represent the action to be taken when a rule has been recognized.
It needs to know nothing about the format of the parse tables. It probably
needs to know nothing about what makes up symbols.

Division of labor

The job to be done, processing a source input of a language, can be broken up
in several different ways. The user makes his own decision as to which he
1 i kes.

Certain types of recognition processes can be described in the grammar
(parsed) or done by the scanner.
A user could write a grammar 1 ike this:

<letter>::= a I b I ••. I z I A I ... I Z l
<digit>::= 0 I 1 I ... I 9 I
<symbol>::= <letter> I <symbol> <letter> I <symbol> <digit> I

Then his scanner would be very simple, and would encode values for the letters
and digits. This would, however, be very slow because of many rules being
processed for each symbol.

Or the user could drop the first two rules and have the scanner smart enough
to recognize <letter> and <digit>. This would parse more quickly.

Or the user could drop all three rules and have the scanner implement this
directly and return an encoding for <symbol>. This is usually the best way to
do it. It shortens the grammar, making it more readable. It speeds up the
parse by having many less rules to works its way through.

If a scanner recognizes
choice of whether the
string to binary.

Source Format

a symbol <integer>, for example, there is still the
scanner or semantics actually converts the integer

The source segment can be in one of two forms:

1) grammar only
2) control 1 ines followed by grammar

If the first character of the segment is a 11 - 11 it contains control lines. If
not, then the grammar begins with the first character. The control arguments
contained in the source segment must begin in the first character position of
the line.

When control lines are present, they are selected from this set:

-ada_s i 1
-aim
-asm
-controls, -ctl
-count, -ct
-dpda
-dpda_xref, -dx
-embedded_semantics
-end_ of_ information {X} , -end of info {X}, -eo i {X}

-gmap

spaces and/or horizontal tabs separate the keyword
from the X.

-hash N spaces and/or horizontal tabs separate the keyword from
the N.

-1 ine_length N, -11 N spaces and/or horizontal tabs separate the keyword
from the value N.

-1 is t' -1 s
-long_source, -lgsc
-mark X spaces and/or horizontal tabs separate the keyword from

the X.
-no ada_s i I
-no aim
-no asm
-no_controls, -nctl
-no_count, -net
-no_dpda_xref, -ndx
-no_end_of_information, -no_end_of_info, -neoi
-no_gmap
-no_ 1 i st, -n 1 s
-no_long_source, -nlgsc
-no_mark
-no_optimize, -not
-no_optimize_appl ies
-no_optimize_looks
-no_optimize_reads
-no_production_names, -npn
-no_semantics, -nsem
-no_semantics_header, -nsemhe
-no_source, -nsc
-no_symbols, -nsb
-no_table, -ntb
-no_terminals, -no_terms, -no_term

MTB 602 - - LALR page 7

-no_terminals_hash_l ist, -nthl
-no_terminals_list, -ntl
-no_t ime, -ntm
-no_variables_list, -nvl
-nss
-nssl
-optimize, -ot
-optimize_applies
-optimize_looks
-optimize_reads
-production, -prod
-production_names, -pn
-rule
-semantics X, -sem X

spaces and/or horizontal tabs separate the keyword
from the X.

-semantics_header, -semhe
-separate_semantics, -sep_sem
-source, -sc
-ss
-ssl
-symbols, -sb
-table X, -tb X spaces and/or horizontal tabs separate the keyword from

the X.
-terminals, -terms, -term
-terminals_hash_l ist, -thl
-terminals_list, -tl
-time, -tm
-variables_! ist, -vl

-order t t •••

For a description of the above control lines see the
description of the corresponding control arguments of
the lair command beginning on page 20.

This specifies the order which should be used when
assigning encodings to terminals. The first terminal
will receive 1, the second 2, etc. White space or
comments (see page 13) separates the keyword from the
first terminal. Thereafter, each terminal is
separated from the next by white space or comments.
This control lasts up until the next 1 ine which begins
with a 11 - 11 If the order contro 1 is present, a 11
terminals are expected to be listed in it. A diagnos­
tic is issued for each symbol not listed in the order
control which is contextually determined to be a
term i na 1 symbo 1.

-synonyms list

-recover t t •••

-prelude text

-parse

This specifies sets of terminals that the scanner is to
consider to be synonyms. Each set of synonymous
terminals is given on a separate line with the
synonyms being separated from each other by white
space (other than NL) or by comments (see page 13) •
The first may be preceded by white space and comments
and the last may be followed by white space and
comments.

The first symbol in each set of synonyms is nominally
considered to be the terminal. This symbol may, but
is not required to be named in the -order centre I • If
this symbol appears in any prior line of the -synonyms
control, the entire current line is treated as a
continuation of that prior line.

The second and succeeding symbols in each line are
considered to be synonyms of the first symbol on the
line. None of these symbols may be named in the
-order control nor may they have appeared earlier in
the -synonyms control.

Unless all of the terminals, excluding the synonyms,
have been named in the -order control, use of the
-synonyms control will cause gaps to exist in the
sequence of integers encoding the terminals.

This specifies
Recovery.

terminals for skip-recovery.
The format is I ike -order.

See Error

This specifies a 11 standard prelude 11 that is to be scanned
before scanning the normal source segment when parsing
a source segment.

This specifies that everything following the keyword in
the segment is the grammar. This must occur last in
the control portion of the segment.

The source segment may be in a format called the embedded semantics format or
in another format called the separate semantics format. The
-embedded_semantics and -separate_semantics controls are used to specify which
of these formats is in use.

In the embedded semantics format, the source segment is really
procedure, a Ada/SIL program unit, or a DPS 6 (or Level 6) Assembly
program. The following paragraphs describe the creation of the
segment from an embedded semantics source segment.

a PL/I
Language

semantics

If the source segment is a PL/I procedure (as indicated by the -semantics
control argument), LALR will create the compileable semantics segment from it
by the following steps.

MTB 602 - - LALR page 9

1) Begin the semantics segment with a <procedure statement> naming the
procedure. If the semantics segment is named X.pll, the following
<procedure statement> is generated:

X: proc (rule_no, alt_no, lex_stack_ptr, ls_top);

If the semantics segment is named X.incl.pll, the following <procedure
statement> is generated:

X: proc (rule_no, alt_no);

If the -production control (see the lalr command on page 20) has been
given, the parameters rule_no and alt_no in the above <procedure
statement>s are replaced by the single parameter prod_no.

2) Append a <comment> giving the name of the input grammar segment, the date
and time it was translated, the version of LALR that was used to
translate it, and the user_id of the user who translated it.

3) Append a <declare statement> declaring the formal parameters. If the
semantics segment is named X.pll, the <declare statement> is as follows:

dcl (rule_no fixed bin,
alt_no fixed bin,
lex_stack_ptr ptr,
ls_top fixed bin) parameter;

If the semantics segment is named X.incl.pll, the <declare statement> is
as fol lows:

dcl (rule_no, alt_no) fixed bin parameter;

If the -production control has been given, the declaration of the formal
parameters rule_no and alt_no in the above <declare statement>s are
replaced by a declaration of a single fixed bin parameter 11 prod_no11 •

4) Append a <goto statement> to the semantics segment. If the -production
control has not been given, the <goto statement> is as follows:

go to rule (rule_no);

If the -production control has been given, the <goto statement> is as
fol lows:

go to prod (prod_no) ;

5) Append the source segment to the semantics segment making the following
changes:

a) Put /*and *I around the control portion, if present.
b) Put /* and *I around each LALR rule.
c) If the -production control (see the lair command described

20) has not been given, each %%%% in the semantics is
on page
replaced

with the zero suppressed number
If the -production control has
followed by an unsigned decimal
number is replaced with the
production which they represent.

of the rule which it represents.
been given, each%%%% immediately
number representing an alternative
zero suppressed number of the

6) Append the following <end statement> to the semantics segment:

end X;

If the -no semantics header control (see the lalr command described on page
20) has be;n given, ;nly steps 2 and 5 above are performed.

If the source segment is a Ada/SIL program
-semantics control argument), LALR will create
segment from it by the following steps.

unit
the

{as indicated by the
compileable semantics

1) Begin the semantics segment with a <subprogram specification> naming the
subprogram. If the semantics segment is named X.ada, the following
<subprogram specification> is generated:

procedure X
{rule_no: .in natural;
alt_no: in natural;
lex_stack_ptr: in access;
ls_top: in integer) is

If the semantics segment is named X.incl.ada, the following <subprogram
specification> is generated:

procedure X
{rule_no: in natural;
alt_no: in natural) is

If the -production control (see the lalr command on page 20) has been
given, the formal parameters rule no and alt no in the above <subprogram
specif ication>s are replaced by a sing!; input formal parameter
11 prod_no11 of type natural.

2) Append a sequence of <comment> lines g1v1ng the name of the input grammar
segment, the date and time it was translated, the version of LALR that
was used to translate it, and the user_id of the user who translated it.

MTB 602 - - LALR page 11

3) Append the source segment to the semantics segment making the following
changes:

a) Put in front of each line of the control portion, if present.
b) Put in front of each line of each LALR rule. If a rule does not

begin at the beginning of a line or end at the end of a line,
lines are split as necessary to make each rule do so.

c) If the -production contro 1 (see the 1a1 r command described on page
20) has not been given, each %%%% in the semantics is replaced
with the zero suppressed number of the rule which it represents.
If the -production control has been given, each%%%% immediately
followed by an unsigned decimal number representing an alternative
number is replaced with the zero suppressed number of the
production which they represent.

4) End the <subprogram body> with the following text:

end X;

If the -no semantics header contro 1 (see the 1a1 r command described on page
20) has been given, steps 1 and 4 above are skipped.

If the source segment is a DPS 6 (or Level 6) Assembly Language program unit
(as indicated by the -semantics control argument), LALR will create the
assembable semantics segment from it by the following steps.

1) If the semantics segment is named X.nml or X.nml .MAC, it begins with the
title statement:

ti t 1 e X, 'yymmddOO '

where yymmdd is the current date. If the semantics segment is named
X.incl.nml, it begins with the comment lines mentioned in step 2 below.

2) Comments lines giving the name of the input grammar segment, the date and
time it was translated, the version of LALR that was used to translate
it, and the user_id of user who translated it are placed in the output
semantics segment.

3) Append the following statements defining the semantics procedure's entry
point and transfering control to the semantics for the current rule.

x
xdef
lab
ldr
jmp

x
$B4,jtable-1
$Rl,$B4.$Rl
$B4.$Rl

These statements assume the parser passes the rule number or production
number, as appropriate, by value in register Rl. (See the -production
control argument of the lair command beginning on page 20 for informa­
tion regarding use of rule numbers and production numbers.)

4) Append the source segment to the semantics segment making the following
changes:

a) Put a* in front of each line of the control portion, if present.
b) Put a* in front of each line of each rule. If a rule does not

begin at the beginning of a line or end at the end of a line,
lines are split as necessary to make the rule do so.

c) If the -production control (see the lalr command described on page
20) has not been given, each %%%% in the semantics is replaced
with the 4-digit number of the rule which it represents. If the
-production control has been given, each%%%% immediately followed
by an unsigned decimal number representing an alternative number
is replaced with the 4-digit number of the production which they
represent.

5) Append a DC statement defining the jump table used by the statements
shown in step 3 above. If the -production control has not been given
the jump table is as follows:

j tab 1 e de ROOO 1-j tab l e+l;
R0002- j tab 1 e+l;

Rn-jtable+l

The jump table contains an entry for each rule of the grammar. If the
i-th rule has a significant semantic, Ri used in the i-th 1 ine of the DC
statement is the letter 11 r 11 followed by the value of i as a 4-digit
decimal number. Otherwise, Ri is 11 no sem". (The user is assumed to
have defined the tag "no sem" somewhere-in the semantics segment.)

If the -production control has been given the jump table is as follows:

j tab 1 e de POOO 1-j tab 1e+1;
P0002-j tab I e+l;

Pn-j tab 1 e+l

The jump tab 1 e contains an entry for each production of the grammar. If
the i-th production has a significant semantic, Pi used in the i-th line
of the DC statement is the letter 11 p11 followed by the value of i as a
4-digit decimal number. Otherwise, Pi is 11 no sem". (The user is
assumed to have defined the tag 11 no_sem11 somewhere in the semantics
segment.)

6) Append the following end statement to the semantics segment if it is
named X.nml or X.nml .MAC.

end X

...

MTB 602 - - LALR page 13

,.., In the separate semantics format, the semantics are not present in the source
segment. In this format the grammar merely names an external entry to be
called to perform the required semantic action.

Grammar Format

A grammar consists of rules written in a BNF-1 ike notation. Each rule can
have associated semantics. The semantics represent coding which is to be
executed when a production of the rule described has been recognized. In
embedded semantics source segments, the rules have this basic form:

<var>

: : =

<prod 1 i st>

<semantics>

(* • • • *)

?include X

<var> ::= <prod list> <semantics>

represents a "var i ab 1 e11 (non-termi na 1). It must be the
first non-white-space on a 1 ine. It begins with a 11 <11

and ends with a 11 >11 •

represents 11 is defined as". It must be on the same 1 i ne
as the <var>.

represents a production list. A production is a sequence
of terminals and variables. If there is a list of
them, they are separated by "I"· The production list
may be empty.

represents "end of production list". Everything following
it is semantics. This must always be present.

represents the coding which is to be executed if the
is parsed; it may be null. This cannot contain
string 11 ::=11

rule
the

represents a "comment" within the grammar, it must be
between the::= and I of a rule or within 11 -order 11 ,

11 -synonyms 11 , or "-recover" contro 1 1 i nes.

represents an 11 inc1 ude macro". The inc 1 ude macro is
processed as if it were replaced by the segment named
X.incl. lair found using the translator (trans) search
paths. LALR a 1 ·1 ows the trans 1 a tor search paths to
specify archives as well as the usual directories. An
archive is specified to the search path commands by
giving the pathname of the archive, including the
suffix archive. Include macros may be nested. They
may not appear in the control 1 ines of the source
segment nor may they appear between the <var> and ::=
of a rule.

In separate semantics source segments, the rules have this basic form:

<var>

. . -.. -
<prod 1 i st>

<var> ::= <prod 1 ist> I <rule semantics>

represents a 11 variable 11 (non-terminal). It begins with a
11 <11 and ends with a 11 >11 •

represents 11 is defined as" •

represents a production list. A production is a sequence
of terminals and variables. If there is a list of
them, they are separated by "1 11 • The production list
may be empty. If the -production contro 1 is in
effect, a production may end with the symbols => t
p$e, where t is an identifier tagging the production
and p$e identifies an entry point in an external
procedure to be called to perform the semantic action.
If no tag is needed, t and the: following it may be
omitted. There may not be any white-space between p
and the dollar sign nor between the dollar sign and e.
If p and e are the same, the Se may be omitted.

When the parser tables are produced as a Multics
object segment or an ALM source segment, p is taken to
be a segment name and e is considered an entryname.
Each t generates an external static variable
initialized with the corresponding production number.

When the tables are produced as a GMAP source segment,
p is ignored and e is taken to be an external symbol;
i.e., it has been SYMDEF 'ed. Each t generates a word,
tagged with t, containing the corresponding production
number. Each t is also SYMDEF 'ed.

When the tables are produced as a DPS 6 object unit, p
is taken to be the name of an object unit and e is
considered to be an entry point defined within that
object unit. If the -asm control is used to request
the object unit, each t names an external value equal
to the corresponding production number. If the
-ada_sil control is used to request the object unit,
each t generates a variable of type integer which is
initialize with the corresponding production number.

represents "end of production 1 ist 11 • This must always be
present. If the -rule control is in effect, the I of
each rule may be fol lowed by the symbols => t : p$e,
where t, p, and e are as described above except that
they pertain to rules instead of productions.

MTB 602 - - LALR page 15

(* • • • *)

?include X

represents a 11 comment 11 within the grammar. If contro J
I ines are present, it may only appear within the
-order, -synonyms, or -recover control lines or after
the -parse control. If control lines are not present,
it may appear anywhere.

represents an 11 include macro11 • The include macro is
processed as if it were replaced by the segment named
X.incl.lalr found using the translator (trans) search
paths. LALR allows the translator search paths to
specify archives as well as the usual directories. An
archive is specified to the search path commands by
giving the pathname of the archive, including the
suffix archive. If control lines are present, an
include macr~ cannot appear befor the -parse control.
If control lines are not present, include macros can
appear anywhere.

Observe some LALR detail:

1. Rule ordering is unimportant, except that the rule that defines the
11 start symbol 11 must be physically first.

2. Ordering of productions (rule alternatives) is unimportant.

3. Each rule must be terminated by an exclaimation mark, 11 111 • It is
after this mark that semantic code is placed when using the
embedded semantics format.

4. LALR reserves the use of the symbo Is, 11 <11 , 11 :: =11 , 11 j11, 11 111 , 11 111 and-
11? inc J ude11. When processing a separate semantics source segment,
the symbol => is also reserved. Spaces are not required except
between adjacent terminal symbols, i.e., 11 <0>::=+1-1 11 is accept­
able.

5. To specify symbols involving these reserved characters and 11 space 11

characters the following escape character convention is
implemented. The apostrophe, 11111 , signals an escaped character.
It may be followed by an octal number up to three digits long,
whose value specifies the Multics ASCII character desired, or if
not followed (immediately) by an octal digit whatever character
does follow is the character being escaped, i.e., 111 11 , 11140 11 , and
11 '040 11 a 11 indicate one b I ank character. This escape convention
causes the restriction of the use of the apostrophe character,
i.e., /1 is required (or '047) to specify the 11111 character
itself.

Variables are 11 normalized 11 in the following manner: Any spaces
immediately after the 11 <11 bracket and immediately preceding the

11 >11 bracket are de I eted. Any i nterna 1 strings of spaces are each
replaced by a single space. This removes space sensitivity from
variable names. 11 space 11 in this context refers to SP, HT, NL, NP,
or VT.

The parsing of the LALR input treats al 1 occurances of< ••• > as a variable as
far as normalization is concerned. However, this is not what determines its ,,....
being a variable; this is done only by appearing at the beginning of a rule.
Any others may be considered as "complicated terminals". This means that you
intend to have your scanner smart enough to know what <integer> is, for
example.

Unreserved keywords

LALR parsing can handle unreserved keywords in a context-free setting. In
general, if each statement has an initial keyword to insure proper recognition
of statements, then <identifiers> can include symbols which are identical to
keywords.

A read state contains a 1 ist of terminal encodings in increasing order which
are valid in the input at this point. When keywords are to be unreserved, you
must specify one terminal as an alternative to the keywords. This is done
with the -mark option. Then all keywords which are to have this as their
alternative must be given encodings which are higher than the alternative.

Suppose you said:

-order + - <integer>= <symbol> let if
-mark <symbol>

Then you could recognize the statement:

let let = let + 1

The lookup procedure in a read table when there are unreserved keywords is
this:

While doing a 1 inear search of the read table, note whether a
negative terminal exists. If there is one, compare its absolute
value against the current terminal. Also remember what this one
is. If the search fails, but a negative (marked) terminal was
found, use it.

Error recovery

Error recovery is,
on your language.

in general, a very specific thing which is highly dependent
It is not usually an easy thing to take care of.

One simple case is in an interactive interpreter. It can just discard
rest of the line and start in fresh on the next line. It is usually not
easy.

the
that

,..

MTB 602 - - LALR page- 17

Two approaches have been developed along with the LALR compiler; local
recovery and skip recovery. The 11 qual ity 11 of these recoveries is affected by
optimization of the DPDA (see the lalr command, page 20) and use of deferred
actions in the parser (see Parser macro, page 56). Generally, the ordering
from highest quality to lowest quality is:

optimized looks, deferred actions
no optimized looks, deferred actions
no optimized looks, no deferred actions
optimized looks, no deferred actions

Local recovery

Local recovery uses the previous input symbol (when it is known), the current
(unacceptable) input symbol, and the next two or three input symbols. First,
all possible parses from the current state are simulated. These trial parses
are true simulations of what can happen, apply states are chosen according to
the simulated top of the parse stack. After the parses beginning in the
current state are exhausted, several parses beginning in the state that read
the previous input symbol are simulated if that state is known and the parser
has been generated with the "deferred actions 11 feature (see Parser macro, page
56) •

Given:
A is an alternate symbol
p is the previous symbol
B s the current (bad) symbol
N s the next symbol
T s the second next input symbol
u s the third next input symbol
H s the previous read state
c s the current state
R s a 11 nex t 11 read state
F s a 11 next 11 read state following R
G s a 11 next 11 read state following F

The fol lowing table indicates the recoveries that are possible if the states
named in the column headings can accept the indicated symbols.

H c R F G
p N B T x Reverse B and N
p N T x x Delete B
p A B N T Insert A before B
p A N T x Replace B with A
B P N T x Reverse P and B
B N T x x Delete P
A p B N T Insert A before P
A B N T x Replace P with A
N T u x x Delete P and B
p T u x x Delete B and N
p A T U x Replace B and N with A
A N T U x Replace P and B with A

The recovery tries to find a useable combination among the first four types of
repair. If one exists, it is remembered but the search does not stop. If a
second one is found, the search stops, a message is generated which says the
choice is not unique, and then the first combination is used. If only one
useable combination is found, it is used with a message indicating it to be
unique. If no usable combination is found, the parser has been generated with
the ''deferred actions" feature, the parse did not fail in a multiple look
ahead state, and the last input symbol read is known, the rema1n1ng
combinations are tried. (The parse will never fail in a multiple look ahead
state if the grammar was processed with optimized looks, see the lair command
described on page 20. The la-st input symbol read is known if the state on the
top of the parse stack is a read state as opposed to an apply state.) If a
useable combination is found, the search continues as above, however it is
restricted to repairs of the same type.

Only terminals whose encoding is fess than that of the nil symbol (see skip
recovery below) are considered as alternate symbols by local recovery.

There is a special precedence rule for the delete B and insert A before B
repairs. If both repairs are possible (reverse B and N is not), delete B is
performed if the encoded value of B is less than the smallest encoded value of
A; otherwise insert A before B is performed.

Local recovery operates as described above when the parser is generated with 2
for the local_reads parameter (see Parser macro described on page 56). The
local_reads parameter specifies the number of symbols beyond the bad symbol
that must be accepted for a particular recovery to be considered successful.
If, for example, 1 is given for local_reads, the following table is used.

H c R F
P N B x Reverse B and N
p N x x Delete B
p A B N Insert A before B
p A N x Replace B with A
B p N x Reverse P and B
B N x x Delete P
A P B N Insert A before P
A B N x Replace P with A
N T x x Delete P and B
P T x x Delete B and N
P A T x Replace B and N with A
A N T x Replace P and B with A Skip recovery

Skip recovery requires that the user define one or more recovery terminal
symbols by means of the

-recover <nil> stl st2 •••

control included in the lair source. stl st2 etc. are skip terminals. _They
are terminals which can end statements. They cause a table to be built for
skip recovery. This table is a list of read and look ahead states which can
fol low the reading of a skip terminal or can be the first state to read a
terminal. These states correspond to the beginnings of new statements.

MTB 602 -- LALR page· 19

Skip recovery is done when an error has occurred and local recovery (if used)
was not successful. Basically what it does is to skip forward in the source
by calling the scanner until it encounters one of the skip terminals. It then
looks backward in the parse stack for a read state or a state applying an
empty production which could have followed a state that read a previous
occurrence of the skip symbol just found. If one is found, it tentatively
adjusts the lexical stack top (which is also the parse stack top) and then
proceeds with a trial parse. If the path from the state which could have read
the skip terminal to the read or empty apply found above has a sequence of
look ahead states (with no intervening non-empty apply states) leading to its
ending state, the trial parse starts in the first of these look ahead states,
otherwise it starts in the path's ending state.

Effectively a bad 11 statement 11 has been discarded. In this case "statement"
means an input string ending in a skip terminal which could have followed the
identical skip terminal (such as 11 ; 11 for examp 1 e) • It inc 1 udes the boundary
terminal on the right. If the language is such that the discarded statement
is optional (syntactically) the rest of the input can be checked for syntax
errors. Note that two identical statements need not be parsed beginning in
the same read state; e.g., the first of a sequence of statements could be
parsed beginning in one read state while the remaining statements could be
parsed beginning in some other read state.

When a bad 11 statement11 is discarded the parser is restarted in the state in
which it began to process the statement. If the next N input symbols

""""" encountered are not acceptable from that state, the parser makes another
attempt at error recovery by replacing the bad 11 statement 11 with the <nil>
symbol definea by the -recover control and starting a second trial parse from
this symbol. If neither trial parse is able to accept the next N input
symbols and M pairs of trial parses have not yet been attempted for the
current symbol, skip recovery looks further backward in the parse stack for a
different read state which could have fol lowed a state that read a previous
occurrence of the skip symbol found above. The trial parsing described above
is then repeated.

If none of the trial parses is able to accept the next N input symbols or all
states on the parse stack are exhausted, skip recovery starts over without
having made an adjustment to the stacks. To appreciate the effect of looking
deeper in the parse stack consider the situation where the first trial parse
attempts to accept a <simple statement> and fails. Now assume M > 1 and the
second trial parse attempts to accept a <compound statement>. It is possible
to obtain better recoverys with M = 2 than with M = 1 when such situations can
occur. When one of the trial parses accepts the next N input symbols, the
lexical and parse stack adjustment is made final and normal parsing resumes.

Before starting the recovery process described above the parser pushes the
current state, or a read state following it if it makes only look transitions,
onto the parse stack. This serves two purposes. First, it ensures that the
parse can restart in the current state when the error occurs on a terminal
immediately following a skip terminal. Second, it allows skip recovery to be
done when the parse fails before reading any terminals.

The <nil> symbol is one which the scanner must NEVER return. It is needed
because some languages do not allow all statements to occur at every point. ~
This means that when you back up to the last statement beginning point, you
may not be allowed to have the statement you find next. As an example, take
this grammar:

<g> ::= <i> 1 <g> <i>
<i> ::=<a> I I
<a> ::=a ; <rd> I
<rd> : : = r ; I <rd> r
 ::= b ; <sd> !
<sd> : : = s ; I <sd> s

Then suppose that you intended to have an input like line (1) below, but
instead you got (2):

(1)
(2)

a
a

r
r

r
r

b
b

s
s

s
s

s
s

a
a

r
r

r
r

When the 11 s 11 11 a 11 11 ; 11 is encountered, 1oca1 recovery wi 11
extraneous and drop it. But this then means that it will
it should be entering the <a> rule. It will then get to
recovery will fail, necessitating another skip. In this
will occur, one statement at a time, until EOI is reached.

If the grammar had specified

-recover <n i 1 >

r
r

decide that 11 a 11 is
miss the fact that

the 11 r 11 and local
example, skipping

skip recovery would skip to the next 11 ; 11 and pick up where it was. But the
only thing it finds in the stack is a state which can read either an 11 a 11 , 11 b11 ,

or 11 s 11 • So it will have to skip again. This means that no syntax checking is
done in all of the 11 r 111 s which are skipped. This is not highly desireable.

However, if you add a rule like this:

<a> ::=<nil> <rd> !

the generated <nil> from skip recovery will al low the <rd> to be correctly
parsed, reducing the number of useless error messages by quite a bit, usually.

These <nil> rules can help parse through misplaced statements during error
recovery, but wil 1 never accept these statements under normal circumstances.
The semantics on these <nil> rules must then report an error.

Name: lair, Irk

The lair command invokes the LALR compiler to translate a segment containing
the text of the LALR source into a set of tables. A 1 isting segment is
optionally produced. Packaged forms of the tables may be requested. These
results are placed in the user's working directory.

MTB 602 - - LALR page 21

Usage: lair path {1 ist_args} {ctl_args}

1) path

2) 1 i st_args

is the pathname of the LALR source segment containing the
grammar to be processed. If path does not have a
suffix of lair, one is assumed. However, the suffix
lair must be the last component of the name of the
source segment. This argument may be an archive
component pathname.

may be one or more of the following optional arguments.
If the source segment is named X.lalr, the 1 ist
segment will be named X.g.1 ist. This is done so that
if the user choses to have his semantics file named
X.pll, the generation listing and compilation 1 isting
will not be in conflict.

-line_length N, -11 N
causes the listing to be prepared with lines no longer
than N characters. If this control argument is not
specified, a line length of 136 characters is assumed.

-page_length N, -pl N

-source, -sc

prints the "machine" listing (see the -list control
argument below) so that no more than N lines are on a
page. If this control argument is not specified, a
page length of 60 1 ines is assumed.

produces a
grammar.

line-numbered listing of the rules of
No semantics are listed, only the rules.

the

-long_source, -lgsc

-symbols, -sb

-list, -ls

produces a 1 ine-numbered 1 isting of the rules of the
grammar and the associated semantics. This control is
meaningless with separate semantics format source
segments, that is it has the same effect as -source.

produces a cross reference listing of the terminals and
variables used in the grammar. If the source segment
is in the separate semantics format, a cross reference
listing of the semantic actions used is also produced.

produces a 11machine 11 1 isting of the DPDA resulting from
the LALR execution.

-contro 1 s, -ct 1 inc 1 udes the grammar 's contro 1 1 i nes, if any, in the
output list. This control argument implies -source.

-count, -ct produces a list of statistics about the tables. This wi 11
go to user_output if no other option is present which
provides a list segment.

-terminals, -terms, -term
produces a listing of the terminals-in encoding order,
showing the encoding. If the source segment is in the
separate· semantics format, a I isting of semantic
actions indexed by the using rule number or production
number, as appropriate, is also produced.

-ss produces source and symbols.

-ssl produces source, symbols, and list.

-dpda_xref, -dx includes cross reference I ists of states, terminals, and
variables in the "machine" listing of the DPDA. If

·the source segment is in the separate semantics
format, the semantic actions are also cross
referenced. In the first two of these lists, each
referencing state number is immediately followed by
the letter 11 R11 , 11 L11 , 11 A11 , 11 811 , or 11 011 indicating a
read transition, look transition, transition from an
apply state, a look back reference by an apply state,
or a look back reference implied by the default
transition of an apply state, respectively. In the
1 ists for variables and semantic actions each state
number is immediately followed by the letter 11 S11 , ''T",
or 11 U" indicating an apply single, apply with look
back table, or apply using shared look back table,
respectively. This control argument implies the -dpda
control argument.

-time, -tm prints a table after translation giving the time (in CPU
seconds), the number of page faults, measures of other
resources used by each phase of the translator. This
information is also available from the command
lalr$times invoked immediately after a translation.

-no_source, -nsc does not produce a 1 isting of the grammar or the

-no_symbols, -nsb

associated semantics. This is the default.

does not produce a I isting
variables used in the grammar.

of the terminals and
This is the default.

-no_long_source, -nlgsc

-no_ l i st, -n 1 s

does not include the semantics in the source listing.
This is the default. Note that -long_source
-no_long_source is equivalent to -source.

does not produce a 11 machine 11 1 isting of the DPDA resulting
from the LALR execution. This is the default.

MTB 602 - - LALR page 23

-no_controls, -nctl
does not include the grammar's control lines, if any,
in the output list if one is produced. This is the
default. Note that -controls -no_controls is equiva­
lent to -source.

-no_count, -net does not produce a list of statistics about the tables.
This is the default.

-no_terminals, -no_terms, -no_term

-nss

-nssl

does not produce a listing of the terminals in encoded
order. This is the default.

is the same as -no_source -no_symbols

is the same as -no source -no_symbols -no_list

-no_dpda_xref, -ndx

-no_time, -ntm

3) ctl_args

does not include any DPDA cross reference lists in the
"machine" listing of the DPDA. This is the default.
Note that -dpda_xref -no_dpda_xref is equivalent to
-dpda.

does not print a table after translation giving the
amounts of CPU time and other resources used by each
of the phases of the translator. This is the default.

may be one or more of the following optional arguments.

-end_of_information {X}, -end_of_info {X}, -eoi {X}
Uses a production whose right hand side is the user's
start symbol followed by an end-of-information symbol
to create the augmented grammar. This is the default.
If the optional argument X is pres~nt, it is made a
synonym of the anonymous end-of-information terminal.

-no_end_of_information, -no_end_of_info, -neoi

-production, -prod

Uses a production whose right hand side is simply the
user's start symbol to create the augmented grammar.

causes the DPDA to be generated with apply state
tables that contain the production number but not the
rule and alternative numbers. If this control argu­
ment is not given or is over ridden by a later -rule
control argument, the apply state tables will contain
the rule number and alternative number in addition to
the production number. This control argument also
affects the generation of the semantics segment (see
Source Format on page 6) •

-rule causes the DPDA to be generated with apply state tables
that contain the rule and alternative numbers in
addition to the production number. This is the
default. (This control argument may be over ridden by
a later -production control argument.)

-optimize_reads performs certain optimizations on the generated DPDA that
primarly affect read states. The first of these
optimizations eliminates all read transitions that
serve only to read a looked ahead at terminal. Such
read transitions are contained in read states that are
not referenced in any apply state's look back table.
If this optimization causes all of the transitions of
a read state to be eliminated, the read state itself
is also eliminated. The second optimization el imi­
nates read states that read (only) the terminals
looked at by a single look state and which are
referenced in one or more apply states' look back
table. This optimization is performed when only one
(look) state makes a transition to the read state
involved, that look state looks at all of the termi­
nals read by the read state, and the look state is not
already referenced by an apply state's look back table
due to an earlier elimination of a looked back at
state that read one or more terminals looked at by the
look state. Other less significant optimizations are
also performed.

-optimize_appl ies

-optimize_looks

Use of a DPDA with optimized reads requires a parser
designed (or generated) according to the requir~me~ts
given in the June 13, 1981 or later version of this
specification (see Parser macro on page 56).

performs certain optimizations on the generated DPDA
that primarly affect apply states. The most signifi­
cant optimization performed is the elimination of
apply states that do not apply an empty production, do
not have a significant semantic action, do not do a
look back, and do not delete any entries from the
parse and lexical stacks.

performs certain optimizations on the generated DPDA
that primarly affect look states. This optimization
moves marked symbol transitions (see Unreserved
keywords on page 16) to the beginning of the look-up
table to allow a non-I inear look-up and creates a
default look transition in 1 ieu of several look
transitions to the same next state when possible. It

MTB 602 - - LALR

also arranges for read/look tables to
continued at a similar state.
optimization tends to cause errors
later in the parse than is the case
not optimized.

page· 25

be truncated and
Use of this

to be detected
when the DPDA is

Use of a DPDA with optimized looks requires a parser
designed (or generated) according to the requirements
given in the September 18, 1982 or later version of
this specification (see Parser macro on page 56).

-optimize, -ot is the same as -optimize_reads -optimize_applies

-no_optimize_reads

-no_optimize_appl ies

-no_optimize_looks

-no_optimize, -not

-embedded_semantics

-optimize_looks.

does not perform the optimizations primarly affecting
read states. This is the default.

does not perform the optimizations primarly affecting
apply states. This is the default.

does not perform the optimizations primarly affecting
apply states. This is the default.

is the same as -no_optimize_reads -no_optimize_appl ies
-no_optimize_looks.

indicates that the source segment is in the embedded
semantics format (see Source Format, page 6 and
Grammar Format, page 13). This is the default.

-separate_semantics, -sep_sem

-semantics X, -sem X

indicates that the source segment is in the separate
semantics format (see Source Format, page 6 and
Grammar Format, page 13) •

produces a semantics f i 1 e named X. (X is any pathname
other than an archive component pathname.) The
suffix(s) must be pll, incl.pll, nml, incl.nml,
nml.MAC, ada, or incl.ada. If no suffix is given,
incl .pl 1 is assumed. If incl is given, it is treated
as incl .pll. Note: this control argument is meaning­
less with a separate semantics format source segment.

-semantics_header, -semhe
causes a "program header" to be generated for the
semantics file. (See Source format described on page
6.) This is the default.

-no_semantics_header, -nsemhe
caused the 11 program header" to be omitted from the
generated semantics file. This control argument is
ignored when generating a DPS 6 Assembly language
semantics file.

-no_semantics, -nsem

-mark X

-no_mark

-hash N

-no_dpda, -nd

-dpda

does not produce a semantics file.
default.

This is the

mark terminal X (see Unreserved keywords, page 16)

generates a parser with no marked terminal. This is the
default.

set the hash value of the variable and terminal tables to
N. The default is 1021.

causes only the first pass and the listing passes of LALR
to be executed. This al lows a new semantics file to
be created and/or listings to be produced at consider­
ably less expense than a normal LALR generation. When
this option is used, the result file (or a link to it)
from a previous LALR generation using the source named
by the path argument must exist in the working
directory. Also the current grammar must be equiva­
lent to the grammar that the result file was generated
from and each rule (or alternative if the -production
control was used) must have, or not have, a semantic
action as did the same rule (or alternative) in the
original grammar.

causes the complete LALR procedure to
generate a new result file. This is

be executed
the def au 1 t.

to

-no_table, -ntb does not produce the table described below. This is the
default. This control argument implies then
-no_terminals_list, -no_terminals_hash_l ist,
-no_production_names, and -no_variables_l ist control
arguments described below.

-table X{. incl .pl l}, -tb X{. incl .pl l}

-terminals_! ist, -tl

produces a table named X and appropriately named
source files. (X is any pathname other than an
archive component pathname.) The table is produced as
a Multics object segment unless otherwise specified by
the control described below. This control argument
implies the -terminals 1 ist, -variables_! ist, and
-production_names control arguments described below.

include the terminals 1 ist in the table.

MTB 602 - - LALR page 27

-terminals_hash_l ist, -thl
include the terminals 1 ist and terminals hash 1 ist in
the table.

-production_names, -pn
include the production
control argument implies
argument described below.

names in the table.
the -variables_list

This
control

-variables_l ist, -vl
include the variables 1 ist in the table.

-no_terminals_Jist, -ntl
does not include the terminals list in the table.
This is the default. This control argument implies
the -no_terminals_hash_l ist control argument described
below.

-no_terminals_hash_l ist, -nthl
does not include the terminals hash list in the table.
This is the default. Note that -terminals_hash_l ist
-no_terminals_hash_l ist has the same effect as
-terminals_l ist.

-no_production_names, -npn
does not include the production names in the table.
This is the default. Note that -production_names
-no_production_names has the same effect as
-variables_l ist.

-no_variables_l ist, -nvl

-no alm

-no_gmap

-no asm

-no ada sil

-alm

does not include the variables I ist in the table.
This is the default. This control argument implies
the -no_production_names control argument described
above.

does not produce the table in the form described below for
the -alm control argument.

does not produce the table in the form described below for
the -gmap control argument.

does not produce the table in the form described below for
the -asm control argument.

does not produce the table in the form described below for
the -ada sil control argument.

produce the table
PL/I include
supplied with
suffixes.

as an alm segment X.alm and a Multics
file named X.incl .pll. X is the name

the -table control argument less all

-gmap

-asm

produce the table
PL/I include
supplied with
suffixes.

as a gmap segment X.gmap and a GCOS
file named X.incl.pll. X is the

the -table control argument less

111
name

a 11

produce the table as a DPS 6 (or Level 6) Multics Host
Resident System object file named X.object and produce
a DPS 6 Assembly Language include file named
X.incl.nml. X is the name supplied with the -table
control argument less all suffixes.

-ada_s iJ produce the table as a DPS 6 (or Level 6) Multics Host
Resident System object file name X.object and produce
a DPS 6 Ada/SIL package specification named
X.spec.ada. Xis the name supplied with the -table
control argument less aJl suffixes.

Notes: Options -aim, -gmap and -asm or -ada_sil may occur together. (Options
-asm and -ada_sil are mutually exclusive.) If -alm, -gmap, -asm or
-ada_sil is in effect but the -table parameter is not, the output
segments for these parameters use the source segment name with the
suffix lair and the preceding 11 • 11 replaced with 11_t 11 in lieu of X.

The create_data_segment_ subroutine is used to create the Multics
object segment unless a separate semantics format source segment is
used. In this case, an alm source segment is created in the process
directory and it is automatically assembled if possible. The contents
of the Multics object segment produced by the -table X control
argument are described by the following PL/I declarations. The
generated include file X.incl.pl 1 contains a copy of these declara­
tions. When a separate semantics format source segment is used, the
object segment also contains a transfer vector with the external name
semantics_vector. This vector is used by the parser to cal 1 the
various semantic actions. The rule number, or production number if
the -production control is in effect, must be passed as the first
argument in the call to the transfer vector. Any additional arguments
desired may be passed. The generated include file does not describe
the transfer vector.

dcl 1 X$terminals_hash_l ist external static,
2 terminals hash list size fixed bin,
2 terminals-hash-list-(O:xx)

fixed bin (l2) unsigned unaligned;
dcl 1 X$terminals_list external static,

2 terminals list size fixed bin,
2 terminals-list-(xx),

3 I ink fi;ed bin (18) unsigned unaligned,
3 position fixed bin (18) unsigned unaligned,
3 length fixed bin (18) unsigned unaligned,
3 code fixed bin (18) unsigned unaligned;

....

MTB 602 - - LALR

dcl 1 X$terminal_characters external static,
2 terminal_characters_length fixed bin,
2 terminal characters char (xx};

dcl 1 X$dpda e;ternal static,
2 dpda_size fixed bin,
2 dpda (xx} ,

3 (v 1 , v2} fixed bi n (17) una 1 i gned;
dcl 1 X$skip external static,

2 skip size fixed bin,
2 s k i p - (xx) ,

3 (v 1, v2} fixed bin (17} una 1 i gned;
dcl 1 X$standard_prelude external static,

2 standard_prelude_length fixed bin,
2 standard_prelude char (xx};

dcl 1 X$production_names external static,
2 production_names_size fixed bin,
2 production names (xx) fixed bin (17} unaligned;

dcl 1 X$variables_list external static,
2 variables list size fixed bin,
2 variables-list-(xx},

3 (position t 1 ength}
fixed bin (18} unsigned unaligned;

dcl 1 X$variable_characters external static,
2 variable_characters_length fixed bin,
2 variable_characters char (xx};

page-29

terminals_hash_list(i) is the terminals_list index of the first
terminal symbol whose hash value is i. The function lalr_hash_
(contained in the include file lalr hash .incl.pl!}, when invoked by
lair hash (T, dim (terminals hash llst, -1}}, returns the hash value
of the character string T. -The -X$terminals_hash_list structure is
only generated when the -terminals_hash_list control argument is in
effect.

The format shown above is generated when both the -terminals_hash_l ist
and -terminals_! ist control arguments are in effect and synonyms have
been defined. terminals_list(i) .link is the terminals_list index of
the next terminal symbol having the same hash value as the i-th
terminal symbol. subs tr (terminal_characters,
terminals_list(i}.position, terminals_list(i}.length} is the
normalized spelling of the i-th terminal symbol. And finally,
terminals_list(i) .code is the encoded value of the i-th terminal
symbo 1 •

If the -terminals_hash_list and -terminals_list control arguments are
both in effect but no synonyms are defined, the following structure is
generated for the terminals list instead of the one shown above. When
this structure is used, the encoded value of the i-th terminal symbol
j s i.

dcl 1 X$terminals_list external static,
2 terminals list size fixed bin,
2 terminlas-list-(xx),

3 1 ink fi;ed bin (11) unsigned unaligned,
3 position fixed bin (14) unsigned unaligned,
3 length fixed bin (11) unsigned unaligned;

If the -terminals_hash_list control argument is not in effect but the
-terminals_! ist control argument is in effect and synonyms are
defined, the following structure is generated for the terminals 1 ist
instead of one of those shown above.

dcl 1 X$terminals_list external static,
2 terminals list size fixed bin,
2 term i na 1 s -1 i st - (xx) ,

3 positio~ fixed bin (14) unsigned unaligned,
3 length fixed bin (11) unsigned unaligned,
3 code fixed bin (11) unsigned unaligned;

If the -terminals_hash_list control argument is not in effect but the
-terminals_l ist control argument is in effect and no synonyms are
defined, the following structure is generated for the terminals list
instead of any of those shown above.

dcl 1 X$terminals_list external static,
2 terminals list size fixed bin,
2 terminals-list-(xx),

3 positio~ fixed bin (18) unsigned unaligned,
3 length fixed bin (18) unsigned unaligned;

If the -terminals_hash_l ist control argument is not in effect, a
trivial structure (with terminals_hash_list_size = 0) is generated for
X$terminals_hash_l ist and no declaration is generated for it. If
neither the -terminals hash 1 ist nor the -terminals list control
argument is in effect, a-trivlal structure (with terminals list size=
0) is generated for X$terminals list and a zero length- strlng is
generated for X$terminal characte~s and no declarations are generated
for them.

dpda and skip are the Deterministic Push Down Automata implementing
the parsing algorithm and its associated error recovery tables.
standard prelude is the Standard Prelude. The X$dpda, X$skip, and
X$standa~d prelude structures are always generated.

product i on_names is the production names 1 is t. production_ names (i) is
the negation of the variables_list index for the variable
(non-terminal) naming the i-th production. If the -production_names
control argument is not in effect, a trivial structure (with
production_names_size = 0) is generated for X$production_names.

MTB 602 - - LALR page 31

variables list is the variables list. substr (variable characters,
variable_list(i) .position, variables_list(i). length) is th; normalized
spelling of the i-th variable. If neither the -production_names nor
-variables_] ist control argument is in effect, a trivial structure
(with variables_] ist_size = 0) is generated for X$variables_l ist and a
zero length string is generated for X$variable_characters.

Each of the level 1 structures ·described above has two level 2
members, the first being a fixed bin scalar and the second being an
array or a character string. 1n each case, the value of the first
member is the upper bound or length, as appropriate, of the second
member.

The alm source segment produced by the -alm control argument assembles
to produce a Multics object segment as described above except that
slack bytes are added between symbols stored in terminal characters
and variable_characters so as to make each symbol start on a word
boundary.

The gmap source segment produced by the -gmap control argument is
equivalent to the data described by the following PL/I declarations.
The generated include file X.incl.pll contains a copy of these
declarations (unless the -alm control argument is also in effect).
When a separate semantics format source segment is used, the gmap
source segment also contains a transfer vector with the external name
SEMVEC. This vector is used by the parser to call the various
semantic actions. The rule number, or production number if the
-production control is in effect, must be passed as the first argument
in the call to the transfer vector. Any additional arguments desired
may be passed. The generated include file does not describe the
transfer vector.

dcl 1 THL (O:xx) bit (12) unaligned external static;
dcl 1 TL (xx) external static,

2 lk fixed bin (17) unaligned,
2 pt fixed bin (17) una 1 i gned,
2 ln fixed bin (17) unaligned,
2 cd fixed bin (17) unaligned;

dcl TC char (xx) external static;
dcl 1 DPDA (xx) external static,

2 vl fixed bin (17) unaligned,
2 v2 fixed bin (17) unaligned,

dcl 1 SKIP (xx) external static),
2 vl fixed bin (17) unaligned,
2 v2 fixed bin (18) unaligned;

dcl PN fixed bin (17) unaligned external static;
dcl 1 VL {xx) external static,

2 pt fixed bin {17) unaligned,
2 1 n fixed bin { 17) una 1 i gned;

dcl VC char {xx) external static;

binary{THL {i), 12, 0) is the TL index of the first terminal symbol
whose hash value is i. The function lalr_hash_ {contained in the
include file lalr_hash_.incl.pll), when invoked by lalr_hash_ {T, dim
{THL, 1)), returns the hash value of the character string T. The THL
structure is only generated when the -terminals_hash_list control is
in effect.

The format shown above is generated when both the -terminals_hash_list
and -terminals_list controls are in effect and synonyms have been
defined. TL{i) .lk is the TL index of the next terminal symbol having
the same hash value as the i-th terminal symbol. substr {TC,
TL(i).pt, TL{i).ln) is the normalized spelling of the i-th terminal
symbol. And finally, TL(i) .cd is the encoded value of the i-th
termi na 1 symbo 1.

If the -terminals_hash_list and -terminals_! ist controls are both in
effect but no synonyms are defined, the following structure is
generated for the terminals 1 ist instead of the one shown above. When
this structure is used, the encoded value of the i-th terminal symbol
is i.

dcl 1 TL external static,
2 lk fixed bin {10) unaligned,
2 pt fixed bin (13) unaligned,
2 ln fixed bin (10) unaligned;

If the -terminals_hash_l ist control is not in effect but the
-terminals list control is in effect and synonyms are defined, the
following structure is generated for the terminals 1 ist instead of one
of those shown above.

dcl 1 TL external static,
2 pt fixed bin (13) unaligned,
2 ln fixed bin (10) unaligned,
2 cd fixed bin (10) unaligned;

If the -terminals_hash_l ist control is not in effect but the
-terminals list control is in effect and no synonyms are defined, the
following structure is generated for the terminals list instead of any
of those shown above.

dcl 1 TL external static,
2 pt fixed bin (17) unaligned,
2 ln fixed bin (17) unaligned;

If the -terminals_hash_l ist control is not in effect, the THL
structure is omitted. If neither the -terminals_hash_list nor the
-terminals_list control is in effect, THL, TL, and TC are all omitted.

•

MTB 602 LALR page- 33

DPDA and SKIP are the Deterministic Push Down Automata implementing
the parsing algorithm and its associated error recovery tables. The
DPDA and SKIP structure are always generated.

PN is the production names 1 ist. PN (i) is the negation of the VL
index for the variable (non-terminal) naming the i-th production. If
the -production_names control is not in effect, the PN structure is
not generated.

Vl is the variables list. substr (VC, VL(i).pt, VL(i).ln) is the
normalized spelling of the i-th variable. If neither the
-production_names control nor the -variables_list control is in
effect, PN, VL, and VC are all omitted.

The -terminals_hash_list control argument is treated as if it were the
-terminals_list control argument when producing a DPS 6 (or Level 6)
object file. The -production_names and -variables_list control argu­
ments are ignored when producing a DPS 6 object file. The DPS 6
object file is produced in LAF mode.

The DPS 6 object file produced by the -asm control argument is
equivalent to the data described by the PL/I declarations below. When
a separate semantics format source segment is used, the object file
also contains a transfer vector with the external name SEMVEC. The
rule number, or production number if the -production control is in
effect, must be passed to the transfer vector by value in register Rl.
The transfer vector's code destroys registers Rl and 84, all other
registers are unchanged.

dcl OPlC_n fixed binary (15) internal static
options (constant) i ni ti a 1 (xx) ;"

dcl OP2C_n fixed binary (15) internal static
options (constant) i ni ti al (xx) ;

dcl RSWD_n fixed binary (15) internal static
options (constant) i nit i a 1 (xx) ;

dcl LIT_c fixed binary (15) internal static
options (constant) in it i a 1 (xx) ;

dcl INT_c fixed binary (15) internal static
options (constant) i ni ti al (xx) ;

dcl NUMB_c fixed binary (15) internal static
options (constant) initial (xx) ;

dcl REAL_c fixed binary (15) internal static
options (constant) initial (xx) ;

dcl SYMB_c fixed binary (15) internal static
options (constant) in it i a 1 (xx) ;

dcl EOL_c fixed binary (15) internal static
options (constant) initial (xx) ;

dcl HEXl_c fixed binary (15) internal static
options (constant) i ni ti al (xx) ;

dcl BIT_c fixed binary (15) internal static

options (constant) in it i a 1 (xx) ;
dcl NIL_c fixed binary (15) internal static

options (constant) in it i a 1 (xx) ;
dcl OPlC s (xx) char (1) external static

initlal (11 x11 , 11 x11 , •••) ;

dcl OP2C s (xx) char (2) external static
i n i t Ta l (11 xx 11 , 11 xx 11 , • • •) ;

dcl 1 RSWD (xx) aligned external static,
2 RSWD_s char (xx) initial (11 xx 11 , 11 xx11 , •••) ,

2 RSWD_c fixed bin (15) initial (xx, xx, •••) ;

dcl DPDA_n fixed binary (15) internal static
options (constant) initial (xx) ;

dcl SKIP_n fixed binary (15) internal static
options (constant) i ni ti al (xx) ;

dcl 1 DPDA (xx) external stat c,
2 vl fixed binary (15) in ti al {xx, xx,) '
2 v2 fixed binary (15) in ti al {xx, xx,) ;

dcl 1 SKIP (xx) external stat c,
2 vl fixed binary (15) in ti al (xx, xx,) '
2 v2 fixed binary (15) in ti al (xx, xx,) ;

The data with internal static options (constant) attributes are
generated as 11 external value definitions 11 in the DPS 6 object file.
The data with external static attributes are generated as 11 code
section 11 constants with 11 external location definitions 11 • OPlC n and
OPlC_s are the number of one character operators (e.g. +) and the one
character operators themselves, respectively. OP2C_n and OP2C_s are
the number of two character operators (e.g. >=) and the two character
operators themselves, respectively. LIT_c is the code for the
nonnumeric literal complicated terminal. This terminal may be
specified as <character string>, <string>, <quoted string>, or
<nonnumeric literal>. INT c is the code for the integer literal
comp! icated terminal. This terminal may be specified as <integer>.
NUMB_c is the code for the fixed-point 1 iteral complicated terminal.
This terminal may be specified as <number> or <fixed-point literal>.
REAL_c is the code for the floating-point literal complicated termi­
nal. This terminal may be specified as <real> or <floating-point
literal>. SYMB_c is the code for the identifier complicated terminal.
This terminal may be specified as <identifier> or <symbol>. EOL_c is
the code for the end of line complicated terminal. This terminal may
be specified as <eol>, <end of line>, <nl>, or <newline>. HEXl_c is
the code for the hexadecimal integer literal complicated terminal.
This terminal may be specified as <hexadecimal integer> or <hex
integer>. BIT_c is the code for the bit string literal complicated
terminal. This terminal may be specified as <bit string> or <boolean
aggregate>. NIL_c is the code for the nil symbol terminal. This
terminal may be specified as <nil> or <syntax error>. For any of the
above mentioned complicated terminals not used in the grammar, a code
of 2ero is used. RSWD_n, RSWD_k, and RSWD are the number of reserved
words, the length of each reserved word, and the reserved words
themselves, respectively. All terminal symbols that were not
associated with a XXXX_c variable above are considered reserved words.

MTB 602 - - LALR page 35 _

In RSWD (i), RSWD_s is the i-th reserved word padded with spaces and
RSWD_c is the encoding for that reserved word. DPDA_n and DPDA are
the number of DPDA entries and the· DPDA itself, respectively. SKIP_n
and SKIP are the number of SKIP table entries and the skip tables
themselves, respectively.

If the -terminals_list control is not in effect, only the declaration
of DPDA_n, SKIP_n, DPDA and SKIP are generated.

The DPS 6 object file produced by the -ada_sil control argument is
equivalent to the data described by the PL/I declarations below. When
a separate semantics format source segment is used, the object file
also contains a transfer ·vector with the external name SEMVEC. The
rule number, or production number if the -production control is in
effect, must be passed to the transfer vector by value in register Rl.
The transfer vector's code destroys registers Rl and B4, all other
registers are unchanged.

dcl TL length fixed binary (15) internal static
options (constant) initial (xx);

dcl TC_length fixed binary (15) internal static
opt i ens (constant) initial (xx) ;

dcl 1 Terminal aligned based,
2 position fixed binary (15),
2 length fixed binary (15),
2 code fixed binary (15);

dcl 1 TL (xx) aligned 1 ike Terminal external static;
dcl TC char (xx) external static init {11 xxx ••• 11);

de! DPDA_length fixed binary (15) internal static
options (constant) initial (xx) ;

de! SKIP_length fixed binary (15) internal static
options (constant) i nit i a I (xx) ;

dcl DPDAvl (xx) fixed binary (15) external static
initial (xx, xx, ...) ;

de! DPDAv2 (xx) fixed binary (15) external static
initial (xx, xx, ...) ;

dcl SKIPvl (xx) fixed binary (15) external static
ini ti a 1 (xx, xx, . . .) ;

de! SKIPv2 (xx) fixed binary (15) external static
i ni ti al (xx, xx, ...) ;

All of the above external static variables are generated as 11 code
section" constants to allow them to be shared constants. Because of
this, this object file must be linked (with a LINKN linker directive)
before the object file for any Ada/SIL compilation unit using the
generated package specification.

As used in the above declarations, TL_length is the number of
terminals (including complicated terminals) and TC_length is the
length of the TC variable. The based variable Terminal describes a
single entry in the terminal 1 ist array TL. The i-th terminal is
substring (TC, TL.position (i), TL. length (i)). If the grammar uses
synonyms, TL.code (i) gives the code for the i-th terminal. Other­
wise, the code component is omitted from the Terminal structure and
the code for the i-th terminal is i. DPDA_length and SKIP_length
specify the number of entries in the DPDA and SKIP tables, respective­
ly. DPDAvl and DPDAv2 are the two columns of the DPDA. Similarly,
SKIPvl and SKIPv2 are the two columns of the SKIP tables.

If the -terminals_list control is not in effect, TL_length, TC_length,
Terminal, TL, and TC are not generated.

Names: 1 i st_dpda

The list_dpda command produces a listing of the DPDA extracted from the result
file of a previous LALR generation. This I isting is formatted in the same
manner as that produced by the -list control argument of the lalr command
described above.

Usage: list dpda result file path {ctl args}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If
result_file_path does not have a suffix of grammar,
one is assumed. However, the suffix grammar must be
the last component of the name of the result segment
to be used. This argument may be an archive component
pathname.

2) ctl_args may be the following optional argument.

-line_length N, -11 N

-page_length N, -pl N

causes the listing to be prepared with lines no longer
that N characters. If this control argument is not
specified, a line length of 136 characters is assumed.

prints the listing so that no more than N lines are on
a page. If this contro I argument is not specified, a
page length of 60 I ines is assumed.

-dpda_xref, -xref, -dx
includes cross reference lists of states, terminals,
and variables in the I isting of the DPDA. If the
source segment was in the separate semantics format,
the semantic actions are also cross referenced. In

MTB 602 - - LALR page· 37

the first two of these lists, each referencing state
number is immediately followed by the letter 11 R11 , 11 L1',

11 A1', 11 011 , or 11 011 indicating a read transition, look
transition, transition from an apply state, or a look
back reference by an apply state, or a look back
reference implied by the default transition of an
apply state, respectively. In the lists for variables
and semantic actions, each state number is immediately
followed by the letter 11 S11 , "T 11 , or "U", indicating an
apply single, apply with look back table, or apply
using shared look back table, respectively.

-no_dpda_xref, -no_xref, -ndx

Notes:

does not include any DPDA cross reference lists in the
1 isting of the DPDA. This is the default.

If the result file used is named X.grammar, the listing produced will be
placed in a segment named X.o.I ist in the working directory.

Names: p 1 is t_dpda

The plist_dpda command produces a listing
result file of a previous LALR generation.
notation of Dijkstra [55].

Usage: pl i st_dpda resul t_f i 1 e_path {ct l_args}

of the DPDA extracted from
The listing is presented in

the
the

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If
result_file_path does not have a suffix of grammar,
one is assumed. However, the suffix grammar must be
the last component of the name of the result segment
to be used. This argument may be an archive component
pathname.

2) ctl_args may be any of the following optional arguments.

-1 ine_length N, -11 N
causes the 1 isting to be prepared with lines no longer
that N characters. If this control argument is not
given, a line length of 136 characters is assumed.

Notes:

If the result file used is named X.grammar, the listing produced will be
placed in a segment named X.p.list in the working directory.

Names: 1 a 1 r $rev

The lalr$rev command prints the revision numbers of the major components of
LALR on the user_output 1/0 switch.

Usage: lalr$rev

Names: print_parser_info, ppi

The print_parser_info command prints selected items of information for the
specified result segment.

Usage: print_parser_info result_file_path {ctl_args}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the information is to be taken.
If result_file_path does not have a suffix of grammar,
one is assumed. However, the suffix grammar must be
the last component of the name of the result segment
used. This argument may be an archive component
pathname.

2) ct l_args may be any of the following optional arguments.

-header, -he prints the header. This is the default.

-no_header suppresses printing of the header.

Names: make_dpda, md

The make_dpda command produces a table containing the DPDA extracted from the
result file of a previous LALR generation. This table is the same as the one
produced by the lalr command when it is invoked with the -table control
argument.

MTB 602 - - LALR page 39

Usage: make_dpda result_file_path {table_path} {ctl_args}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If
result_file_path does not have a suffix of grammar,
one is assumed. However, the suffix grammar must be
the last component of the name of the result segment
to be used. This argument may be an archive component
pathname.

2) table_path is the pathname of the table to be produced. If this
argument is given with the suffix incl .pll, the suffix
is ignored. Any other suffix is retained as given.
If this argument is omitted, the entryname (or compo­
nent name in case of an archive component pathname)
portion of the first argument with the suffix grammar
and the preceding 11 • 11 replaced with 11_t 11 is used.

3) ct l_args may be one or more of the following optional arguments.

-terminals_list, -tl

As used below X is the name given, or assumed, for the
table.

include the terminals 1 ist in the table.

-terminals_hash_l ist, -thl
include the terminals 1 ist and terminals hash 1 ist in
the table.

-production_names, -pn

-variables_list, -vl

include the production names (table)
This control argument implies the
control argument described below.

in the table.
-variables_l ist

include the variables 1 ist in the table.

-synonyms, -syn include the terminal encoding as a field in the terminals
list instead of using the index to the terminals 1 ist
as the encoded value. This options is forced if the
grammar contained a -synonyms control. The -synonyms
control argument is meaningless unless the
-terminals_list control argument is also specified.

-no_terminals_l ist, -ntl
include neither the terminals list nor terminals hash
1 ist in the table. This is the default.

-no_terminals_hash_list, -nthl
does not include the terminals hash list in the that.
This is the default. Note that -terminals_hash_list
-no_terminals_hash_list has the same effect as
-terminals_list.

-no_production_names, -npn
does not include the production names in the table.
This is the default. Note that -production_names
-no_production_names has the same effect as
-variables_l ist.

. -no_variables_list, -nvl

-no_alm

-no_gmap

-no_asm

-no_ada_s i 1

-aim

-gmap

-asm

-ada_s i 1

include neither the production names nor the variables
list in the table. This is the default.

does not produce the table in the form described below for
the -alm control argument.

does not produce the table in the form described below for
the -gmap control argument.

does not produce the table in the form described below for
the -asm control argument.

does not produce the table in the form described below for
the -ada_sil control argument.

produce the table as an alm segment named X.alm and a
Mu I ti cs PL/ I inc I ude f i 1 e named X. incl • p I 1 •

produce the table as a gmap segment named X.gmap and a
GCOS I I I PL/ I inc 1 ude f i I e named X. inc I • p 11.

produce the table as a DPS 6 (or Level 6) Multics Host
Resident System object file named X.object and produce
a DPS 6 Assembly Language include file named
X. incl .nml.

produce the table as a OPS 6 (or Level 6) Multics Host
Resident System object file named X.object and produce
a DPS 6 Ada/SIL package specification file named
X.spec.ada.

Notes: Options -alm, -gmap and -asm or -ada_sil may occur together. (Options
-asm and -ada_sil are mutually exclusive.) If none of the control
arguments -alm, -gmap, -asm or -ada_sil are present, the table is
produced as a Multics object segment named X and a Multics PL/I
include file name X.incl.pll.

MTB 602 -- LALR page 41

The -terminals_hash_list control argument is treated as if it were the
-terminals_l ist control argument when producing a DPS 6 (Level 6)
object file. The -synonyms control argument is meaningless when
producing a DPS 6 object file with the -asm control argument. The
-production_names and -variables_list control arguments are ignored
when producing a DPS 6 object file. The DPS 6 object file is produced
in LAF mode.

Name: 16_dpda

The 16_dpda command produces a DPS 6 Multics Host Resident System object file
containing the DPDA extracted from the result file 9f a previous LALR
generation. This object file is the same as the one produced by the lalr
command when it is invoked with the -table control argument and either the
-asm or -ada_sil control argument.

Usage: 16_dpda result_file_path {object_file_path} {ctl_args}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If

lflJJllt. result_file_path does not have a suffix of grammar,
one is assumed. However, the suffix grammar must be
the last component of the name of the result segment
to be used. This argument may be an archive component
pathname.

2) object_file_path is the pathname of the object file to be produced. If
object_file_path does not have a suffix of object, one
is assumed. If this argument is omitted, the object
file is placed in the working directory with an
entryname obtained by changing the result suffix of
the first argument's entryname (or component name in
case of an archive component pathname) to object.

3) ct l_args may be one or more of the following optional arguments.

-terminals_list, -tl
include the terminals list in the object file.

-synonyms, -syn include the terminal encoding as a field in the terminals
list instead of using the index to the terminals 1 ist
as the encoded value. This options is forced if the
grammar contained a -synonyms control. The -synonyms
control argument is meaningless unless the
-terminals_! ist control argument is also specified.

-no_terminals_list, -ntl

-no_asm

-no_ada_sil

-saf

-laf

-s l ic

-asm

-ada_s i l

does not include the terminals l is t (Tl and TC) in the
table. This is the default.

does not produce the table in the form described below for
the -asm control argument.

does not produce the table in the form described below for
the -ada_sil control argument.

produce the object file in SAF mode.

produce the object file in LAF mode.

produce the object file in SLIC mode.

produce a DPS 6 (or Level 6) Assembly Language include
file describing the external variables defined in the
object file. This include file is stored in the same
directory as the object file. Its entryname is
obtained by changed the object suffix of the object
f i 1 e to i nc l • nm 1 •

produce an Ada/SIL package specification describing the
external variables defined in the object file. This
package specification is stored in the same directory
as the object file. Its entryname is obtained by
changing the object suffix of the object file to
spec.ada.

Notes: If none of the control arguments -saf, -laf, or -slic are present, the
object file is produced in LAF mode. The -saf, -laf, and -slic
control argument are mutually exclusive.

The control arguments -asm and -ada_sil are mutually exclusive. If
neither is specified, -asm is assumed.

Names: kwsl

The kwsl command produces a Multics PL/I include file that declares an array
containing a sorted list of terminal symbols and their encoded values. One or
more synonyms may be specified for each terminal symbol.

Usage: kwsl result_file_path {synonyms_path {output_path {structure_name}}}

MTB 602 - - LALR page 43

1) resul t_f i 1 e_path is the pathname of the result file from a previous LALR
generation from which the encoded values for the
terminals are to be taken. If result_file_path is
given without the suffix grammar, it is assumed. This
argument may be an archive component pathname.

2) synonyms_path

3) output_path

4) structure name

Names: cobol_kwsl

is the pathname of an unstructured file naming the termi­
nal symbols and synonyms to be included in the output.
Each 1 ine of this file begins with the name of a
terminal symbol in the first position of the 1 ine.
The terminal symbol may optionally be followed by a
1 ist of synonyms for it. The synonyms are separated
from the terminal symbol and from each another by
single occurrences of the horizontal tab (HT) charac­
ter.

-a 11 (or . -a)
synonyms_path.
synonyms defined
output.

may be specified instead
In this case al 1 of the terminals

by the grammar are include in

of
and
the

If synonyms_path is given without the suffix syn, it
is assumed. This argument may be an archive component
pathname. If this argument is not given, the first
argument (result_file_path) with the suffix grammar
changed to syn is used if such a segment exists
otherwise -a 11 is assumed.

is the pathname of the include file to be produced. If
output_path is given without the suffix incl .pll, it
is assumed. This argument may not be an archive
component pathname. If this argument is not given,
the entryname portion (or component name portion in
case of an archive component pathname) of the first
argument (result_fi le_path) with the suffix grammar
changed to incl .pll is used.

is the name to be used for the 1eve1 1 structure in the
output include file. If this argument is omitted, the
structure wi 11 be named keyword.

The cobol kwsl command produces a COBOL copy file that describes a table
containing a sorted 1 ist of terminal symbols and a second table containing
their encoded values. One or more synonyms may be specified for each terminal
symbo 1.

Usage: cobo 1 kws 1 resu 1t_fi1 e_path {synonyms_path {output_path}}
{-ct 1 args}

1) resul t_fi le_path

2) synonyms_path

3) output_path

4) ct l _args

-bed

-usage X

is the pathname of the result file from a previous LALR
generation from which the encoded values for the
terminals are to be taken. If result_file_path is
given without the suffix grammar, it is assumed. This
argument may be an archive component pathname.

is the pathname of an unstructured file naming the termi­
nal symbols and synonyms to be included in the output.
Each line of this file begins with the name of a
terminal symbol in the first position of the line.
The terminal symbol may optionally be followed by a
1 ist of synonyms for it. The synonyms are separated
from the terminal symbol and from each another by
single occurrences of the horizontal tab (HT) charac­
ter.

is

-a 11 (or -a) may be specified instead of
synonyms_path. In this case all of the terminals and
synonyms defined by the grammar are included in the
output.

If synonyms_path is given without the suffix syn, it
is assumed. This argument may be an archive component
pathname. If this argument is not given, the first
argument (result_fi le_path) with the suffix grammar
changed to syn is used if such a segment exists
otherwise -a 11 is assumed.

the pathname of the copy f i 1 e to be produced. If
output_path is given without the suffix i nc 1 • cobo 1 , it
is assumed. This argument may not be an archive
component pathname. If this argument is not given,
the entryname portion (or component name portion in
case of an archive component pathname) of the first
argument (result_fi le_path) with the suffix grammar
and the period preceding it changed to
11 -kwsl. incl .cobol" is used.

may be one or more of the following optional arguments.

translates any lower case letters in the terminal symbols
to upper case letters, sorts the terminal symbols
according to the BCD collating sequence, and issues an
error message for any terminal symbol containing a
1111 , 11 { 11 , 11 111 , 11 } 11 , or 11 11 (\140, \173, \174, \175, or
\ 176) .

describes the encoded value of the terminal symbols with
usage X. The default usage is COMP-1.

MTB 602 - - LALR

-noe X

-Joe X

page 45

names the elementary 01-level item giving the number of
elements in the tables X. The default name for this
item is SCAN-TABLE-1-NOE.

names the elementary 01-Jevel item giving the length of
the elements in the terminal symbol table X. The
default name for this item is SCAN-TABLE-1-LOE.

-tablel X, -tl X names the original definition of the terminal symbol table
X. This item describes a record consisting of a
series of 03-level FILLER items with VALUE clauses
specifying the terminal symbols. The default name for
this record is SCAN-TABLE-1.

-redefl ·x, -rl X names the redefinition of the terminal symbol table X.

-keyword X, -kw X

This item describes a record consisting of a single
03-level item with an occurs clause. The default name
for this item is S-T-1.

names the 03- I eve l i tern
terminal symbols table X.
item is KW.

in the redefinition of
The default name of

the
this

-table2 X, -t2 X names the original definition of the encoded value table
X. This item describes a record consisting of a
series of 03-level FILLER items with values clauses
specifying the encoded value of the terminal symbols.
The default name for this item is SCAN-TABLE-2.

-redef2 X, -r2 X names the redefinition of the encoded value table X. This
item describes a record consisting of a single
03-level item with an occurs clause. The default name
for this record is S-T-2.

-keyvalue X, -kv X
names the 03-level item in the redefinition of the
encoded value table X. The default name for this item
is KV.

Notes:

If m terminal symbols and synonyms are given and the longest of
characters long, and assuming no control arguments are used, the
record descriptions will be produced:

them is n
following

OJ SCAN-TABLE-I-NOE COMP-1 VALUE m.
OJ SCAN-TABLE-1-LOE COMP-1 VALUE n.
01 SCAN-TABLE-1.

03 FILLER PI C X (m) VALUE 11 II

01 S-T-1 REDEFINES SCAN-TABLE-1.
03 KW PIC X(m) OCCURS n TIMES.

OJ SCAN-TABLE-2.
03 FILLER COMP-1 VALUE ••••

01 S-T-2 REDEFINES SCAN-TABLE-2.
03 KV COMP-1 OCCURS n TIMES

Names: cobol_dpda

The cobol_dpda command produces a COBOL copy file that describes various
tables containing the DPDA extracted from the result file of a previous LALR
generation.

Usage: cobol_dpda result_file_path {output_path} {ctl_args}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If
result_file_path is given without the suffix grammar,
it is assumed. This argument may be an archive
component pathname.

2) output_path

3) ctl_args

-usage X

is the pathname of the copy f i le to be produced. If
output_path is given without the suffix incl.cobol, it
is assumed. This argument may not be an archive
component pathname. If this argument is not given,
the entryname portion (or component name portion in
case of an archive component pathname) of the first
argument (result_file_path) with the suffix grammar
changed to incl .cobol is used.

may be the following optional argument.

describes the entries in the DPDA tables with usage X.

MTB 602 -- LALR page 47

Notes:

If the DPDA contains m entries and the
assuming the usage control argument
descriptions will be produced:

SKIP table contains n entries, and
is not used, the following record

;c

* 01 DPDA-NOE COMP-1 VALUE m.
01 DPDA-Vl-VALS.

03 FILLER COMP-1 VALUE • • • .

01 DPDA-Vl-REDF REDEFINES DPDA-Vl-VALS.
03 DPDA-Vl COMP-1 OCCURS m TIMES.

01 DPDA-V2-VALS.
03 FILLER COMP-1 VALUE ••••

01 DPDA-V2-REDF REDEFINES DPDA-V2-VALS.
03 DPDA-V2 COMP-1 OCCURS m TIMES.

:'c

01 SKIP-NOE COMP-1 VALUE n.
01 SKIP-Vl-VALS.

03 FILLER COMP-1 VALUE • . • •

01 SKIP-Vl-REDF REDEFINES SKIP-Vl-VALS.
03 SKIP-Vl COMP-1 OCCURS n TIMES.

01 SKIP-V2-VALS.
03 FILLER COMP-1 VALUE . • . •

01 SKIP-V2-REDF REDEFINES SKIP-V2-VALS.
03 SKIP-V2 COMP-1 OCCURS n TIMES.

Names: make_DPDA_dcl, mdd

The make_DPDA_dcl command produces a Multics PL/I include file containing the
DPDA extracted from the result file of a previous LALR generation. This
include file declares the DPDA as an internal static constant structure.

Usage: make_DPDA_dcl result_fi le_path {output_path}

1) result_file_path is the pathname of the result file from a previous LALR
generation from which the DPDA is to be extracted. If
result_file_path is given without the suffix grammar,
it is assumed. This argument may be an archive
component pathname.

2) output_path is the pathname of the inc 1 ude f i 1 e to be produced. If
output_path is given without the suffix incl.pll, it
is assumed. This argument may not be an archive
component pathname. If this argument is not given,
the entryname portion (or component name portion in
case of an archive component pathname) of the first
argument (result_file_path) with the suffix grammar
changed to incl .pll is used.

Names: print_parse_info, ppi

The print_parser_info command prints selected items of information for the
specified result segment.

Usage: print_parser_info result_file_path {ctl_args}

1) result_file_path is the pathname of the result file. If result_file_path
is given without the suffix grammar, it is assumed.
This argument may be an archive component pathname.

2) ctl_args

-header, -he

-no header

-1 ong, -1 g

-short, -sh

Names: 1a1 r terms

may be one or more of the fol lowing optional arguments.

prints the header. This is the default.

does not print the header.

prints more information when the header is printed.
Additional information includes a 1 isting of source
files used to generate the result file. The severity
is also printed if it is nonzero.

does not print the extra information described above for
the -long control argument. This is the default.

The lalr_terms command prints the terminal symbols contained in the result
file produced when a grammar was previously translated. The encoded value of
each terminal symbol is also printed.

MTB 602 - - LALR page 49

Usage: lalr_terms result_file_path_.

1) result_file_path is the pathname of the result file from which the terminal
symbols and their encoded values are to be obtained.
If result_file_path is given without the suffix gram­
mar, it is assumed. This argument may be an archive
component pathname.

Names: DPDA_sizes, DPDAsizes

The DPDA_sizes command prints a list giving the sizes of the various types of
tables comprising the DPDA for a grammar. For. each size of read table (1
entry, 2 entries, 3 entries, etc), the total number of read tables of that
size, the percentage of total read table storage occupied by read tables of
that size, and the percentage of total read table storage occupied by read
tables of that size and smaller sizes is 1 isted. The same statistics are also
given for look tables. In addition, the number of tables of each type is
given.

Usage: DPDA_sizes result_file_path

1) result_file_path is the pathname of the result file
generation containing the DPDA
result_file_path is given without
it is assumed. This argument
component pathname.

from a previous LALR
to be exam i ned • I f
the suffix grammar,
may be an archive

Names: lalr_parse, lalrp, lrk_parse, lrkp

The lalr_parse command provides a means for testing an lalr produced parser
table. This program is an adequate parser in many applications.

Usage: I al r _parse path {source} {ct l_args}

1) path is the pathname of the result segment generated when the
grammar was processed. If the path does not have a
suffix of grammar, one is assumed. However, the
suffix grammar must be the last component of the name
of the result segment to be used. This argument may
be an archive component pathname.

2) source

3) ct l_arg

is the pathname of a source segment to be parsed.
supplied, lines will be read from user_input.
true of the defau 1 t scanner (see be 1 ow) • If
scanner is supplied, it must provide for
user_input if no source is specified, or
report an error. This argument may be an
component pathname.

If not
This is
a user
reading

it must
archive

may be one or more of the following optional arguments.
NOTE: P represents a pathname, other than an archive
component pathname, with an entryname portion of E; if
P is given as a simple name, it is found according to
the search rules.

-local_reads N, -lr N
requires the parser's local recovery facility to
accept N symbols beyond the bad symbol in order for a
particular recovery to be considered successful. N
must be in the range 1 to 9. The default is 2.

-max_recover N, -mr N

-no_print, -npr does

-no_recovery, -nr

allows the parser to perform at most N local
recoveries (see page 17) in succession. If N is zero,
local recovery is disabled. The default is 1.

not print the source as it is scanned. This is the
default.

is the same as -max recover o. -
-no_semantics, -nsem

-no_ trace

-print, -pr

-recovery

disables ca 11 s to the semantics actions. This is the
default.

does not trace the execution of the parsing and error
recovery procedures. This is the default.

causes each line from source to be printed (with
numbers) as it is scanned. This is true of
default scanner. If a user scanner is supplied,
determines whether or not printing is available.

is the same as -max_recover 1.

1 ine
the
it

-scanner P, -scan P
is the pathname of a scanner procedure which corre­
sponds to the grammar. The scanner procedure must
have entry points named E and init. The default
scanner is explained below.

MTB 602 ~ - LALR page 51

-semantics {P}, -sem {P}
enables calls to the semantic actions. If the
grammar's source is in the embedded semantics format,
the pathname of a semantics segment which corresponds
to the grammar must be given by P and this segment
must have an entry point named E. It is this entry
point which is called to perform a semantic action.
If the grammar's source is in the separate semantics
format, P may be given; however, its only use is to
specify an initialization entry point as discussed in
the interface description below. (In the separate
semantics format the result segment contains the names
of any semantic routines to be called.)

.
-trace causes a trace of the parsing and error recovery proce-

-skip_depth N, -sd N

-skip_reads N, -sr N

Scanner /Semantics

dures to be printed.

specifies that skip recovery (see page 18) shall not
make more than N attempts, each from deeper in the
parse stack, to recover after discarding a particular
skip symbol.

specifies that skip recovery (see page 18) must be
able to accept the next N input symbols following a
skip symbol in order to recover following the skip
symbo 1 • If fewer than N symbols can be accepted,
skipping continues until another skip symbol is found.
N must be in the range 1 to 9.

lalr_parse supplies a scanner procedure and a semantics procedure.
can supply his own. This is how these procedures are used. User
must have these interfaces.

The user
routines

1) The semantics routine is called each time action is required. The
supplied semantics routine does nothing. (It is used to disable calls to the
semantic actions.)

If the DPDA was generated without use of the -production control (see the lair
command described beginning on page 20), the following interface is used:

Usage:

dcl E entry (fixed bin, fixed bin, ptr, fixed bin);
call E (rule_no, alt_no, lex_stack_ptr, ls top);

rule_no is the number of the rule completed
alt_no is the number of the alternative which was used
lex_stack_ptr

is a pointer to the lexical stack.
ls_top is the location in the lexical stack corresponding to the rightmost

rule alternative symbol.

If the DPDA was generated with use of the -production control, the following
interface is used:

Usage:

dcl E entry (fixed bin, ptr, fixed bin);
call E (prod_no, lex_stack_ptr, ls_top);

prod_no is the number of the production which was used
lex_stack_ptr

ls_top
is a pointer to the lexical stack.

is the location in the lexical stack corresponding to the rightmost
production symbol.

2) The semantics routine may also contain an initialization entry point. If
it does contain an initialization entry point, it is called once before the
parse begins.

Usage:

dcl E$init entry;
ca 11 E;

3) The scanner contains an initialization entry point. It is called once,
to begin the parse. It allows the scanner to get the input information and to
do any initialization necessary.

Usage:

dcl E$init entry (ptr, fixed bin (21). bit (1), ptr, char (100) varying);
call E$init (input, Ieng, prsw, result_ptr, opt);

input

prsw

1 eng

is a pointer to the source segment if Jeng is non-zero. Otherwise,
it points to an empty temporary segment. If the user choses to
read from user_input when source is not supplied, he should append
each line read to this segment (values in the lex_stack may
reference more than the current 1 ine).

is 11 l 11 b if the -print option was specified, otherwise it is 11 0 11 b.

is the length in bytes of the source segment or is zero if source was
not specified.

result_ptr
is a pointer to the input result segment. This segment
among other things, the grammar's terminal list
corresponding terminal codes.

contains,
and the

MTB 602 - - LALR page 53

opt contains a list of control arguments given in the lalr_parse command
1 i ne.

4) The scanner also contains a get-next-symbol entry. It is called each
time another symbol is needed. It must return an encoding of zero when
end-of-information (EOI) is reached.

Usage:

dcl ESE entry (ptr, fixed bin);
call ESE (stkp, putl);

stkp is a pointer to the lexical stack. The stack declaration
lalr_stk.incl.pll. It specifies that the stack is based
variable named 11 stkp11 •

putl is the location in the stack to put the symbol information.

The scanner must set these fields:

stk.symptr (putl) points to the beginning of the found symbol.

stk.symlen (putl) length in bytes of the symbol found (may be zero).

is in
on a

stk.file (putl) the include file number of the segment containing the
symbol. The source segment is include file number
zero, the first include file requested is include file
number one, the second include file requested is
include file number two, etc.

stk.line (putl) 1 ine number where symbol begins. The symbol is assumed to
be contained entirely within a single include file.

stk.symbol (putl) encoding for the symbol found.

These fields may be set:

stk.ptrl (putl)

stk.ptr2 (put!)

pointer to user data

pointer to user data

5) The scanner may also contain a termination entry point. If it does
contain a termination entry point, it is called once at the end of the parse.

Usage:

dcl E$finish entry;
call E$finish;

The default scanner algorithm is this:

1. During initialization, the terminals are separated into 2 lists.
One list contains all the terminals that consist only of
alphanumeric characters. The other contains all the rest, sorted by
decreasing length.

However, the special terminals <string>, <integer>, <fixed-point
1 iteral>, <floating-point 1 iteral>, <symbol>, and <EOL> are looked
for. These are built in comp! icated terminals.

2. At get-next-symbol time, if an alphanumeric string exists, then
it is taken as a single token. This token is compared against the
list of alphanumeric terminals in the grammar. If one is found,
that encoding value is returned. The fact that the whole
alphanumeric string is compared against the terminal list means, for
example, that a label 11 dclnam 11 will not be mistakenly taken as the
terminal 11 dcl 11 •

If no terminal in the 1 ist matches, then if the token is al 1 numeric
characters and at least one of the terminals <integer>, <fixed-point
literal>, or <floating-point 1 iteral> exists in the grammar, the
token is extended as necessary if it contains a decimal point and
one of these complicated terminals is returned. These complicated
terminals are defined by the fol lowing grammar.

<floating-point literal::=
<decimal number>e<exponent>

<fixed-point 1 iteral> ::=
<decimal number>f<exponent>

<integer>::=
<decimal integer> I

<decimal number> ::=
<decimal integer>.<decimal integer> I
<dee i ma 1 integer>. I
.<decimal integer> I

<exponent> ::=
-<decimal integer>
+<decimal integer> I
<decimal integer> I

<dee i ma 1 integer> : : =
<decimal integer><digit>
<digit> I

<digit> ::=
0111213141516171819

If a token conforming to the syntax of <decimal number> is found but
it is not followed by an 11 e 11 or 11 f 11 , it is considered a <fixed-point
literal> if it exists in the grammar. If <fixed-point literal> does
not exist in the grammar but <floating-point 1 iteral> does, the
<decimal number> is considered a <floating-point 1 iteral>. If
neither <fixed-point 1 iteral> nor <floating-point 1 iteral> exists in
the grammar, the <decimal number> is considered to be two <integer>s
separated by a dot.

MTB 602 - - LALR page 55

If a token conforming to the syntax of <fixed-point 1 iteral> is
found but <fixed-point literal> is not a terminal of the grammar,
the token is tentatively split into two tokens, a <decimal number>
fo 11 owed by some token beginning with the 1 etter 11 f 11 • If
<floating-point 1 iteral> is a terminal of the grammar, the <decimal
number> is considered a <floating-point 1 iteral> otherwise it is
considered two <integer>s separated by a dot.

If a token conforming to the syntax of <floating-point literal> is
found but <floating-point 1 iteral> is not a terminal of the grammar,
the token is tentatively split into two tokens, a <decimal number>
followed by some token beginning with the letter 11 e 11 • If
<fixed-point literal> is a terminal of the grammar, the <decimal
number> is considered a <fixed-point literal> otherwise it is
considered two <in~eger>s separated by a dot.

If none of the above apply and the terminal 11 <symbol> 11 exists in the
grammar, this encoding is returned.

If an alphanumeric string is not present in the input, then if the
first character is a 11 and the terminal <string> is present in the
grammar, a PL/I style string is scanned off and the proper encoding
is returned. Otherwise, the second 1 ist of terminals is searched,
taking the length of each terminal to determine the amount of input
to look at. If a match is found, the encoding for it is returned.
Remember that this 1 ist is ordered by decreasing length. This
method of comparison means, for example, that if both 11 >= 11 and 11 >11

are terminals, the first wil 1 always be found if it exists in the
input.

If neither of the 1 ists contained a match at this point in the
input, the scanner moves ahead one character. If the character
skipped is NL (\012) and the terminal <EOL> exists in the grammar,
this encoding is returned. Otherwise, the scanner tries again. In
this case, if the character skipped is not greater than SP (\040) ,
it is dropped without comment.

stk.symptr (putl) is always set to point to the first character of
the symbol which satisfied the scan. If <symbol>, <integer>,
<fixed-point literal>, <floating-point literal>, or <string> is
processed, stk.symlen (putl) is set to the length of the input
string which was used; otherwise stk.symlen (putl) is set to zero.

EOI is returned when the end of an input segment is reached, or when
a line is read from user_input consisting of 11 EOl 11 only.

Parser macro

The LALR system has available a macro which can generate a skeleton parser.
Once this parser is obtained, it may be tailored to the individual applica­
tion. The tailoring actually begins during the generation, at which time many
options are available to dictate what will be obtained. This 11macro11 is
processed by runoff.

Figure 1 shows what a
fleshes out quite a bit
recovery of one or two
process. To generate a
this form:

parse procedure generally looks like. However, it
when you add things like look ahead processing, error
kinds, and error reporting. The macro helps in this
parser, you must create a segment X.runoff. It has

.if lalr skel
[.sr XXX YYY]

.if lalr_skel

The first call to lalr_skel sets the default values in some variables. Then
you adjust any of these values you wish. The second call to lalr_skel
generates the parser, directed by values in the variables.

If the segment is named X.runoff the output segment wi 11 be named X.incl.pll
and the parse procedure therein wil I be named X.

Fol lowing are the variables which
variable name and the default value.
requires:

11 be entered as *11

* be entered as **

control the generation; they show the
Remember that in quoted strings runoff

MTB 602 - - LALR page 57

I i n i ti a I i ze I
I do wh i 1 e ("E 0 I) ; I
I if READ_state then do; I* includes lookhead 1 */ I
I if lookahead stack empty then I
I call scanner;/* puts to lookahead stack*/ I
I look in read-table for first lookahead symbol I
I if not found then I
I if there is a default look transition then I
I set next state from it I
I else if there is a table continuation then I
I change to continuation table I
I and repeat the above search I
I else ERROR I
I e 1 se do; I
I if not lookahead transition then I
I remove symbol from lookahead stack I
I and push it onto 1 ex stack I
I and push state number onto parse stack I
I set next state from read-table I
I end; I
I end; I
I else if MLOOK_state then do; /* look ahead n */ I
I do unti 1 n symbols in lookahead stack; I
I call scanner; I* put to lookahead stack*/ I
I end; I
I look in look-table for n'th lookahead symbol I
I if not found then I
I if there is a default transition then I
I set next state from it I

else if there is a table continuation then I
change to continuation table I

and repeat the above search I
else ERROR I

else set next state from look-table I
end; I
else if APPLY_state then do; I

call semantics I
delete necessary symbols from lex stack I
delete necessary states from parse stack I
if empty production then I

push state number onto parse stack I
and push "empty" onto lex stack I
look in apply-table for top stacked state I
set next state from apply-table I

end; I
end; I
--~~~~~~~~~~~~~~~~~~~~~~~!

Figure 1. Generalized parse procedure.

.sr parameters 1111

The value of this variable is any parameters wanted on the parse procedure.
Example: 11 sptr, slen 11

.sr code 1111

.sr standard_codes %true%

These control the reporting of events which cause the parser to prematurely
terminate. If ucode 11 is 1111 such events are reported by signals. If it is not
1111 , it is the name of a parameter or var i ab 1 e which is assigned a non-zero
return status code to report such events. The events causing premature
termination are: parse_error indicating a recovery failure; logic_error which
is caused by an invalid DPDA; and stack_overflow indicating overflow of the
parse, lexical, or· look ahead stacks. If 11 code11 is not 1111 and
"standard codes" is %true%, standard status codes from lalr error table are
used and 0code11 is declared as a fixed bin (35) parameter to-the pirser.- (In
this case "code" must be named in "parameters" described above.) If 11 code11 is
1111 or 11 standard_codes 11 is %false%, these conditions or constants are declared
before the parser's procedure statement •

• sr print_recov_msg "call print_recov_msg 11

.sr print_recov_msg_incl 1111

.sr gen_print_recov_msg %true%

.sr message_prefix "ERROR"

.sr severity_length "**"

.sr unique_local_recovery_severity 1111

.sr ambiguous_local_recovery_severity 1111

.sr local_recovery_severity 1111

.sr skip_recovery_severity 1111

.sr syntax_error_severity

.sr stack_overflow_severity 1111

• sr 1 og i c_error _severity 1111

These specify things about printing error recovery messages.
11 print_recov_msg 11 is a statement or statements to be used to print the error
recovery message. The terminating semi-colon need not be included. At the
time this statement is executed the variable recov_msg contains the text of
the message. 11 print_recov_msg_incl 11 is the name of an include file (without
the incl .pll suffix) which contains the procedure (or a declaration of an
external procedure) to print error recovery messages. If this is specified,
an %include statement will be generated inside the parser. If
11 print_recov_msg_incl 11 is 1111 and 11 gen_print_recov_msg 11 is %true% the parser
macro generates a procedure to print the error recovery message on
user_output. 11 message_prefix 11 is a character string that each error recovery
message is to begin with. The 11 XXX_severity 11 variables specify the severity
of the various types of errors that may occur. "sever i ty._l ength 11 specifies
the length of the character strings given for the 11 XXX_severity 11 variables or
is an asterisk if they are not all the same length. The severity can be words
(or phrases) such as "Warning" and 11 Fatal 11 or numbers such as 11 111 , 11 211 , and

11 311 • In either case they are treated as character strings for the purpose of
fabricating the error recovery message.

MTB 602 - - LALR page 59

The fol lowing table shows the message formats resulting from various combina­
tions of 11message_prefix 11 and the 11 XXX_severity 11 values:

Prefix Severity Message

11xxx11 1111
xxx on 1 i ne

11xxx11 11yyy11 xxx yyy error
1111 11yyy11 yyy error on
1111 1111 Line ...

For example

• sr message_pref ix 11 Sever i ty 11

.sr local_recovery_severity 11 211

on line
line ...

resu 1 ts in messages (for 1oca1 recovery) of the form

Severity 2 error on line •••

• sr db_sw 11 db_sw11

.sr db_sw_param %true%

.sr db_sw_attr 11 internal static init (* 11 0* 11 b) 11

.sr clear residue %false%

These control options to aid in debugging a grammar and its semantics
procedure. 11 ds_sw 11 , 11 db_sw_param 11 , and 11 db sw_at tr 11 contra 1 the inc 1 us ion of

- the trace coding and generation of the switch to control it. 11 db sw11 names
the switch to control execution of the trace coding. If the value is 1111 no
trace coding is included. If 11 db sw param 11 is %true%, 11 db_sw 11 is generated as
a bit (1) parameter to the parse'i=". -If 11 db sw param 11 is %fa 1 se%, 11 db_sw 11 is
generated as a global variable with its declaration preceding the parser's
procedure statement. In this case, ''db sw attr 11 are attributes, in addition
to bit (1), wanted on the switch. 11 clea;-_r;-sidue 11 controls generation of code
to clear the lexical and parse stack entries as they are deleted. It also
causes code to be generated (when %true%) to f i 11 in the symbo 1, symptr, and
symlen fields of the new top lexical stack entry after a production is applied
so as to indicate the production variable's name. Use of the 11 clear_residue 11

option requires the PN (Production Names), VL (Variables List), and VC
(Variables Characters) to be available in the parse tables. (See the
-production_names and -variables_list control arguments of the lalr command
described on page 20.)

.sr parse_tables_incl 1111

This specifies the name of an include file (without the incl .pl 1 suffix)
containing declarations of the parse tables. If 11 parse_tables_incl 11 is not 1111

an %include statement will be generated to include the named include file in

the parser, otherwise no %include is generated with the assumption that the
tables will be declared in the parser's containing block. The parse tables
are the TL (Terminals List), TC (Terminals Characters), and the DPDA. The PN
(Production Names) , VL (Variables Li st) , and VC (Vari ab 1 es Characters) may
also be included in the parse tables •

• sr mla 4

This specifies the maximum look ahead the parser is to handle. If 11 mla 11 is 1,
code for multiple look ahead states is not generated. 11 mla 11 is also used to
determine the size of the look ahead stack required. If K is specified for
the maximum look ahead, then the required size of the look ahead stack is: K
if no recovery is requested, K+N if skip recovery is requested but local
recovery is not, K+M+R if local recovery is requested but skip recovery is
not, or the greater of K+N or K+M+R if both recoveries are requested. See
"skip_recovery" and 11 max_recover 11 below for further discussion of recovery
mechanisms and the definition of the "local reads" value M and the "skip
reads" value N. The value of R is one if 11 deferred_actions 11 (also described
below) is false or two it it is true •

• sr check_la %true%

This controls generation of code to check for look ahead stack overflow. (The
look ahead stack cannot overflow unless 11 mla 11 was specified too small.) The
overflow checks can be eliminated by setting "check la 11 to %false% •

• sr lex_stack_incl 1111

• sr l s_name 1111

• sr l s_attr 11 based 11

These specify things about the lexical stack include file. 11 lex_stack_incl 11

is the name of the include file to be generated, without the incl.pll suffix.
11 l s_name 11 is the 1eve1 1 name of the structure generated. If 11 l s_name 11 is 1111 ,

the value of 11 lex_stack_incl 11 is used as the level 1 name of the structure
generated. If the value of 11 lex_stack_incl 11 is 1111 no include file is
generated. "ls attr" are the attributes wanted on the structure in the
include file.

,....
MTB 602 - - LALR page 61

.sr lex stack •• 1 ex stack 11 -

.sr lex stack _ptr 11 l ex_stack_ptr 11

.sr 1 s dim 50 -.sr 1 s _top 11 l s_top 11

.sr 1 s de 11 1111 -

.sr 1 s dc12 1111

-
.sr 1 s _dcl3 1111

.sr 1 s _dc14 1111

.sr 1 s _dcl5 1111

.sr 1 s _dc16 1111

.sr ls_dc17 1111

.sr 1 s _dc18 1111

.sr 1 s _dc19 1111

These specify things about the 1 ex i ca 1 stack. 11 l ex_s tack 11 is the name of the
lexical stack. 11 1ex_stack_ptr 11 is the name of a variable to be declared as a
pointer and initialized with the address of the lexical stack. If
11 lex stack ptr 11 is 1111 , no such variable is declared. 11 ls dim 11 is the size
(dim;nsion) of the lexical stack. (The parse stack is the same size.)

11 l s_top 11 is the name of the var i ab 1 e which te 11 s where the top e 1 ement
currently is. The four fields required to be set by the scanner used by
lalr_parse are always in the stack declaration. 11 ls_dcll 11 thru 11 1s_dcl9 11 are
a way of specifying additional entries needed in the stack. Do not include
the level number or comma in the specification. Examples:

11value fixed bin (24) 11

11 (ptr1, ptr2) ptr 11

.sr la dim 0

This can be used to declare the look ahead stack (FIFO) larger than implied by
the maximum look ahead value, 11 mla 11 , described above. The lexical stack and
parse stack are declared as

lex stack (-la dim:ls_dim)
parse_stack (ls_dim)

The look ahead stack is the negative elements of the lexical stack; therefore
they have identical structure •

• sr reserved_kw %false%
.sr binary_lookup %true%
.sr binary_lookback %true%

These control the generation of symbol look up and state look back coding. If
11 reserved kw 11 is true, the symbol look up is generated to handle only grammars
with reserved keywords. If it is false, the generated symbol look up code can
handle both reserved and unreserved keyword grammars. Generally, the coding

_.,. for unreserved keywords is more time-consuming than that for reserved

keywords. Reserved keyword coding will not work when a symbol has been marked
{-mark option) for unreserved purposes. If 11 binary_lookup 11 is true, a binary
search is used for symbol look up (if possible); otherwise, a serial search is
used. If 11 binary_.lookback 11 is true, a binary search is used for state look
backs; otherwise, a serial search is used •

• sr optimized_looks %false%
.sr nonoptimize_looks %true%

These control the generation of code to handle DPDA's with and without
optimized looks respectively. If both are %true%, code is generated to handle
both types of DPDA's. No significant extra code is required to handle both
types of DPDA's.

.sr scanner 11 scanner 11

.sr SC desc 1111 -.sr SC _args 1111

.sr la _put_ needed %true%

.sr SC incl 1111 -.sr scanner in it 1111

-.sr scanner init desc 1111 - -.sr scanner in it _args 1111 -.sr scanner finish 1111 -.sr scanner finish desc 1111

- -.sr scanner finish _args 1111 -
These specify things about the scanner procedure. 11 scanner 11 is the name of
the scanner to be ca 11 ed. 11 sc_desc 11 is a parameter descriptor Ii st (without
enclosing parentheses) for the scanner procedure. The values 11 none 11 and 11 any 11

may be given for 11 sc_desc 11 , or any of the other 11 ••• _desc 11 variables discussed
below, to-indicate an entry declaration with no parameter descriptor list or
an entry declaration with the options (variable) attribute instead of a
parameter descriptor list, respectively, is to be generated. If 11 sc_desc 11 is
1111 , no entry dee 1 arat ion is generated for the scanner. 11 sc_args 11 are the
arguments to be passed to the scanner procedure. Whenever the scanner is
called, the variable lookahead_put contains the subscript value for the
element of the look ahead stack to be filled by the scanner. If
11 la_put_needed 11 is true, a variable named la_put will also exist and will
contain the va 1 ue -1 ookahead_put whenever the scanner is ca 11 ed. 11 sc_i nc 111 is
the name of an include file (without the incl .pll suffix) which contains the
scanner. If this is specified, an %include statement wi 11 be generated inside
the parser. Then the lexical stack will be available without any include file
or parameter passing necessary. 11 scanner_init 11 specifies an entry point
(normally in the scanner procedure) to be called once before the first call to
the scanner's 11 get next terminal" entry point. If 11 scanner_init 11 is 1111 no
such call is generated. 11 scanner init desc 11 is a parameter descriptor list
(without enclosing parentheses) for the "scanner init 11 entry point. If

11 scanner_init_desc 11 is 1111 , no entry declaration is generated for this entry
point. 11 scanner init args 11 are the arguments to be passed to the
11 scanner init 11 entry p~int. "scanner finish" specifies an entry point (nor­
mally in-the scanner procedure) to be-called once after the last call to the
scanner's 11 get next term i na I 11 entry point. If 11 scanner _fin i sh 11 is 1111 no such

MTB 602 - - LALR page 63

call is generated. "scanner finish desc 11 is a parameter descriptor list
(without enclosing parentheses) for the 11 scanner_finish 11 entry point. If

11 scanner_finish_desc11 is 1111 , no entry declaration is generated for this entry
point. 11 scanner_finish_args 11 are the arguments to be passed to the
11 scanner_finish 11 entry point.

.sr deferred_actions %false%

.sr semantics 11 semantics 11

.sr sem_desc 1111

.sr sem_args 11 rule_number, alternative_number 11

.sr semantics_prod 1111

.sr desc_prod 1111

.sr sem_args_prod 11 production_number 11

.sr sem_incl 1111

.sr semantics_sw 1111

.sr semantics_sw_param %true%
• sr semant i cs_i nit 1111

• sr semant i cs_i n i t_desc 1111

.sr semantics_init_args 1111

.sr semantics_finish 1111

.st semantics_finish_desc 1111

• sr semant i cs_f in i sh_args 1111

These specify things about the semantics procedure. If 11 deferred_actions 11 is
%true%, cal ls to the semantics procedure are deferred until a read transition
is about to be made, an empty production is about to be applied, or the final
state is reached. This usually improves the behavior of both local and skip
recovery. If neither local recovery nor skip recovery is being generated,
11 deferred_actions 11 is ignored. 11 semantics 11 is the name of the semantics
procedure to be called when an apply is done using a DPDA generated without
use of the -production control (see the lair command described beginning on
page 20). 11 sem desc" is a parameter descriptor list (without enclosing
parentheses) for - the semantics procedure. If 11 sem_desc 11 is 1111 , no entry
dee 1 arat ion is generated for the semantics. · 11 sem_args 11 are the arguments to
be passed to the 11 semantics 11 procedure. When it is called the variables
rule_number, alternative_number, and production_number are val id. The default
is to pass the rule number and alternative number of the apply being done.

11 semantics_prod 11 is the name of the semantics procedure to be called when an
apply is done using a DPDA generated with use of the -production control.
11 sem_desc_prod 11 is a parameter descriptor 1 ist (without enclosing parentheses)
for the 11 semant i cs_prod 11 procedure. If 11 sem_desc_prod 11 is 1111 no entry
dee 1 arat ion is generated for this procedure. 11 sem_args_prod 11 are the argu­
ments to be passed to the 11 semantics_prod 11 procedure. When it is called the
variable production_number is valid. The defaults generate a parser which
does not support DPDA's generated with the -production control. 11 sem_incl 11 is
the name of an include file (without the incl .pl 1 suffix) which contains the
semantics procedure. If this is specified, an %include statement wil I be
generated inside the parser. 11 semant i cs_sw11 and 11 semant i cs_sw_param11 contro 1
the generation of a switch used to dynamically enable calls to the semantics
procedure. They are used in the same manner as described above for 11 db_sw11

and 11 db_sw_param 11 • 11 semantics_init 11 specifies an entry point (normally in the
semantics procedure) to be called once before the first call to the semantics'
11 take semantic action 11 entry point. If 11 semantics_init 11 is 1111 no such call is

generated. "semantics init desc11 is a parameter descriptor list (without
enclosing parentheses}-for this entry point. If 11 semantics_init_desc11 is 1111 ,

no entry declaration is generated for it. 11 semantics_init_args 11 are the
arguments to be passed to the 11 semant i cs_i n i t 11 entry point.
"semantics finish" specifies an entry point (normally in the semantics
procedure} to be called once after the last call to the semantics' 11 take
semantic action 11 entry point. If 11 semantics finish 11 is 1111 no such call is
generated. "semantics_finish_desc11 is a parameter descriptor list (without
enc 1 os i ng parentheses} for the 11 semant i cs fin i sh 11 entry point. If
11 semantics_finish_desc 11 is 1111 , no entry declaration is generated for this
entry point. 11 semant i cs_f in i sh_args 11 are the arguments to be passed to the
11 semantics_finish 11 entry point. NOTE: If the parse tables used are to be
obtained from a separate semantics format source segment, X$semantics_vector
must be specified for "semantics" and/or 11 semantics_prod 11 , as appropriate. (X
is the segment name of the parse tables.} Also, rule number must be the first
argument 1 isted in 11 sem_args 11 and/or production_nu;i;'ber must be the first
argument listed in 11 sem_args_prod 11 •

.sr sk p recover %true%

.sr sk p_reads 1

.sr sk p_reads_param %false%

.sr sk p_depth 1

.sr sk p_depth_param %false%

.sr sk p_cleanup 1111

These determine whether or not the skip recovery mechanism is included in the
parser and, if so, how many succesive input symbols, fol lowing a skip symbol,
must be recognized to terminate a skip and how deep in the parse stack skip
recovery will go to find a state from which the parse can be resumed.
11 sk i p_recover 11 may be set %fa 1 se% if not needed. 11 sk i p_reads 11 and
11 skip_depth 11 are meaningful only when 11 skip_recover 11 is %true%. When used,
11 skip_reads 11 must be a number in the range 1 to 9 inclusive or the name of a
variable or parameter containing such a value; e.g. it could be set to
11max_sk i p_reads 11 • If 11 sk i p_reads_param11 is %true%, "ski p_reads" is generated
as a fixed bin parameter to the parser. In this case it must be listed in the
"parameters" variable described above and its default is changed to
ski p_reads. If 11 sk i p_reads_param 11 is %fa I se%, no dee I arat ion is generated for
11 skip_reads 11 • When used, 11 skip_depth 11 must must a number or the name of a
variable or parameter containing a numeric value. If 11 skip_depth_param 11 is
%true%, 11 skip_depth 11 is generated as a fixed bin parameter to the parser. In
this case it must be listed in the "parameters" variable described above and
its default is changed to skip_depth. If 11 skip_depth_param11 is %false%, no
declaration is generated for 11 skip_depth 11 • In the earlier discussion of skip
recovery, the va I ues given by 11 sk i p_depth 11 and 11 sk i p_depth 11 were referred to
as N and M respectively. 11 skip_cleanup11 , when not 1111 , is one or or statements
(with terminating semicolons) to be executed immediately before returning from
the skip recovery procedure. Normally these statements are used to back up
the lexical stack and the semantic actions' output to a consistent state.

•

MTB 602 - - LALR

.sr max_recover 0

.sr max_recover_param %true%

.sr local_reads 2

.sr local_reads_param %false%

.sr local_recover_sw 1111

.sr local_recover_sw_param %true%

.sr make symbol 1111

• sr make:symbo l _inc 1 11make_symbo 111

page 65

These contro 1 generation of 1oca1 recovery code. 11max_recover 11 is the upper
1 imit on the number of local recoveries which can occur in a row. If it is
zero, no local recovery coding will be generated. It may be a parameter to
the parser, a variable declared in a block containing the parser, or a number.
If 11max_recover_param11 is true and 11max_recover 11 is not a number,

11max_recover 11 is generated as a fixed bin parameter to the parser. In all
other cases, no declaration of 11max_recover 11 is generated. 11 local_reads 11 and
11 local_reads_param11 are not meaningful when 11 max_recover 11 is O. Loosely
speaking, 11 local_reads 11 specifies the number of input symbols following the
bad symbol that must be accepted for a particular local recovery to be
considered successful. See the tables given under local recovery (page 17)
for a precise definition. When used, 11 local_reads 11 must be a number in the
range 1 to 9 inclusive or the name of a variable or parameter containing such
a value; e.g. it could be set to 11min_good_symbols 11 • If 11 local_reads_param11

is %true%, 11 local_reads 11 is generated as a fixed bin parameter to the parser.
If 11 local_reads_param 11 is %false%, no declaration is generated for

11 local_reads 11 • 11 local_recover_sw11 , when not 1111 , causes a switch to enable the
local recovery at run-time to be generated. 11 local_recover_sw11 gives the name
of this switch. If 11 local_recover_sw_param 11 is %true%, 11 local_r-ecover_sw11 is
generated as a bit (1) parameter to the parser. In this case,
11 local_recover_sw11 must be listed in the parameters variable describe above.
If 11 local_recover_sw_param11 is %false%, 11 local_recover_sw is generated as a
global variable with its declaration preceding the parser's procedure state­
ment. 11make_symbo 111 is the name of a procedure to be ca 11 ed to complete the
fabrication of a symbol by local recovery. When 11make_symbol 11 is cal led,
local recovery wi 11 have already placed the encoded value of the symbol being
created in the symbol field of the lexical/lookahead stack entry and set the
symlen field to zero. The symptr field wi 11 not have been altered.
"make_symbol is called with two fixed bin paramaters if 11 deferred_actions 11 is
false or three fixed bin parameters if it is true. For the sake of
discussion, call these parameters i, j, and k. Then, is the
lexical/lookahead stack index for the symbol being created. If the symbol is
being inserted, j and k will be equal to i. If the created symbol is
replacing the bad symbol, j and k will both be the lexical/lookahead stack
index of an entry containing the unaltered bad symbol. If the created symbol
is replacing the previous symbol, j will be the lexical/lookahead stack index
of an entry containing the unaltered previous symbol and k will be the
lexical/lookahead stack index of the bad symbol. 11 make_symbol_incl" is the
name of an include file (without the incl .pl 1 suffix) which contains the
11 make_symbol 11 procedure. If 11 make_symbol_incl 11 is not 1111 an %include
statement wi 11 be generated inside the local recovery procedure to include it.

_.. If 11 make_symbol 11 is 1111 , 11make_symbol_incl 11 is ignored.

After this macro source is prepared it is processed by executing

runoff X -in 0 -sm; dl X.runout

This will cause X.incl.pll and optionally xx.incl.pll (stack declaration) to
be created.

Sample usage of LALR

This example demonstrates the implementation of an online interpreter of
logical expressions.

With the text editor (e.g., ted) create a segment log.lair as in Figure 2.
Then execute

lalr log -source -symbols -term

to check it out. This is a useab le grammar. Note on the 2nd line that a 11 I"
is wanted in the language and so must be entered as 11 'I"· On the 6th line,
however, the "I" is the LALR "or" operator.

<log>
<or>
<or>
<and>
<and>
<not>
<bit>
<bit>

: : =
: : =
: : =
: : =
: : = .. -.. -
: : =
: : =

<or> I
<or> I I
<and> I
<and> &
<not> I
"" <bit>
x ' . ..
(<or>

<and> I • ..
<not> ' . ..

<bit>

)

Figure 2. Basic log. lair (grammar only)

At this point you could try out the language to see if it indeed describes
what you think it should. If you execute

lalr_parse log -trace

it w i 11 type LALRP (6. 0) and then wait for you to type a statement. If you
reply something like:

""(XI x I (X&X&X)) &X

you will see a trace of the parsing action. It will stop when it reaches the
end of the 1 ine. You then reply

EOI

to signal end-of-input and the trace wi 11 complete.

•

MTB 602 - - LALR

The trace will be made up of things like

56 APLY (-3 1 -4) sd = 1 (19)
* 37 READ operator symbol "I"

page 67

The first number on the 1 i ne is the state number; if preceded by a 11*11 it
means it was stacked (on the parse stack). The numbers in the parentheses
following APLY are the rule, alternative, and production numbers of the
production being applied. If the DPDA was generated with use of the
-production control (see the lalr command described beginning on page 20),
only the production number will appear. If the rule number (and production
number) is negative, no semantics exist for it. 11 sd = 111 means l element is
deleted from the parse stack and 1 element is also to be deleted from the
lexical stack. (The lexical and parse stacks always contain the same number
of elements.) The list of numbers inside the second 11 0 11 's tell the states
which are deleted from the parse stack.

The 'operator symbol "I"' following the READ indicates that the symbol read
was a vertical bar. (All terminal symbols, other than complicated terminals,
that begin with a special character are called operator symbols. The READ can
a 1 so be fo 11 owed by the phrase 'reserved word 11 XXX 11 ' or 'keyword 11 XXX 11 ' or by
the name of a complicated terminal followed by its representation in the
input.

You decide you need your own parser; the skeleton of one can be generated with
the macro. You decide that you need an entry in the lexical stack to hold the
bit value of the result. You then create a macro input segment as in Figure
3, and then execute

rf log_parse_ -sm; dl log_parse_.runout

to get log_parse_.incl.pll, your parse procedure •

• if lalr_skel
.sr ls_dcll "val bit(l) 11

.if lalr_skel

Figure 3. Macro input, log_parse_.runoff

You then build the rest of your semantics procedure around the grammar that
you know is acceptable to LALR. This gives a source which looks like Figure
4.

Now you run LALR again with

lair log -source

This gives a listing file because of the -source option in the command cal 1,
and a semantics include file because of the -sem option in the source.

In the semantics include file, you will notice that the %%%%'shave been
replaced with zero suppressed numbers, and since this is an incl.pl! file al 1
rules have been converted to PL/I comments. Figure 5 is this generated
inc 1 ude f i 1 e.

J -sem log.incl.pll I
I -parse I
I I
I <log> ::=<or> ! I
I rule (%%%%): I
I cal 1 ioa_ ("result is "lb", lex_stack.val (ls_top)); I
I return; I
I <or> : : = <or> / I <and> l ; I
I rule (%%%%): I
I lex_stack.val (ls_top-2) = lex_stack.val (ls top-2) I
I 1 ex_stack .va 1 (1 s top); I
I return; I
I I
I <or> ::=<and> I
I <and> : : = <and> & <not> ! ; I
I ru 1 e (%%%%) : I
I lex_stack.val (ls_top-2) = lex stack.val (ls top-2) I
I & lex_stack.val (ls_top); I
I return; I
I I
I <and> ::=<not> ! I
I <not> : : = " <bit> I <bit> I I
I ru 1 e (%%%%) : I
I if atl_no = 1 then I
I lex_stack.val (ls top-1) = "lex_stack.val (ls_top); I
I return; I
I I
I <bi t> : : = x ! ; I
I <bit> : : = (<or>) ! I
I r u 1 e (%%%%) : I
I lex_stack.val (ls_top-2) = lex_stack.val (ls_top-1); I
I return; I
1--------------------------------------~1 Figure 4. Completed log.lrk

-

MTB 602 - - LALR

I semantics: proc (rule_no, alt_no);
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

dcl (rule_no, alt_no) fixed bin parameter;

goto rule (rule_no);

I* -sem log.incl.pll
-parse *I
I* <log> ::=<or> I */
ru I e (1) :

call ioa_ ("result is "lb", lex_stack.val (ls_top));
return;

I* <or>
rule (2):

: := <or> 'I <and> I */;

lex_stack.val (ls_top-2) = lex_stack.val (Is top-2)
lex_stack.val (ls:top);

return;

I* <or>
I* <and>
ru I e (4) :

: : =
: : =

<and> *I
<and> & <not> */;

lex_stack.val (ls_top-2) = lex_stack.val (ls top-2)
& lex_stack.val (ls-top);

return;

I* <and> ::=<not> I */
I* <not> ::="<bit> I <bit> I */
ru I e (6) :

if alt no = 1 then
lex_stack.val (ls_top-1) = "lex_stack.val
return;

f'lc <bit>
I* <bit>
ru 1 e (8) :

.. -.. -
: : =

X I */;
(<or>) I -Jc/

(1 s_top) ;

lex_stack.val (ls_top-2) = lex_stack.val (ls_top-1);
return;

end 1 og;

1---Figure 5. log. incl.pl 1

page 69

The listing file, Figure 6, does not show all of the source; only the rules.
The line numbers are, however, correct. You wi 11 notice that some of the
rules are double spaced and some are single spaced. There is a convention
which allows you to control this. The character following the semantic
separator, 11 111 , is included in the listing. If this character is a NL, as in
line 4 or 21, then an empty line will follow it. If this character is a 11 ; 11

or a space, as in 1 ine 8 or 28, then there is no empty 1 ine following.

Notice that the alternative on line 22 uses the "I" form. This means that the
alternative number must be used to determine what portion of the semantics to
do.

The alternative on 1 ines 15 and 21 use the multiple definition form. Since
each of the definitions is a separate rule, the alternative number need not be
checked (it is always 1).

4

8
14

15
21

22

28
29

GENERATION LISTING OF SEGMENT log
Processed by: Prange.SLANG.a using LALR 6.0

of Friday, April 16, 1982
Processed on: 04/16/82 1720.8 est Fri

Options: -source

<log> : : = <or>

<or> : := <or> I I <and> I • ..
<or> : : = <and> I

<and> : : = <and> & <not> I ;
<and> : : = <not> I

<not> : : = <bit> <bit>

<bit> : : = x I ;
<bit> : : = (<or>) I

Figure 6. logg.l ist

MTB 602 - - LALR page 71

Non-LALR (k) Grammars Let us consider the arithmetic expression grammar
shown in Figure 7. The sentence i+i*i has two distinct leftmost derivations:

<e> => <e> + <e> <e> => <e> * <e>
=> + <e> => <e> + <e>)'(<e>
=> + <e> * <e> => + <e> * <e>
=> +)'(<e> => + * <e>
=> + i '" => + * i

A grammar that produces more than one parse tree for some sentence is said to
be ambiguous. Put another way, an ambiguous grammar is one that produces more
than one leftmost or more than one rightmost derivation for some sentence.

<e> ::= <e> + <e>
<e> * <e>
(<e>)
- <e>

I

Figure 7. Ambiguous e. lalr (grammar only)

LALR is unable to generate parsers for ambiguous grammars. When the grammar
of Figure 7 is presented to LALR, it will be rejected. Three diagnostics wi 11
be written to the user_output 1/0 switch for this grammar. Each will be of
the form:

WARNING: One or more configurations converged on the same next
set. This implies infinite look ahead.
Inadequate set is:
<e> (-1, 4, 4) at 1 i ne 4
<e> (-1, 1, 1) at 1 ine 1
<e> (-1, 2, 2) at 1 i ne 2

This diagnostic identifies three productions in an inadequate configuration
set that LALR is unable to resolve through the use of look aheads. The symbol
<e> in each of the last three 1 ines is the variable naming the production.
The number in parentheses are the rule number, alternative, and production
number of the production. The minus sign preceding the rule number indicates
the production does not have a significant semantic action. If the inadequate
set's closure set had not been empty, a dashed 1 ine would have appeared
between the productions in its basis set and those in its closure set.

More extensive information will appear in the listing. Here the diagnostics
will take the form:

WARNING: One or more configurations converged on the same next
set. This implies infinite look ahead.

10. contention set look ahead level 1
(49) - 39 ••• 11 EOl 11 (->6)->-15
(50) 39 ••• 11+11 (->7) ->-15
(51) 40 ••• 11+11 (->7)->-14
(52) 39 • • • 11*11 (->8) ->-15
(53} 41. •• 11 *11 (->8} ->-14
(54} 39 ••• 11) 11 (->13}->-15

10. inadequate set <e>
< 39} {<e>} ::= - <e>
(40) <e> ::= <e> {+} <e> -> 7
(41} <e> ::= <e> {*} <e> -> 8

First the contention set LALR is trying to eliminate is presented. In this
example it is the tenth configuration set and represents a look ahead 1 state
of the parse. The parenthesized numbers, 49 through 54, show that the
contention set occupies elements 49 through 54 in LALR's CNFG table. The next
column of numbers identify (by CNFG element number) the initial configuration
in each look ahead string. The symbols in the middle column are the terminals
being looked ahead at. The next column of numbers indicate which set to
examine if still in contention after this level of look ahead. The last
column of numbers indicate which set to examine if this level of look ahead
resolves the contention. In this example there are two configurations
"looking ahead at 11 the terminal 11+11 , both examining set number 7 next and two
configurations looking ahead at the terminal "*"• both examining set number 8
next.

After the contention set, the inadequate set that LALR was trying to convert
into look ahead sets and adequate sets is presented. In this example it was
the tenth configuration set and the 11 read 11 symbo 1 was the var i ab 1 e <e>. (A
configuration is a production with one of its symbols designated as the
11marked 11 symbol.) The parenthesized numbers, 39, 40, and 41, show that the
inadequate set occupies elements 39, 40, and 41 in LALR's CNFG table. These
numbers are followed by the configurations with their marked symbol indicated
by enclosing it in braces. If the marked symbol is not the production's left
hand side, the next set to examine when the symbol is read is shown at the
extreme right.

After the diagnostic information is presented, LALR performs an error recovery
to allow processing to continue. For infinite look ahead, the error recovery
is simply the deletion of each configuration which has the same next set as
some preceding configuration in the contention set has for the same terminal
symbol. In this example, configuration 51 and 53 are deleted.

If the grammar shown in Figure 7 is replaced with the unambiguous grammar
shown in Figure 8, if will be accepted by LALR.

MTB 602 -- LALR page 73

<e> : : = <e> + <t>
I

<t>
<t> : : = <t> * <f>

I
<f >

<f > : : = - <f>
>I

<p>
<p> : : = (<e> I i

Figure a. Unambiguous e. 1a1 r (grammar on 1 y)

Now consider the look ahead 6 grammar shown in Figure 9. If this grammar is
processed with a maximum look ahead of 4 specified it wi 11 be rejected. The
following diagnostic wi 11 be written to the user_output 1/0 switch:

WARN I NG: Exceeded LALR (4) •
Inadequate set is:
<a> (- 2 , 1 , 3) at 1 i ne 3
<A> (-8, 1, 9) at 1 ine 9

This diagnostic information is interpreted the same as described above for the
infinite look ahead situation.

In the 1 isting, the diagnostic will be:

WARNING: Exceeded LALR (4) while processing this set of configu­
rations.

35. contention set look ahead level 5
(55) - 12 ••• 11 f 11 (-24) ->-31
(56) ll. .. 11 f 11 (-26)->-30

5. inadequate set a
(11) {<a>} : : = a
(12) {<A>} : := a

This diagnostic information is also interpreted as described above for
infinite look ahead. In this example LALR is trying to generate look ahead
sets to ultimely decide when the terminal 11 a 11 should be reduced to the
non-terminal <a> and when it should be reduced to the non-terminal <A>.

The error recovery for exceeding the maximum look ahead is to ignore al 1
except the first configuration in the contention set for each terminal symbol
appearing in that set. In this example, configuration 56 is ignored causing
the terminal 11 a 11 to be reduced to the non-terminal <A>.

<s> : : = <a> <c> <d> <e> <f> p
<A> <C> <D> <E> <F> zl

<a> : := al
 : : = bl
<c> : := c!
<d> : := d!
<e> .. -.. - e!
<f> : := f I
<A> : : = al
 : : = bl
<C> : : = cl
<D> : : = di
<E> : := el
<F> : := f I

Figure 9. Look ahead 6 s. 1a1 r (grammar only)

Finally consider the context sensitive grammar shown in Figure 10. When this
grammar is processed the following diagnostic information will be written to
the user_output 1/0 switch:

This

NOTE: The LALR (4) contention set is identical to the LALR (2)
contention set. This implies indefinite recursion.
Inadequate set is:
EO I (0, 0, 0) at 1 i ne 0

<S> (-1, 1, 1) at 1 i ne 1
<S> (-1, 2, 2) at 1 ine 1
<a> (-2. 1 • 3) at 1 i ne 3
<a> (-2. 2, 4) at 1 i ne 3
 (-3, 1 • 5) at 1 ine 5
 (-3, 2, 6) at 1 i ne 5

diagnostic information is interpreted the same as described above for the
infinite look ahead case.

MTB 602 - - LALR

In the listing, the following diagnostic information will appear:

NOTE: The LALR (4) contention set is i dent i ca 1 to the LALR (2)
contention set. This implies indefinite recursion.

41. contention set look
(74) - 5 ••• ''C"
(75) 7 II II . . . '
(76) 5 II II . . . '

1. inadequate_set EOI

ahead level 4
(->19) ->-27
(->16) ->-28
(->20) ->-27

(1) EOI ::= {<S>} EOI -> 4

(2) <S> : : = {<a>} <l> <c> -> 3
(3) <S> ::= {} <m> <d> -> 2
(4) <a> : : = {A} -> 5
(5) {<a>} : : =
(6) : := {B} -> 6
(7) {} : : =

page 75

This diagnostic information is also interpreted as described above for
infinite look ahead.

Note: The first configuration set always has a single internally generated
production as its basis set. The right hand side of this production is
the user 1s start symbol followed by the terminal "EOl 11 • This produc­
tion is really anonymous, the use of the terminal "EOI" to name it is
an artifact of the production display routines.

The error recovery for indefinite recursion is simply to generate a DPDA
exhibiting the same indefinite recursion. In this example, this is done by
directing the look ahead 3 transitions that would have gone to the look ahead
4 state back to the look ahead 2 state. This makes the look ahead 2 and 3
states behave as look ahead 2*N and 2*N+1 states, respectively, where N is the
iteration count.

<S> : : = <a> <I> <c> I <m> <d> I
<a> : : = A I
 .. -.. - B I
<c> .. -.. - c
<d> : : = D
<I> : : = I • <I> J ' <l>
<m> : : = K • <m> K • <m>

Figure 10. S.lalr (grammar only)

Bibliography

This is a 1 isting of many items having to to with language processing. LALR
is based on much of this material. Of particular significance is that of
Knuth [33], fol lowed by DeRemer [13][14].

1. Aho, A. V. Denning, P. J. and Ullman, J. D. "Weak and mixed
strategy precedence parsing. 11 J, ACM 19, 2 (1972), 225-243

2. --- Johnson, S. C. and Ullman, J. D. "Deterministic Parsing of
Ambiguous Grammars. 11 Comm. ACM 18, 8 0975), 441-452

3. --- Johnson, S. C. and Ullman, J. D. 11 Deterministic
ambiguous grammars. 11 Conference Record of ACM Symposium of
of Programming Languages (Oct. 1973), 1-21.

. 4, --- and Johnson, S. C. 11 LR Parsing." Computing Surveys
1974)' 99-124.

parsing of
Principles

6, 2 (June

5, --- and Peterson, T. G. 11 A minimum distance error-correcting parser
for context-free languages. 11 SIAM J. Computing 1, 4 (1972) 305-312

6. --- and Ullman, J. D. 11 A technique for speeding up LR(k) parsers. 11

SIAM J. Computing 2, 2 (1973), 106-127
7, --- and Ullman, J. D. "Optimization of LR(k) parsers. 11 J. Computer

and System Sciences 6, 6 (1972), 573-602.
8. and Ullman, J. D. The theory of Parsing, Translation and

Compiling. Prentice-Hall, Englewood Cliffs, N. J., 1972
9. Altman, V. E. A Language Implementation System. MS Thesis, Mass.

Inst. Technology, 1973.
10. Anderson, T. Syntactic analysis of LR(k) languages. PhD Thesis, Univ.

Newcastle-upon-Tyne, Northumberland, England (1972).
11. --- Eve, J, and Horning, J. J. "Efficient LR(l) parsers. 11 Acta

Informatica 2 (1973), 12-39
12. Conway, M. E. "Design of a separable transition-diagram compiler. 11

Comm. ACM 6, 7 (July 1963), 396-408
13. DeRemer, F. L. "Practical translators for LR(k) languages. 11 PhD

Thesis, Oct. 1969, Project MAC Report MAC TR-65, MIT, Cambridge, Mass,
1969.

14. --- "Simple LR(k) grammars. 11 Comm. ACM 14, 7 (1971), 453-460,
15. Demers, A. "Elimination of single productions and merging nonterminal

symbols of LR(l) grammars. 11 Technical Report TR-127, Computer Science
Lab., Dept. of Electrical Engineering, Princeton Univ., Princeton, N.
J., July 1973.

16. Demers, A. J. 11 Skeletal LR parsing. 11 IEEE Conf. Record
Annual Symposium of Switching and Automata Theory, 1974.

17. --- "An efficient context-free parsing algorithm." Comm.
(1970) ' 94-102.

of 15th

ACM 13, 2

18. Earley, J. Ambiguity and precedence in syntax description. Tech Rep.
13, Dept. Computer Science, Univ. of California, Berkeley.

19. El Djabri, N. Extending the LR parsing technique to some non-LR
grammars. TR 121, Computer Science Lab., Dept. Electr. Eng.,
Princeton Univ., Princeton, N. J., 1973

20. Feldman, J. A. and Gries, D. 11 Translator writing systems. 11 Comm.
ACM 11, 2 0968), 77-113.

.....

MTB 602 - - LALR page 77

21. Fischer, M. J. 11 Some properties of precedence languages." Proc. ACM
Symposium on Theory of Computing, May 1969, pp. 181-190.

22. Floyd, R. W. "Syntactic analysis and operator precedence. 11 J. ACM
10, 3 (1963), 316-333°

23. Friedman, E. P. "The inclusion problem for simple machines." Proc.
Eighth Annual Princeton Conference on Information Sciences and Systems,
1974, pp. 173-177.

24. Ginsburg,S. and Spanier, E. H. 11 Control sets on grammars." Mathemat­
ical Systems Theory 2, 2 0968), 159-178.

25. Graham, S. L. and Rhodes, S. P. 11 Practical syntactic error recovery
in compilers." Conference Record of ACM Symposium on Principles of
Programming Languages (Oct. 1973), 52-58.

26. Gries, D. Compiler Construction for Digital Computers. Wiley, New
York, 1971.

27. Hopcroft, J. E. and Ullman, J. D. Formal Languages and their
Relation to Automata. Addison-Wesley, Reading, Mass., 1969.

28. lchbiah, J. D. and Morse, S. P. 11 A technique for generating almost
optimal Floyd-Evans productions for precedence grammars. 11 Comm. ACM
13, 8 (1970)' 501-508.

29. James, L. R. 11 A syntax directed error recovery method. 11 Technical
Report CSRG-13, Computer Systems Research Group, Univ. Toronto,
Toronto, Canada, 1972.

30. Jolliat, M. L. 11 0n the reduced matrix representation of LR(k) parser
tables. 11 PhD Thesis, Univ. Toronto, Toronto, Canada (1973).

31. --- 11 Practical minimization of LR(k) parser tables. 11 Proc. IFIP
Congress 1974, pp. 376-380.

32. Kernighan, B. W. and Chery, L. L. 11 A system for typesetting
mathematics. 11 Comm. ACM 18, 3 (March 1975), 151-156.

33. Knuth, D. E. 11 Qn the translation of languages from left to right. 11

Information and Control 8, 6 0965), 607-639· (Note: this paper
contains the original definition of LR grammars and languages).

34. --- 11Top down syntax analysis. 11 Acta Informatica 1, 2 (1971), 97-110.
35. Korenjak, A. J. 11 A practical method of constructing LR(k) processors. 11

Comm. ACM 12, 11 (1969), 613-623.
36. --- and Hopcroft, J. E. 11 Simple deterministic languages. 11 IEEE Conf.

Record of 7th Annual Symposium on Switching and Automata Theory, 1966
pp. 36-46.

37. Lalonde, W. R. Lee, E. S. and Horning, J. J. 11 An LALR(k) parser
generator.'' Proc. IFIP Congress 71. TA-3, North-Hollad Publishing
Co., Amsterdam, the Netherlands (1971), pp. 153-157.

38. Leinius, P. 11 Error detection and recovery for syntax directed compiler
systems. 11 PhD Thesis, Univ. Wisconsin, Madison, Wisc. (1970).

39. Lewis, P. M. and Rosenkrantz, D. J. 11 An Algol compiler designed
using automata theory. 11 Proc. Symposium on Computers and Automata,
Polytechnic Institute of Brooklyn, N. Y., 1971, pp. 75-88.

40. --- Rosenkrantz, D. J. and Stearns, R. E. 11 Attributed translations."
Proc. Fifth Annual ACM Symposium on theory of Computing (1973) Pages
160-171.

41. --- and Stearns, R. E. 11 Syntax directed transduction. 11 J. ACM 15, 3
(1968)' 464-488.

42. Manna, Z., Ness, S. and Vuil lemin, J. "Inductive methods for proving
properties of programs." Proc. ACM Conf. on Proving Assertions About
Programs, 1972, pp. 27-50.

43. McGruther, T. "An approach to automating syntax error detection,
recovery, and correction for LR(k) grammars. 11 Master's Thesis, Naval
Postgraduate School, Montery, Cal if., 1972.

44. McKeeman, W. M. Horning, J. J. and Wortman, D. B. A Compiler
Generator. Prentice-Hall, Englewood Cliffs, N. J., 1970.

45. Mickunas, M. D. and Schneider, V. B. "A parser generating system for
constructing compressed compi lers. 11 Comm. ACM 16, 11 (November 1973),
667-675.

46. Pager, D. 11 A fast 1 eft-to-r i ght parser for context-free grammars • 11

Technical Report PE-24 , Information Sciences Program, Univ. Hawaii,
Honolulu, Hawaii, 1972.

47. Pager, D. "A solution to an open problem by Knuth. 11 Information and
Centro 1 17 (1970) , 462-473.

48.

49.

50.

--- "On eliminating unit productions from LR(k) parsers."
Report. (See 26). 1974.

--- "On the i ncrementa 1 approach to 1 eft-to-r i ght parsing • 11

Report PE 238, Information Sciences Program, Univ. Hawaii,
Hawaii, 1972a.

Technical

Technical
Honolulu,

Peterson, T. G.
parsers." PhD
J., 1972.

"Syntax error detection, correction and recovery
Thesis, Stevens Institute of Technology, Hoboken,

in
N.

51. Rosenkrantz, D. J. and Stearns, R. E. "Properties of deterministic
top-down grammars." Inf. Control 14, 5 (1969), 226-256.

52. Stearns, R. E. "Deterministic top-down parsing." Proc. Fifth
Princeton Conf. on Information Science and Systems, 1971. pp.

53. Walters, D. A. "Deterministic context-sensitive languages."
Contr. 8 0970) , 14-61.

Annual
182-188

Inf.

54. Wood, D. 11The theory of left factored languages." Computer J. 12, 4
(1969) 349- 356 and 13, 1 (1970) , 55-62.

55. Dijkstra, E. W. A Discipline of Programming. Prentice-Hal 1, Englewood
Cliffs, N. J., 1976

....

MTB 602 - - LALR

28

29
30

31
32
33
34

46
47
48

55
56
57

64
65

69
70
71
72

82
83
84
85
86
87
88
89
90
91
92

GENERATION LISTING OF SEGMENT calc2_

Generated by: Prange.SLANG.a using LALR 7.0 of
Saturday, September 25, 1982

Generated at: TCO 68/80 Multics Billerica, Ma.
Generated on: 09/25/82 1707.6 edt Sat

Options: -ssl -terms -ct -ot -dx -11 65 -pl 46
File options: -order -tl -table -sem -production

1

2

3

4

5

6

7

8

<calc> ::=<I ine ••• > I !

3<1ine ••• >
4

::=<line> I
<line ••• > <line>!

5 <Ii ne>
6

: : = 1 is t <n I> I

7
8

<symbol>= <expression> <nl> I
<expression> <nl> I
<nl>I

9 <expression> ::=<term> I
10 <expression>+ <term>
11 <expression> - <term>

12 <term> ::=<factor> I
13 <term> * <factor>
14 <term> I <factor>

15 <factor> ::=<primary> I
16 <factor> ** <primary>!

17 <primary>
18
19
20

::=<reference> I
+ <primary> I
- <primary> I
(<expression>)

21 <reference>::= <real>
22 <symbol> I
23 e I
24 pi I
25 sin (<expression>)
26 cos (<expression>) I
27 tan (<expression>) I
28 atan (<expression>) I
29 abs (<expression>) I
30 In (<expression>) I
31 I og (<expression>) I

page 79

SOURCE FILES USED IN THIS GENERATION.

LINE NUMBER DATE MODIFIED NAME
PATHNAME

0 09/02/82 1522.6 calc2 • lair
>user_dir_dir>SLANG>Prange>stb>calc.s::calc2_.lalr

* 1 Look ahead * * 8 Rules * * 31 Productions * * 8 Variables * * 21 Terminals * * 0 Synonyms * * 72 States * * 214 DPDA words *
* 0 SKIP words *
* * * Optimization removed 'le

* 88 Read Transitions * * 29 Look Transitions * 'le 9 Read/Look States * * 23 Lookback Transitions *
* 3 Apply States *
'le 0 MLook Transitions >'e

* 0 MLook States *
* 102 DPDA words * *******************************

..

MTB 602 - - LALR page 81

,... TERMINALS USED
------------SYMBOL------------ CODE -------REFERENCES--------

.J

(6 ref 72 86 87 88 89 90 91
92

7 ref 72 86 87 88 89 90 91
92

* 4 ref 56
** 9 ref 65
+ 2 ref 47 70

3 ref 48 71
I 5 ref 57
<nl> 8 ref 31 32 33 34
<real> 10 ref 82
<sy!TlbO_l> ... ·- ... 11 ref.32 83
= 1 ref 32
abs 12 ref 90
a tan 13 ref 89
cos 14 ref 87
e 15 ref 84
1 i st 16 ref 31
In 17 ref 91
log 18 ref 92
pi 19 ref 85
sin 20 ref 86
tan 21 ref 88

VARIABLES USED
-~----------SYMBOL------------ CODE -------REFERENCES--------

<ca 1 c> -1 def 28 28 ref
11 Start Symbol 11

<expression> -4 def 46 47 48 ref 32 33 47

<factor> -6
<I i ne .•• > -2
<I ine> -3
<primary> -7

<reference> -8

<term> -5

48 72 86 87 88 89 90 91
92
def 64 65 ref 55 56 57 65
def 29 30 ref 28 30
def 31 32 33 34 ref 29 30
def 69 70 71 72 ref 64 65
70 71
def 82 83 84 85 86 87 88
89 90 91 92 ref 69
def 55 56 57 ref 46 47 48
56 57

MTB 602 - - LALR page 83

,.... TERMINAL ENCODING
1 = 7) 13 atan 19 pi
2 + 8 <nl> 14 cos 20 sin
3 - 9 ** 15 e 21 tan
4 * 10 <real> 16 1 i st
5 I 11 <symbol> 17 1 n
6 (12 abs 18 log

DPDA LISTING OF SEGMENT
>udd>SLANG>Prange>stb>calc2_.grammar

Generated by: Prange.SLANG.a using LALR 7.0 of
Saturday, September 25. 1982

Generated at: TCO 68/80 Multics Billerica, Ma.
Generated on: 09/25/82 1707.6 edt Sat
Generated from:

>udd>SLANG>Prange>stb>calc.s::calc2_.lalr
Maximum look ahead: 1

MTB 602 - - LALR page 85

,... DPDA LISTING

00017 00002 RD/LK CON
-00002 00051 CONTINUED AT
00000->-00183 LOOK 11 EOl 11

Refs: 4D lOD 13D 16D 19D 24D 72D 76D 79D 82D 186D 191D 194D 197D
209D 212D

4 00011 00005 APPLY
00000 00000 sd/RFU

-00017 00019 prod/def
00036-> 00010
00057-> 00013
00059-> 00024

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R 94A 103A 113A 162A 165A 168A 171A 174A 177A 180A

10 00013 00002 APPLY SHARE
00001 00001 sd/RFU
00018 00004 prod/ust

Refs: 4A lOA 13A 16A

13 00013 00002 APPLY SHARE
00001 00001 sd/RFU
00019 00004 prod/ust

Refs: 4A lOA 13A 16A

16 00013 00002- APPLY SHARE
00002 00002 sd/RFU
00020 00004 prod/ust

Refs: 141R

19 00011 00004 APPLY
00000 00000 sd/RFU

-00015 00027 prod/def
00060-> 00116
00061-> 00119

Refs: 4A lOA 13A 16A

24 00013 00002 APPLY SHARE
00002 00002 sd/RFU
00016 00019 prod/ust

Refs: 4A lOA 13A 16A

27 00015 00002 RD/LK DEF
-00001->-00186 LOOK DEFAULT

* 00009-> 00059
Refs: 19A 24A

30 00015 00003
-00001->-00197

* 00004-> 00060
* 00005-> 00061

Refs: 186A 191A 194A

34 00000 00001
* 00000-> 00000

Refs: 183A

DPDA LISTING

READ 11 ** 11

RD/LK DEF
LOOK DEFAULT
READ 11 >\ 11

READ 11 / 11

READ/LOOK
READ 11 EOl 11

36 00000 00014 READ/LOOK
* 00002-> 00036 READ 11+11

* 00003-> 00057 READ 11 - 11

* 00006-> 00058 READ 11 (11

* 00010-> 00004 READ <real>
* 00011-> 00113 READ <symbol>
* 00012-> 00088 READ 11 abs 11

* 00013-> 00090 READ 11 atan 11

* 00014-> 00092 READ 11 cos 11

* 00015-> 00094 READ 11 e 11

'le 00017-> 00099 READ 11 ln 11

* 00018-> 00101 READ 11 109 11

* 00019-> 00103 READ "pi"
* 00020-> 00106 READ 11 sin 11

* 00021-> 00108 READ 11 tan 11

Refs: lR 48 108 138 168 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R
65R 66R 67R 68R 69R 70R 71R

51 00017 00005 RD/LK CON
-00002 00036 CONTINUED AT

1c 00000-> 00000 READ 11 EO 1 11

* 00008-> 00072 READ <nl>
* 00011-> 00085 READ <symbol>
* 00016-> 00097 READ 11 list 11

Refs: 4D lOD 13D 160 190 240 72A 728 76A 768 79A 798 82A 828 llOA
1860 1910 1940 1970 2090 2120

57 00002 00036 RO/LK SHARE
Refs: lR 48 108 138 168 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R
65R 66R 67R 68R 69R 70R 71R

MTB 602 -- LALR page 87

,..
OPOA LISTING

58 - 00002 00036 RO/LK SHARE
Refs: lR 40 100 130 160 190 240 36R 51R 57R 58R 59R 60R 61R 62R
63R 64R 65R 66R 67R 68R 69R]OR 71R 1860 1910 1940 197B 2098 2128

59 00002 00036 RO/LK SHARE
Refs: 48 108 138 168 27R 116R 119R

60 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 19B 248 30R 122R 126R

61 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 19B 248 30R 122R 126R

62 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 130R 134R 137R 141R 144R 147R 150R
153R 156R 159R 1868 1918 1948

63 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 130R 134R 137R 141R 144R 147R 150R
153R 156R 159R 1868 1918 1948

64 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 85R 1860 1910 1940 1978 2098 2128

-~
65 00002 00036 RO/LK SHARE

Refs: 40 100 130 160 190 240 88R 1860 1910 1940 1970 2098 2128

66 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 90R 1860 1910 1940 1978 2098 2128

67 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 92R 1860 1910 1940 1978 2098 2128

68 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 99R 1860 1910 1940 1970 2098 2128

69 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 101R 1860 1910 1940 1978 2098 2128

70 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 106R 1860 1910 1940 197B 2098 2128

71 00002 00036 RO/LK SHARE
Refs: 40 100 130 160 190 240 108R 1860 1910 1940 1978 2098 2128

DPDA LISTING

72 00011 00003 APPLY
00000 00000 sd/RFU

-00008 00051 prod/def
00051-> 00110

Refs: lR 51R

76 00013 00002 APPLY SHARE
00001 00001 sd/RFU
00007 00072 prod/ust

Refs: 134R

79 00013 00002 APPLY SHARE
00001 00001 sd/RFU
00005 00072 prod/ust

Refs: 97R

82 00013 00002 APPLY SHARE
00003 00003 sd/RFU
00006 00072 prod/ust

Refs: 130R

85 00015 00002 RD/LK DEF
-00001->-00113 LOOK DEFAULT

* 00001-> 00064 READ 11=11

Refs: lR 51R

88 00000 00001 READ/LOOK
* 00006-> 00065 READ 11 (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

90 00000 00001 READ/LOOK
* 00006-> 00066 READ 11 (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

92 00000 00001 READ/LOOK
* 00006-> 00067 READ 11 (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

94 00012
00000
00023

00002 APPLY 1
00000 sd/RFU
00004 prod/tran

~

MTB 602 - - LALR

DPDA LISTING

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

97 00000 00001 READ/LOOK
* 00008-> 00079 READ <nl>

Refs: lR 51R

99 00000 00001 READ/LOOK
'le 00006-> 00068 READ 11 (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

101 00000 00001 READ/LOOK
)'(00006-> 00069 READ II (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

103 00012 00002 APPLY 1
00000 00000 sd/RFU
00024 00004 prod/tran

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R ?OR 71R

106 00000 00001 READ/LOOK
)'(00006-> 00070 READ II (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R ?OR 71R

108 00000 00001 READ/LOOK
,., 00006-> 00071 READ II (11

Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R
69R 70R 71R

110

Refs:

00012
00001

-00004
72A 76A

00002
00001
00051

79A 82A

APPLY 1
sd/RFU
prod/tr an

113 00012 00002 APPLY 1
00000 00000 sd/RFU
00022 00004 prod/tran

Refs: 36R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R 69R ?OR
71R 85L

page 89

116 00015 00002
-00001->-00191

* 00009-> 00059
Refs: 19A 24A

119 00015 00002
-00001->-00194

* 00009-> 00059
Refs: 19A 24A

122 00015 00003
-00001->-00209

* 00004-> 00060
* 00005-> 00061

Refs: 186A 191A 194A

126 00015 00003
-00001->-00212

* 00004-> 00060
* 00005-> 00061

Refs: 186A 191A 194A

130 00000 00003
* 00002-> 00062
* 00003-> 00063
* 00008-> 00082

Refs: 197A 209A 212A

134 00017 00002
-00002 00130

* 00008-> 00076
Refs: 197A 209A 212A

137 00000 00003
* 00002-> 00062
* 00003-> 00063
* 00007-> 00180

Refs: 197A 209A 212A

141 00017 00002
-00002 00137

* 00007-> 00016
Refs: 197A 209A 212A

DPDA LISTING

RD/LK DEF
LOOK DEFAULT
READ "**"

RD/LK DEF
LOOK DEFAULT
READ "**"

RD/LK DEF
LOOK DEFAULT
READ 11*11

READ 11 / 11

RD/LK DEF
LOOK DEFAULT
READ "*11

READ 11 /"

READ/LOOK
READ 11+11

READ 11 - 11

READ <nl>

RD/LK CON
CONTINUED AT
READ <nl>

READ/LOOK
READ 11+11

READ 11 - 11

READ 11) II

RD/LK CON
CONTINUED AT
READ 11) II

MTB 602 - - LALR page 91

DPDA LISTING

144 00017 00002 RD/LK CON
-00002 00137 CONTINUED AT

* 00007-> 00162 READ 11) II

Refs: 197A 209A 212A

147 00017 00002 RD/LK CON
-00002 00137 CONTINUED AT

* 00007-> 00165 READ 11) II

Refs: 197A 209A 212A

150 00017 00002 RD/LK CON
-00002 00137 CONTINUED AT

'le 00007-> 00168 READ 11) 11

Refs: 197A 209A 212A

153 00017 00002 RD/LK CON
-00002 00137 CONTINUED AT

* 00007-> 00171 READ 11) II

Refs: 197A 209A 212A

156 00017 00002 RD/LK CON
-00002 00137 CONT I NUED AT

'le 00007-> 0017 4 READ 11) 11

Refs: 197A 209A 212A

159 00017 00002 RD/LK CON
-00002 00137 CONTINUED AT

* 00007-> 00177 READ 11) II

Refs: 197 A 209A 212A

162 00012 00002 APPLY 1
00003 00003 sd/RFU
00029 00004 prod/tr an

Refs: 144R

165 00012 00002 APPLY 1
00003 00003 sd/RFU
00028 00004 prod/tr an

Refs: 147R

168 00012 00002 APPLY 1
00003 00003 sd/RFU
00026 00004 prod/tr an

Refs: 150R

DPDA LISTING

171 00012 00002 APPLY 1
00003 00003 sd/RFU
00030 00004 prod/tr an

Refs: 153R

174 00012 00002 APPLY 1
00003 00003 sd/RFU
00031 00004 prod/tr an

Refs: 156R

177 00012 00002 APPLY 1
00003 00003 sd/RFU
00025 00004 prod/tr an

Refs: 159R

180 00012 00002 APPLY 1
00003 00003 sd/RFU
00027 00004 prod/tr an

Refs: 137R

183 00012 00002 APPLY 1
-00001 -00001 sd/RFU

*-00002 00034 prod/tran
Refs: lL

186 00011 00004 APPLY
00000 00000 sd/RFU

-00012 00030 prod/def
00062-> 00122
00063-> 00126

Refs: 27L

191 00013 00002 APPLY SHARE
00002 00002 sd/RFU
00013 00186 prod/ust

Refs: 116L

194 00013 00002 APPLY SHARE
00002 00002 sd/RFU
00014 00186 prod/ust

Refs: 119L

197 00011 00011 APPLY
00000 00000 sd/RFU

MTB 602 -- LALR page 93

DPDA LISTING

-00009 00134 prod/def
00058-> 00141
00064-> 00130
00065-> 00144
00066-> 00147
00067-> 00150
00068-> 00153
00069-> 00156
00070-> 00159
00071-> 00137

Refs: 30L

209 00013 00002 APPLY SHARE
00002 00002 sd/RFU
00010 00197 prod/ust

Refs: 122L

212 00013 00002 APPLY SHARE
00002 00002 sd/RFU
00011 00197 prod/ust

Refs: 126L

OPDA LISTING

TERMINAL REFERENCES

(6) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R
67R 68R 69R 70R 71R 88R 90R 92R 99R 101R 106R 108R

(7) Refs: 137R 141R 144R 147R 150R 153R 156R 159R
* (4) Refs: 30R 122R 126R
** (9) Refs: 27R 116R 119R
+ (2) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R 130R 134R 137R 141R 144R 147R 150R
153R 156R 159R

- (3) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R
67R 68R 69R 70R 71R 130R 134R 137R 141R 144R 147R 150R
153R 156R 159R

I (5) Refs: 30R 122R 126R
<nl> (8) Refs: lR 51R 97R 130R 134R
<real> (10) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R

66R 67R 68R 69R 70R 71R
<symbol> (11) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R

65R 66R 67R 68R 69R 70R 71R
= (1) Refs: 85R
EOI (i.e., end of information) (0) Refs: lL 34R 51R
abs (12) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
atan (13) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R

66R 67R 68R 69R 70R 71R
cos (14) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
e (15) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
I ist (16) Refs: lR 51R
In (17) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
log (18) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R]OR 71R
pi (19) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
sin (20) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R
tan (21) Refs: lR 36R 51R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R

67R 68R 69R 70R 71R

MTB 602 -- LALR

OPDA LISTING

VARIABLE REFERENCES

<calc> (-1) Refs: 183S
<expression> (-4) Refs: 197T 209U 212U
<factor> (-6) Refs: 19T 24U
<line ••• > (-2) Refs: llOS
<line> (-3) Refs: 72T 76U 79U 82U
<primary> (-7) Refs: 4T lOU 13U 16U
<reference> (-8) Refs: 94S 1035 1135 1625 1655 1685 1715 1745

177S 1805
<term> (-5) Refs: 186T 191U 194U

page 95

COMPILATION LISTING OF SEGMENT calc2

Compiled by:
Compiled at:

Multics PL/I Compiler, Release 27b, of September
TCO 68/80 Multics Billerica, Ma.

15. 1981

Compiled on: 09/18/82 1457.2 edt Sat

Options: optimize table map

1 calc2: proc;
2

3 /* Version of calc using LALR. */
4
5 dcl arg_list_ptr ptr;

6 dcl buffer char (buffer length) based (buffer ptr);
7 dcl buffer_length fixed-bin (21); -
8 dcl buffer_ptr ptr;

9 dcl cleanup condition;
10 dcl code fixed bin (35);
11 dcl com_err_ entry options (variable);

12 dcl cu $arg count entry (fixed bin, fixed bin (35)):
13 dcl cu=$arg=list_ptr entry (ptr);
14 dcl current_arg fixed bin;

15 dcl input char (input_length) based (input_ptr);
16 dcl input_length fixed bin (21);
17 dcl input_ptr ptr;

18 dcl ioa_ entry options (variable);
19 dcl line number fixed bin;
20 dcl msg -char (100) varying;

21 dcl my_name char (5) internal
22 dcl newline char (1) internal
23 ");

24 dcl next_char_pos fixed bin;
25 dcl null bui l tin;
26 dcl number_of_args fixed bin;

27 dcl quit_arg char (2) internal
28 ");
29 dcl 1 sym based like sym_:

30 dcl 1 sym_ (200),
31 2 name char (B),
32 2 val f 1 oat bin (27);

33 dcl sym_num fixed bin;

J

static options (constant)
static options (constant)

static options (constant)

init ("calc2");
in it (•

in it ("q

))

l
34

35 call cu_$arg_count (number_of_args, code);
36 1f code A= O
37 then do;

38 bail_out:
39 call com_err
40 return;

(code, my_name);

41 end;
42 call cu_$arg_list_ptr (arg_list_ptr);
43 current_arg = O;

44 sym_num = O;
45 line number= 0;
46 buffer_ptr = null ();

47 if number_of_args = 0
48 then do;
49 on cleanup go to exit;

50 buffer length = 200;
51 allocate buffer set (buffer_ptr);
52 input_ptr = buffer_ptr;

53 end;
54 retry:
55 next_char_pos = 1·

56 input_length = O;
57 call calc2_p;
58 if code A= O then

59 if number_of_args
60 go to retry;
61 exit:

0 then

62 if buffer_ptr A= null () then
63 free buffer;
64 return;

65 error:
66 call ioa ("Aa",
67 if number_of_args

68 go to retry;
69 else go to exit;
70

71 trn: entry;
72 db SW = "1"b;

msg);
= o then

l '

73 return;

74
75 trf: entry;
76 db_sw = HQllb;

77 return;
78

dcl db_sw bit (1) internal static init ("O"b);

2 /*
3 dcl
4 /*

Recovery failed. */
syntax_error fixed bin (35) internal static options (constant) init

Parse stack underflow or local recovery encountered

5* impossible conditions. Both caused by bad DPDA. */

(1) ;

6 dcl logic_error fixed bin (35) internal static options (constant) init (2);
7 /* Parse, lexical, or lookahead stack overflow. */

8 dcl stack overflow fixed bin (35) internal static options (constant) init (3);
9 /* Unrecognized table type in the DPDA. */
10 dcl unrecognized_state fixed bin (35) internal static options (constant) init (4);

11 calc2_p:
12

proc;

13 /* Parser for tables created by LALR. */

1 14
1 15
2 1 /* BEGIN INCLUDE FILE

2 2*
2 3*

calc2_t_. incl .pl 1

2 4*SCANNER AND PARSER TABLES FROM SEGMENT

2 5* >user_dir_dir>SLANG>Prange>stb>calc2_.grammar
2 6*
2 7* Generated by: Prange.SLANG.a using LALR 7.0 of Friday, September 17, 1982

at: TCO 68/80 Multics Billerica, Ma.
on: 09/18/82 1408.0 edt Sat

2 8* Generated
2 9* Generated
2 10* Generated from: >user_dir_dir>SLANG>Prange>stb>calc.s: :calc2_. lalr */

2 11
2 12 dcl
2 13 2

2 14 2
2 15 3
2 16 3

2 17
2 18 dcl

1 calc2 t $terminals list external
terminals=llst_size fixed bin,

static,

terminals list (21),
position fixed bin (18) unsigned unaligned,
length fixed bin (18) unsigned unaligned;

calc2_t_$terminal_characters external static,

)))

2 19 2

2 20 2
2 21
2 22 dcl

2 23 2
2 24 2
2 25 3

2 26
2 27 dcl
2 28 2

2 29 2
2 30 3
2 31

2 32 dcl
2 33 2
2 34 2

2 35

.,
terminal_characters_length fixed bin,

terminal_characters char (55);

1 calc2_t_$dpda external static,

dpda_size fixed bin,
dpda (214),
(v1, v2) fixed bin (17) unaligned;

1 calc2_t_$skip external
skip_size fixed bin,

skip (2),

static,

(v1, v2) fixed bin (17) unaligned;

1 calc2_t_$standard_prelude external
standard prelude length fixed bin,
standard=prelude-char (O);

2 36 dcl 1 calc2 t $production names external
2 37 2 production_names_size fixed bin,

static,

static,

2 38 2 production_names (31) fixed bin (17) unaligned;
2 39
2 40 dcl 1 calc2_t_$variables_list external static,

variables list size fixed bin,
variables-list-(8),

2 41 2
2 42 2
2 43 3 (position~ length) fixed bin (18) unsigned unaligned;

2 44
2 45 dcl
2 46 2

1 calc2_t_$variable_characters external static,
variable_characters_length fixed bin,

2 47 2 variable_characters char (67);
2 48
2 49 /* END INCLUDE FILE calc2_t_.incl.p11

16
17 dcl
18 /*

1 lstk (-1:50),
-1:-1 is the lookahead stack (FIFO) */

1:50 is the lexical stack (LIFO) */

*/

19 /*
20 2
21 2

symptr ptr, /* pointer to symbol (must be valid) */
symlen fixed bin, /* length of symbol (may be 0) */

'

22 2 line id aligned, /* identification of line where symbol begins */
23 3 file-fixed bin (17) unaligned, /* the include file number*/

'

24 3 line fixed bin (17) unaligned, /* the line number within the Include file*/

25 2
26 2
27 2

28 dcl

symbol fixed bin, /* encoding of
value float bin (27),
def ptr;

the symbol */

lookahead (-1:50) defined lstk like lstk;
29 dcl abs builtin;
30 dcl current state fixed bin; /* number of current state */

31 dcl current_table fixed bin; /* number of current table */
32 dcl 1 db data unaligned,
33 2 flag char (1), /* *means stacked*/

34 2
35 2
36 2

state picture •zzz9",
top picture "zzz9",
filler char (2),

37 2 type char (6),
38 2 data char (100);
39 dcl db_ttem char (117) defined (db_data);

40 dcl
41 dcl
42 dcl

43 dcl
44 dcl
45 dcl

46 dcl
47 dcl
48 dcl

49 dcl
50 dcl
51 dcl

52 dcl
53 dcl
54 dcl

55 dcl
56 dcl
57 dcl

58 dcl
59 dcl

db_separator char (1);
divide builtin;
hbound builtin;

1 fixed bin; /* temp */
toa_$nnl entry options (variable);
lb fixed bin;

ls_top fixed bin defined parse_stack_top; /* location of the top of the lexical stack */
lookahead count fixed bin; /* number of terminals in lookahead stack */
lookahead=get fixed bin internal static options (constant) init (-1);

lookahead_put fixed bin internal static options (constant) lnlt (-1);
next state fixed bin; /* number of next state */
parse_stack (50) fixed bin aligned; /* parse stack*/

parse stack top fixed bin; /* location of the top of the parse stack */
productton_number fixed bin; /* APPLY production number */
recov_msg char (250) varying;

t fixed bin;
test_state fixed bin;
test_symbol fixed bin

ub fixed bin;
unspec butltin;

J

/* top state from parse stack during look back lookups */
defined lstk.symbol (-1); /* encoding of current symbol */

J j

' 60

61 current state
62 parse_stack_top
63 lookahead_count

64 unspec
65 code
66

(lstk)
O; /*

1 ;
0;

= O;

"nb;
Preset the status

67 /* The parsing loop. */
68 NEXT:
69 if current state = O

70 then do;
71 parse_done:
72 return;

73 end;
74 current table
75 db item-= "";

current_state;

76 db_data.state = current_state;
77 db_data.top = parse_stack_top;

code.

78 goto CASE (dpda.v1 (current_table));

79

'
*/

80 CASE (10):
81* stacking)

/*Obsolete -- Lookahead 1 (sometimes called read
with shared transition table. */

without

82
83 CASE (2): /* Read and stack and/or lookahead 1 (sometimes called
84* read without stacking) with shared transition table.

85* (Read transitions to state S are coded as +S while
86* lookahead transitions to state Sare coded -S.) */
87 current table = dpda.v2 (current table);

88
89 CASE (0): /* Read and stack and/or lookahead 1 with
90* default transition nor a marked symbol transition.

neither a
*/

91 CASE
92* read
93 CASE

(9): /* Obsolete -- Lookahead 1
without stacking). */

(sometimes called

(15): /* Read and stack and/or lookahead 1 with

94* a default transition. */
95 CASE (17): /*Read and stack and/or lookahead 1 with the table
96* continued at another state. */

97
98 if lookahead_count <= 0 /*Make sure a symbol is available. */

' •

99 then do;

100 call scanner;
101 lookahead count
102 end; -

lookahead_count+1;

103 search table:
104 /* Look current symbol up in the read ltst. */
105 lb = current_table+1;

106 ub
107 do
108 t

= current table+dpda.v2 (current table);
while (lb-<= ub); -

= d i v i de (ub+ 1 b , 2 , 17 , O) ;

109 if dpda.v1 (i) = test_symbol
110 then do;
111 next_state = dpda.v2 (i);

112 goto got_symbol:
113 end;
114 else if dpda .v1 (i) < test_symbol

115 lb = i+1;
116 else ub = i -1;
117 end;

then

118 if dpda.v1 (current table+1) < 0 then
119 if dpda.v1 (current=table+1) = -1
120 then do;

121 current_state
122 if db_sw
123 then do;

-dpda.v2 (current_table+1);

124 db data.type = "LK01D";
125 db-data.data = get terminal (lookahead get):
126 call ioa_$nnl ("Aa;::/", db_item); -

127 end;
128 goto NEXT;
129 end;

130 else do;
131 current_table = dpda.v2 (current_table+1);
132 goto search_table;

133 end;
134
135 if db_sw then

136 call ioa_$nnl (" A4i ", current_state);
137 call set_line_id (lookahead_get);

)))

l
138 recov_msg recov_msg 11 "at ";

139 recov_msg = recov_msg I I
140 recov_msg = recov_msg
141 call print_recov_msg;

142 code
143 go
144

= syntax_error;
to parse_done;

145 got_symbol:
146 if db sw then

get_terminal (lookahead_get);
It II• ..

147 db data.data = get terminal (lookahead_get);

148 if next state < 0
149 then do; /* This is a lookahead transition. */
150 db_data.type = "LK01";

151 current state = -next state;
152 end; - -
153 else do; /* This is a read transition. */

154 db data.type = "READ";
155 db-data.flag = "*";
156 if- parse_stack_top >= hbound (parse_stack, 1) then

157 call parse_stack_overflow;

'

158 parse_stack_top = parse_stack_top+1;
159 parse_stack (parse_stack_top) = current_state; /* Stack the current state. */

160 unspec (lstk (parse_stack_top))
161 lookahead_count = O;

unspec (lookahead (lookahead_get));

162 current_state = next state;

163 end;
164 if db_sw then
165 cal 1 ioa_$nnl (" a"/"• db_ item);

166 goto NEXT;
167
168 CASE (3): /*Multiple lookahead (k > 1) with shared look table. */

169 CASE (1) : /* Multiple lookahead (k > 1) without default transition.
170 CASE
171 CASE

(14): /* Multiple lookahead (k > 1) with default transition.
(16) : /* Multiple lookahead (k > 1) with the table

172* continued at another state. */
173
174 CASE (7): /* Obsolete state type -- Skip table. *I

175 CASE (8): /* Obsolete state type -- Skip recovery adjust table. */
176

*/
*/

l

177 CASE (4): /*Apply by rule and alternative with lookback table. */

178 CASE
179 CASE
180 call

(5): /* Apply by rule and
(6): /*Apply by rule and
set_line_id (lookahead_get);

alternative without lookback. */
alternative with shared lookback table. •/

181 recov_msg = recov_msg II "Unrecognized DPDA state encountered -- Parse fails.";
182 call print_recov_msg;
183 code = unrecognized_state;

184 go to parse_done;
185
186 CASE (13): /*Apply by production with shared lookback table. */

187 current table = dpda.v2 (current state+2);
188 CASE (1i): /•Apply by production with lookback table. •/
189 CASE (12): /*Apply by production without lookback. */

i90 production_number = dpda.v1 (current_state+2);
19i if production number > 0 then
192 call calc2_ (production_number);

193 if db_sw
194 then begin;
195 dcl production_name char (variables_list.length (-production_names (abs (production_number))))

196 defined (variable characters)
197 position (variables list.position (-production names (abs (production number))));
198 db_data.type = "APLY"; - -

199 db data.data = "(";
200 if- dpda.v1 (current_state+1) < O then
201 db_data.flag = "•";

202 call ioa_$nnl ("AaAi", db_item, production_number);
203 if production_names_size > O then
204 call loa_$nnl (" Aa•, production_name);

205 call ioa $nnl (")A-sd = Al ", dpda.v1 (current state+1));
206 if dpda.v1 (current_state+1) > o
207 then do;

208 db_separator = "(";
209 do t = parse_stack_top to parse_stack_top-dpda.v1 (current_state+1)+1 by -1;
2i0 call ioa_$nnl ("A1aAd", db_separator, parse_stack (t));

2i1 db_separator =
212 end;
213 ca 11 ioa_$nnl (") ") ;

214 end;
215 cal 1 ioa_$nnl (HA/ U);

J))

l
216 end;

217 /* Check for an apply of an empty production.
218* In this case the apply state number must be
219* pushed onto the parse stack. (Reference

220* Lalonde, W. R.: An efficient LALR Parser Generator.
221* Tech. Report CSRG-2, 1971, pp. 34-35.) */
222 if dpda.v1 (current state+1) < 0

223 then do;
224 if parse_stack_top >= hbound (parse_stack, 1) then
225 call parse_stack_overflow;

226 parse stack (parse stack top+1) =current state;
227 end; - -
228 /* Delete lexical & parse stack entries. */

229 parse_sta'ck_top =parse stacktop-dpda.v1 (current state+1);
230 if parse_stack_top <= O
231 then do;

'

232 call set line id (lookahead get);
233 recov_msg- = r~cov_msg I I •Texical/parse stack empty -- Parse fails.";
234 call print_recov_msg;

235 code = logic error;
236 go to parse_done;
237 end;

238 lb = current table+3;
239 ub = current-table+dpda.v2 (current table);
240 test state =-parse_stack (parse_stack_top);

241 do
242 i
243 if

wh i 1 e (1 b < = ub) ;
= divide (ub+lb, 2, 17, O);
dpda.v1 (1) = test state

244 then do;
245 current state
246 goto NEXT;

247 end;

dpda.v2 (1);

248 else if dpda.v1 (i) <test state then
249 lb = i+1;

250 else ub = i-1;
251 end;
252 current state = dpda.v2 (current_table+2);

253 goto NEXT;

'

254 get_terminal: proc (lstk_index) returns (char (100) varying);

lstk index fixed bin parameter;
255
256 dcl
257 dcl alphanumeric (0:511) bit (1) unaligned internal

258 (32) (1) "O"b, /*
259 (4) (1) "O"b, /*
260 "1"b, /* $ */

261 (11)
262 (10)
263 (7)

264 (26)
265 (4)

(1) "O"b, /*
(1) "1"b, /*

(1) "O"b, /*

(1) "1"b, /*
(1) "O"b, /*

control characters */
SP I " # */

%&' ()* +
digits */

:; < = >? @ */

upper case letters
[\] A */

*/

266 "1"b, /* underscore */

267 "O"b, /* */
268 (26) (1) "1"b, /* lower case letters */
269 (5) (1) "O"b, /* < I > .., DEL */

I */

270 (384) (1) "O"b); /* rest of 9-bit ASCII code set */
271
272 if lstk.symbol (lstk_index) = O then

273 return ("end-of-information");
274 else begin:
275 dcl temp char (100) varying;

static options (constant) init (

276 dcl
277 dcl
278 dcl

(length, min, rank, substr) bulltin;
symbol char (min (50, lstk.symlen (lstk index))) based (lstk.symptr (lstk index));
terminal char (terminals_list.length (lstk.symbol (lstk_index))) -

279 defined (terminal characters)
280 position (terminals list.position (lstk.symbol (lstk index)));
281 if length (terminal)> 2 -

282 & substr (terminal, 1, 1) = "<"
283 & substr (terminal, length (terminal), 1) = ">"
284 then do;

285 temp = substr (terminal, 2, length (terminal)-2);
286 if length (symbol) > 0
287 then do;

288 temp = temp I I " " ;
1) = """" 289 if substr (symbol, 1,

290 I substr (symbol, 1, 1) = ••• then

291 temp =temp I I symbol;
292 else do;

)) '

., .'\ '
293 temp temp 11 II II II II • .
294 temp
295 temp

temp 11 symbol;
temp 11111111. .

296 end;

297 end;
298 end;
299 else 1f alphanumeric (rank (substr (terminal, 1, 1)))

300 then do;
301 temp = "reserved word U II II. .
302 1f length (symbol) > o then

303 temp = temp 11 symbol;
304 else temp = temp 11 terminal;
305 temp = temp I I """'';
306 end;
307 else do;
308 temp = "operator symbol II II N • .
309 temp = temp

11
terminal;

310 temp = temp 11111111. .
311 end;

312 return (temp);
313 end;
314 end get_ terminal;

3 /* BEGIN INCLUDE FILE ca 1 c _ s. inc 1 . p 1 1 06/24/76 J Falksen */

3 2
3 3 scanner:
3 4

proc;

3 5 dcl
3 G dcl
3 7 I nit

3 8 dcl
3 9 lnlt
3 10 dcl

3 11 de 1
3 12 dcl
3 13 dcl

3 14 dcl
3 15 dcl
3 16 dcl

3 17 dcl
3 18 dcl
3 19 dcl

3 20 dcl
3 21 dcl
3 22 dcl

3 23 ") ;
3 24 dcl
3 25 in it

3 26 dcl
3 27 dcl
3 28 dcl

3 29 dcl
3 30 dcl
3 31

3 32

addr builtin;
alpha char (53) Internal static options (constant)

("abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ");

alphanumeric char (63) internal static options (constant)
("abcdefghijklmnopqrstuvwxyz 012345G789ABCDEFGHIJKLMNOPQRSTUVWXYZ");
char8 char (8); -

conversion condition;
convert builtln;
cu $cp entry (ptr, fixed bin (21), fixed bin (35));

divide builtin;
exp op code fixed bin internal static options (constant) init (9);
flb-float bin (27);

hbound builtin;
index builtin;
lbound builtin;

mult op code fixed bin internal static options (constant) lnit (4);
next=char char (1) defined (Input) position (next_char_pos);
one_char_ops char (8) internal static options (constant) init ("=+-*/()

RW (12:21) char (8) Internal static options (constant)
("abs", 11 atan", "cos 11 , ne .. , "list". n1n11, II l Og", llpi 11 t "s 1n 11 , 11 tan 11);

real code fixed bin Internal static options (constant) I nit (10);
symbol code fixed bin internal static options (constant) in it (11) ;
substr builtin;

third_next_char char (1) defined (Input) position (next_char_pos+2);
verify builtin;

3 33 MORE:
3 34 do while (next_char_pos > input_length);

3 35 call get_line;
3 36 if input - " "
3 37 then do;

3 38 call ioa ("fta", my name);
3 39 input length = O; -

)))

'
3 40 end;

3 41 if 1nput_length > 2 then
3 42 if subs tr (input, 1 • 2) = "
3 43 then do;

3 44 ca 11 cu_$cp (addr (third_next_char), lnput_length-2,
3 45 input_ length = O;
3 46 end;

3 47 if input = quit_arg
3 48 then do;
3 49 lstk.symptr

3 50 lstk.symlen
3 51 lstk.flle
3 52 l stk. 1 i ne

3 53 lstk.symbol
3 54 return;
3 55 end;

3 56 end;
3 57 lstk.symptr
3 58 lstk.symlen

(1 ookahead_put) = lnput_ptr;

(lookahead_put) = O;
(1 ookahead _put) = O;
(lookahead_put) = 11 ne_number;

(lookahead_put) = O;

(lookahead put)
(lookahead=put)

addr (next_char);
0;

3 59 lstk.file (lookahead put) = 0;
3 60 lstk. line (lookahead-put) = line number;
3 61 if index (alpha, next_char) A= O

'
code);

3 62 then do;
3 63 i =verify (substr (input, next_char_pos, lnput_length-next_char_pos+1),
3 64 alphanumeric)-1;

3 65 if j < 0 then
3 66 i = input_length-next_char_pos+1;
3 67 char8 = subs tr (input, next_char_pos, i) ;

3 68 next_char_pos = next_char_pos+i;
3 69 lb = lbound (RW, 1) ;
3 70 ub = hbound (RW, 1);

3 71 do wh1 le (lb <= ub);
3 72 1 = divide (ub+lb, 2. 17, O);
3 73 if RW (i) = char8

3 74 then do;
3 75 lstk.symbol (lookahead_put) = 1 ;

3 76 return;

3 77 end;
3 78 1 f RW (i) < char8 then

1)

3 79 lb = t+ t;

3 80 else ub = i-1;
3 81 end;
3 82 do i = 1 to sym_num;

3 83 if sym_.name (i) = chars
3 84 then goto found_sym;
3 85 end;

3 86 i, sym num = sym num+1;
3 87 sym .name (sym num) = char8;
3 aa sym=.val (sym_num) = O.O;

3 89 found sym:
3 90 lstk.def (lookahead put) = addr (sym (t));
3 91 lstk.symbol (lookahead_put) = symbol_code;

3 92 return;
3 93 end;
3 94 else do;

3 95 i = verify (substr (Input, next_char_pos, input_length-next_char_pos+1),
3 96 "0123456789.")-1;
3 97 if i < 0 then

3 98 i = input length-next char pos+1;
3 99 if i > 0 - - -
3 100 then do;

3 101 if substr (input, next_ char _pos+ t, 1) = "e"
3 102 then do;
3 103 i = 1+1;

3 104 if substr (input, next_char_pos+i, 1) = "+"
3 105 I substr (input, next_char_pos+i, 1) = 11_ 11

3 106 then i = j + 1:

3 107 i = i + verify (substr (Input, next_char_pos+t, next_char_pos+t+1),
3 108 "0123456789")-1;
3 109 end;

3 110 on conversion begin;
3 111 msg = "missing operator";
3 112goto error;

3 113 end;
3 114 flb =convert (flb, substr (input, next char pos, i));
3 115 lstk.value (lookahead_put) = flb; - -

3 116 lstk.symbol
3 117 lstk.symlen

'

(lookahead put)
(lookahead=put)

real_code;
i. ,

))

l

3 118 next_char_pos = next_char_pos+i;

3 119 return;
3 120 end;
3 12 1 else do;

3 122 i = index (one_char_ops, next_char);
3 123 if i A: 0
3 124 then do;

3 125 lstk.syrnbol (lookahead_put) = i ;
3 126 next_char_pos = next_char_pos+1;
3 127 if i = rnult_op_code

3 128 if next char = "*"
3 129 then do;

then

3 130 lstk.symbol (lookahead_put) exp_op_code;

3 131 next_char_pos = next_ char _pos+ 1;
3 132 end;
3 133 return;

3 134 end;
3 135 end;
3 136 end;

3 137 if substr (input, next_char_pos, 1)
3 138 then do;
3 139 next_char_pos = next_char_pos+1;

3 140 goto MORE;
3 141 end;
3 142 msg = "illegal char " . .
3 143 msg = msg 11 subs tr (input, next_char_pos,
3 144 goto error;
3 145

3 146 get line: proc;

l

1);

3 147 dcl- code fixed bin (35);
3 148 dcl cu_$arg_ptr_rel entry (fixed bin, ptr, fixed bin (21), fixed bin (35), ptr);

3 149 dcl
3 150 dcl
3 151 de l

3 152 dcl
3 153 dcl

(error table $end of info, error table $long record) fixed
iox_$get_line entry (ptr, ptr, fixed bin (21), fixed bin
iox_$user_input ptr ext static;

k fixed bin (21);
length builtin;

3 154 line number = l 1ne_number+1;

3 155 next_char_pos = 1 .
3 156 if nurnber_of_args A= O then

bin (35) external static;
(21), f 1 xed bin (35));

'

3 157 if current_arg < number_of_args

3 158 then do;
3 159 current arg = current arg+1;
3 160 call cu_$arg_ptr_rel (current_arg, input_ptr, input_length,

3 161 code, arg_list_ptr);
3 162 if code A= O then
3 163 go to bail_out;

3 164 end;
3 165 else
3 166 then

if current_arg
do;

number_of_args

3 167 current_arg = current_arg+1;
3 168 input_ptr = addr (newl i ne);
3 169 input_ length = length (newline);

3 170 end;
3 17 1 else do;
3 172 input_ptr = addr (quit_arg);

3 173 input_ length = length (quit_arg);
3 174 end;
3 175 else do;

3 176 input_ length = 0;
3 177 read line: -
3 178 call i ox_$get_ 1 i ne (1ox_$user_input,

3 179 addr (next_char), buffer _length-input_length,
3 180 input_ length = input_length+k;
3 181 If code= error_table_$1ong_record

3 182 then do;
3 183 buffer_length = buffer _len_gth+200;
3 184 allocate buffer set (buffer_ptr);

3 185 substr (buffer, 1 . input_length) = input;
3 186 free input;
3 187 input_ptr = buffer_ptr;

3 188 next_char_pos = input_length+1;
3 189 goto read_l ine;
3 190 end;

3 191 if code = error - table_$end_of info
3 192 then do;
3 193 input_ptr = addr (qui t_arg);

3 194 input_ length = length (quit_arg);
3 195 end;

)

k, code);

))

)) ,)

•
3 196 end;

3 197 next_char_pos = 1 ;
3 198 return;
3 199 end get_ line;

3 200 end scanner;
3 201
3 202 /* END INCLUDE FILE calc_s.1ncl.pl1 */

315

316

4 1 calc2_: proc (prod_no);
4 2
4 3 /* SEMANTICS SEGMENT calc2_.incl.p11

4 4* Generated by:
4 5* Generated at:

Prange.SLANG.a using LALR 7.0 of Friday, September 17, 1982
TCO 68/80 Multics Billerica, Ma.

4 6* Generated on: 09/18/82 1408.0 edt Sat

4 7* Generated from: >user_d1r_d1r>SLANG>Prange>stb>calc.s: :calc2_.lalr
4 8**/
4 9

4 10 dcl prod_no fixed bin parameter;
4 11
4 12 go to prod (prod_no);

4 13
4 14 /* -order
4 15* +

4 16* -
4 17* *
4 18* I

4 19*
4 20*
4 21* <nl>

4 22* **
4 23* <real>
4 24* <symbol>

4 25* abs
4 26* atan
4 27* cos

4 28* e
4 29* l lst
4 30* ln

4 31* log
4 32* pi
4 33* sin

4 34* tan
4 35*-tl
4 36*-table calc2_t_.lncl .pl1

4 37*-sem calc2_.incl .pl1
4 38*-production

)))

l

4 39*-parse */

4 40 dcl
4 41 /*
4 42 /*

(abs, atan, cos, log,
<calc> : :=.~~ine ... > I
< l i ne ... > .. - < l i ne>

4 43* <line ... > <1 ine>! */
444/* <line>::=list <nl>

log10,
I */

4 45* <symbol> = <expression> <nl>

4 46* <expression> <nl> I
4 47* <nl>! */
4 48 prod (5):

4 49 do - 1 ;

sin, tan) builtin;

4 50 ca 11
4 51 end;

= sym num to 1 by
ioa T•ft8a = ftf", sym_.name (i), sym_.val (i));

4 52 return;
4 53 prod (6) :
4 54 lstk.def (ls_top-3) -> sym.val lstk.value (ls_top-1);

4 55 return;
4 56 prod (7) :
4 57 call ioa ("= ftf", lstk.value (ls_top-1));

4 58 return;
4 59 /* <expression> : := <term>
4 60* <expression> + <term> I

'

4 61* <expression> - <term> ! */
4 62 prod (10):
4 63 lstk.value (ls top-2) = lstk.value (ls_top-2) + lstk.value (ls_top);

4 64 return;
4 65 prod (11):
4 66 lstk.value (ls_top-2)

4 67 return;
4 68 /* <term> : := <factor>
4 69* <term> * <factor> I

lstk.value (ls_top-2) - lstk.value (ls_top);

4 70* <term> I <factor> ! */
4 71 prod (13) :
4 72 lstk.value (ls_top-2) = lstk.value (ls top-2) * lstk.value (ls_top);

4 73 return;
4 74 prod (14):
4 75 lstk.value (ls_top-2) lstk.value (ls_top-2) I lstk.value (ls_top);

4 76 return;
4 77 /* <factor> <primary>

l

4 78* <factor> ** <primary>! */

4 79 prod (16):
4 80 lstk.value (ls_top-2) = lstk.value (ls_top-2) ** lstk.value (ls_top);
4 81 return;

4 82 /* <primary>
4 83* + <primary>
4 84* - <primary>

<reference>

4 85* (<expression>) I */
4 86 prod (18) :
4 87 lstk.value (ls_top-1) lstk.value (ls top);

4 88 return;
4 89 prod (19) :
4 90 lstk.value (ls_top-1) = -lstk.value (ls_top);

4 91 return;
4 92 prod (20):
4 93 lstk.value (ls_top-2) = lstk.value (ls_top-1);

4 94 return;
4 95 /* <reference> : := <real>
4 96* <symbol>

4 97* e
'1 4 98* pl

4 99* sin (<expression>)

4 100* cos (<expression>) I
4 101* tan (<expression>)
4 102* atan (<expression>) I

4 103* abs (<expression>) I
4 104* ln (<expression>) I
4 105* log (<expression>) I */

4 106 prod (22):
4 107 lstk.value (ls_top) = lstk.def (ls_top) -> sym.val;
4 108 return;

4 109 prod (23):
4 110 lstk.value (ls_top) = 2.71828182845904523536;
4 1 1 1 return;

4 112 prod (24):
4 113 lstk.value (ls_top) = 3.14159265358979323846;
4 114 return;

4 115 prod (25):
4 116 lstk.value (l s _top- 3) = s in (lstk.value (ls_top-1));

)))

l l l)

4 117 return;

4 118 prod (26):
4 119 lstk.value (ls_top-3) = cos (lstk.value (ls top-1));
4 120 return;

4 121 prod (27):
4 122 lstk.value (ls_top-3) =tan (lstk.value (ls_top-1));
4 123 return;

4 124 prod (28):
4 125 lstk.value (ls_top-3) = atan (lstk.value (ls_top-1));
4 126 return;

4 127 prod (29):
4 128 lstk.value (ls_top-3) = abs (lstk.value (ls_top-1));
4 129 return;

4 130 prod (30):
4 131 lstk.value (ls_top-3) = log (lstk.value (ls_top-1));
4 132 return;

4 133 prod (3 1) :
4 134 lstk.value (ls_top-3) = log10 (lstk.value (ls_top-1));
4 135 return;

4 136
4 137 end calc2 ; -
1 317

318

319 parse_stack_overf low: proc;
320 dcl !trim builtin;
321 dcl omega picture "zzzzz9";

322
323 omega
324 ca 11

= hbound (lstk, 1);
set_line_id (lookahead_get);

325 recov_msg
326 recov msg
327 recov_msg

= recov_msg II
= recov_msg
= recov_msg

"exceeded " ;
l tr i m (omega) ;

328 " entries of the parser's lexical/parse stack.
329 call print_recov_msg;
330 code = stack_overflow;

331 goto
332 end
333

334

parse_done;
parse stack overflow; - -

335 set_! ine id:
336

proc (lookahead_use);

337 dcl
338 dcl
339

lookahead_use fixed bin parameter;
omega picture "------";

340 dcl !trim builtin;
341
342 recov_msg = "ERROR on 11ne ";

343 if lstk.file (lookahead_get) A= 0
344 then do;
345 omega = lstk.file (lookahead_use);

346 recov_msg
347 recov_msg
348 end;

recov_msg 11
recov_msg

1 tr 1 m (omega) ;
II_ It. .

349 omega = lstk.line (lookahead use);
350 recov_msg = recov_msg I I ltrim (omega);
351 recov_msg = recov_msg ": ";

352 return;
353 end set line_id;

)

Parser cannot continue.";

>)

l
354

355 print_recov_msg: proc;
356 dcl addr builtin;
357 dcl code fixed bin (35);

'
358 dcl
359 dcl

iox_$put_chars entry (ptr, ptr, fixed b1n (21), fixed b1n (35));
1ox_$user_output external static ptr;

360 dcl length builtin;

361 dcl newline char (1) internal static options (constant) init ("
362 II) ;

363 dcl substr builtin;

364
365 recov_msg = recov_msg 1-1 newline;
366 call iox $put_chars (iox_$user_output, addr (substr (recov_msg, 1, 1)),

367 length (recov_msg), code);
368 return;
369 end print_recov_msg;

370 end calc2_p;
79
80 end calc2;

l

SOURCE FILES USED IN THIS COMPILATION.

LINE NUMBER DATE MODIFIED NAME PATHNAME
O 09/18/82 1456.4 calc2.p11 >udd>SLANG>Prange>stb>calc2.p11 79 1 09/18/82 1421.7 calc2_p.1ncl.p11 >udd>SLANG>Prange>s

>>calc2_p.incl.pl1
1-16

2
09/18/82

1410.7

>udd>SLANG>Prange>stb>calc2 t .lncl.p11
:.pl1 - -

calc2 t . incl .pl 1
1-315- - 3 09/18/82 1457.3 ca 1 c _ s . 1nc1 . p 1 1 >udd>SLANG>Prange>stb>calc_s.1n

1-317
4

09/18/82
1410.3

calc2_. incl .pl 1

>udd>SLANG>Prange>stb>calc2_.incl.p11

)))

* *
* *
* *
* *

* *

* *

* *
* * *
* * *
* * *
* *

*
*
*
*

*
*
*
*
*

*

*
*

**
* *
**

* *
* *
* *

** *

50192

*
*
*
*

50192

)

>no_backup_dlr_dlr>Mult;cs>Margultes>mcr-mtb>lalr>lalr.landscape.mtb.compout

* * **** * * * * **** **** **** * ****
* * * * * * * * ** * * * * * * * *

***** * **** * ***** * * * * * *** * ***** ****
• * • • • * * • * ** * • * * * * •
* * ***** * * * ***** * * * * **** **** **** * * *

$$
$ $
$ Requested 10/04/82 1405.1 edt Mon $
$ Output 10/04/82 1431.0 edt Mon $
$ $
$ Output mode ctl_char $
$ x9700 queue 3 vm370.x9700 $
$ Forms compose,Ah,1s $
$ 25 original pages at $0.065 per page 1.63 $
$ 3 duplicate copies at $0.03 per page 2.25 $
$ 895 lines $
$ $
$ Charge to Margulies.Multics.a 3.88 $
$ Rate structure default. $
$$

>no_backup_dtr_dlr>Multtcs>Margulles>mcr-mtb>lalr>lalr.landscape.mtb.compout

)

50192

* *

*
***** *

50192

)

•

•
•

•••
••

• •
••

•
•
•
•

•

• **
• *
• •
• •

•
•
*
•

•••
••

• •
••
•••

•
•
•
*

•••••

l

*
**

** **
** **

**
**

RSCS

MULTICS

MARGULIE

10/04/82

2311

10/04/82

NX

*
**

** **
** **

**
**

RSCS

IPC

14:33:07

A

14:57:33

003

'
******* ********* * ** ********

********* ********* ** ** *********
** ** ** *** ** ** **
** ** **** ** ** **
******** ******* ****** ** ** ** ** **
********* ******* ****** ** ** ** ** **
** ** ** ** **** ** **
** ** ** ** *** ** **
********* ********* ** ** *********
******* ********* ** * ********

USER ID ORIGIN

DISTCODE SYSTEM

FILENAME FILE TYPE

FILE CREATION DATE

SPOOL ID CLASS

FILE PRINT DATE

FORM DEVICE

PRINT RATE: FIRST COPY IS 6.5 CENTS/PAGE, SUBSEQUENT COPIES ARE 3.0 CENTS/PAGE

PRINT COST: $4.34 FOR 4 COPIES OF 28 PAGE REPORT

********* * ** ******** * * *******
********* ** ** ********* ** ** *********
** *** ** ** ** *** *** ** **
** **** ** ** ** **** **** **
****** ** ** ** ** ** ******* ** ** ** ** ********
****** ** ** ** ** ** ******* ** ** ** ** *********
** ** **** ** ** ********* ********* ** **
** ** *** ** ** ********* ********* ** **
********* ** ** ********* ** ** *********
********* ** * ******** ** ** *******

l

50192

** *
**
**
**
**
** *

10/04/82

**
**
**
**

5019:>)

Margulies.Multics.a for lalr. landscape.mtb CISL/Margul1es 50192

>no_backup_dir_dir>Multics>Margulies>mcr-mtb>lalr>lalr. landscape.mtb.compout

**** *l!c**** ** ** ** **
** ** * ** ** *** ***
** ** ** ** ** ** ** **** **
** ****** ** ** ** ** ** ****** * *** ****** ** ** ** ******
** ** ** ** ** ** ** *** ** ** ** ** ** *** ** **
** ** ** ** *"" ** ******* ** ** **** ** ** ** ** *******
** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

**** ****** ******** *"' ** ** ******* ** ****** ******* **** **** ******
* ..

1431.0 edt Mon x9700 vm370.x9700 MIT, Cambridge, Mass.

**

*""'*****
** **

**
**
**
**

* ***
*** **
**
**
**

**
**

** ****** *
** ** ** ******* **
** ** ** **
**** ******* **

**
**
**

***** ******* ****** ******* ******
** ** ** ** ** ** ** ****** ** *******
** ** ** ** ** ** **
** ******* ****** ******* *******

>no_backup_d1r_dir>Multics>Margulies>mcr-mtb>lalr>lalr.landscape.mtb.compout

Margu11es.Mult1cs.a for Jalr.landscape.mtb
)

CISL/Margu11es

**
**

**
**

**
**

)
50192

' ' COMPILATION LISTING OF SEGMENT calc2

Compiled by:
Comp i 1 ed at :

Multics PL/I Compiler, Release 27b, of September
TCO 68/80 Multics Billerica, Ma.

15' 1981

Compiled on: 09/18/82 1457.2 edt Sat

Options: optimize table map

1 ca 1 c2 : proc:
2

3 /* Version of calc using LALR. */
4
5 dcl arg_list_ptr ptr;

6 dcl buffer char (buffer length) based (buffer ptr);
7 dcl buffer_length fixed-bin (21); -
8 dcl buffer_ptr ptr;

9 dcl cleanup condition;
10 dcl code fixed bin (35);
11 dcl com err entry options (variable);

12 dcl cu $arg count entry (fixed bin, fixed bin (35));
13 dcl cu=$arg_list_ptr entry (ptr);
14 dcl current_arg fixed bin;

15 dcl input char (input length) based (input ptr);
16 dcl input_length fixed bin (21); -
17 dcl input_ptr ptr;

18 dcl ioa entry options (variable);
19 dcl line number fixed bin;
20 dcl msg -char (100) varying;

21 dcl my_name char (5) internal
22 dcl newline char (1) internal
23 ") ;

24 dcl next_char_pos fixed bin;
25 dcl null built in;
26 dcl number_of_args fixed bin;

27 dcl qui t_arg char (2) internal
28 II) ;

29 dcl 1 sym based like sym_;

30 dcl 1 sym (200),
31 2 name char (8)'
32 2 val float bin (27);

33 dcl sym_num fixed bin;

static options (constant)
static options (constant)

static options (constant)

init ("calc2");
init ("

init ("q

)

34

35 call cu_$arg_count (number_of_args, code);
36 if code A= O
37 then do;

38 bail out:
39 call-com err (code, my name);
40 return; - - -

41 end;
42 call cu_$arg_list_ptr (arg_list_ptr);
43 current_arg = O;

44 sym_num = O;
45 line number= O;
46 buffer_ptr = null ();

47 if number_of_args = 0
48 then do;
49 on cleanup go to exit;

50 buffer length = 200;
51 allocate buffer set (buffer_ptr);
52 input_ptr = buffer_ptr;

53 end;
54 retry:
55 next_char_pos = 1;

56 input_length = O;
57 call calc2_p;
58 if code A= 0 then

59 if number_of_args
60 go to retry;
61 exit:

= O then

62 if buffer_ptr A= null ()
63 free buffer;
64 return;

65 error:
66 call ioa_ ("Aa",
67 if number_of_args

68 go to retry;
69 else go to exit;
70

71 trn: entry;
72 db_sw = "1"b;

)

msg);
= O then

then

))

l '
73 return;

74
75 trf: entry;
76 db_sw = "0 11 b;

77 return;
78

dcl db_sw bit (1) internal static init ("O"b);

Recovery failed. */ 2 /*
3 dcl
4 /*

syntax_error fixed bin (35) internal static options (constant) init
Parse stack underflow or local recovery encountered

5* impossible conditions. Both caused by bad DPDA. */

(1) ;

6 dcl logic_error fixed bin (35) internal static options (constant) init (2);
7 /* Parse, lexical, or lookahead stack overflow. */

8 dcl stack overflow fixed bin (35) internal static options (constant) init (3);
9 /* Unrecognized table type in the DPDA. */
10 dcl unrecognlzed_state fixed bin (35) internal static options (constant) init (4);

11 calc2_p:
12

proc;

13 /* Parser for tables created by LALR. */

1 14
1 15
2 1 /* BEGIN INCLUDE FILE calc2_t_.incl.p11

2 2*
2 3*
2 4*SCANNER AND PARSER TABLES FROM SEGMENT

2 5* >user_dir_dir>SLANG>Prange>stb>calc2_.grammar
2 6*
2 7* Generated by: Prange.SLANG.a using LALR 7.0 of Friday, September 17, 1982

2 8* Generated
2 9* Generated
2 10* Generated

at: TCO 68/80 Multics Billerica, Ma.
on: 09/18/82 1408.0 edt Sat

from: >user_dir_dir>SLANG>Prange>stb>calc.s: :calc2_.lalr */

2 11
2 12 dcl
2 13 2

2 14 2
2 15 3
2 16 3

2 17
2 18 dcl

1 calc2 t $terminals list external
terminals=list size fixed bin,

terminals 1 ist (21),

static,

position fixed bin (18) unsigned unaligned,
length fixed bin (18) unsigned unaligned;

calc2_t_$terminal_characters external static,

l

2 19 2

2 20 2
2 21
2 22 dcl

2 23 2
2 24 2
2 25 3

2 26

terminal_characters_length fixed bin,

terminal_characters char (55);

1 calc2_t_$dpda external static,

dpda size fixed bin,
dpda - (2 14) ,
(v1, v2) fixed bin (17) unaligned;

2 27 dcl 1 calc2 t $sk1p external
2 28 2 skip_slze-flxed bin,

static,

2 29 2
2 30 3
2 31

sk 1 p (2),
(v1, v2) fixed bin (17) unaligned;

2 32 dcl 1 calc2_t_$standard_prelude external static,
2 33 2 standard_prelude_length f 1xed bin,
2 34 2 standard_prelude char (O);

2 35
2 36 dcl
2 37 2

1 calc2_t_$product1on_names external
product1on_names_s1ze fixed bin,

static,

2 38 2 productlon_names (31) fixed bin (17) unaligned;
2 39
2 40 dcl 1 calc2_t_$variables_l1st external static,

variables list size fixed bin,
variables-list-(8),

2 41 2
2 42 2
2 43 3 (position~ length) fixed bin (18) unsigned unaligned;

2 44
2 45 dcl
2 46 2

1 calc2_t_$variable_characters external static,
variable_characters_length fixed bin,

2 47 2 variable_characters char (67);
2 48
2 49 /* END INCLUDE FILE calc2_t_.incl.pl1

16
17 dcl
18 /*

1 l st k (- 1 : 50) '
-1:-1 is the lookahead stack (FIFO) */

1:50 ls the lexical stack (LIFO) */

*/

19 /*
20 2
21 2

symptr ptr, /* pointer to symbol (must be valid) */
symlen fixed bin, /* length of symbol (may be 0) */

22 2 line id aligned, /* identification of line where symbol begins */
23 3 file-fixed bin (17) unaligned, /* the 1nclude file number*/

) ,)

ll ' 24 3 line fixed bin (17) una11gned, /* the line number w1thin the 1nclude file*/

25 2
26 2
27 2

28 dcl
29 dcl
30 dcl

symbol fixed bin, /* encoding of
value float bin (27),
def ptr;

the symbol */

lookahead (-1:50) def1ned lstk like lstk;
abs builtin;
current state fixed b1n; /* number of current state */

31 dcl current_table fixed b1n; /* number of current table */
32 dcl 1 db_data unaligned,
33 2 flag char (1), /**means stacked*/

34 2
35 2
36 2

state picture •zzz9",
top picture •zzz9",
filler char (2),

37 2 type char (6),
38 2 data char (100);
39 dcl db item char (117) defined (db_data);

40 dcl
41 dcl
42 dcl

43 dcl
44 dcl
45 dcl

46 dcl
47 dcl
48 dcl

49 dcl
50 dcl
51 dcl

52 dcl
53 dcl
54 dcl

55 dcl
56 dcl
57 dcl

58 dcl
59 dcl

db_separator char (1);
divide builtin;
hbound builtin;

i fixed bin; /* temp */
ioa $nnl entry options (variable);
lb fixed bin;

ls top fixed bin defined parse stack top; /* location of the top of the lexical stack */
lookahead count fixed bin; /* number-of terminals in lookahead stack */
lookahead=get fixed bin internal static options (constant) init (-1);

lookahead put fixed bin internal static options (constant) init (-1);
next state fixed bin; /* number of next state */
parse_stack (50) fixed bin aligned; /* parse stack*/

parse stack top fixed bin; /* location of the top of the parse stack */
production number fixed bin; /* APPLY production number */
recov_msg char (250) varying;

t fixed bin;
test_state fixed bin;
test_symbol fixed bin

ub fixed bin;
unspec builtin;

/* top state from parse stack during look back lookups */
defined lstk.symbol (-1); /*encoding of current symbol */

'

60

61 current state = 1 ;
62 parse_stack_top = O;
63 lookahead count = O;

64 unspec (lstk) = II ''b;
65 code = O; /* Preset the status code.
66

67 /* The parsing loop. */
68 NEXT:
69 1f current state = O -
70 then do;
71 parse done:
72 return;

73 end;
74 current - table = current_state;
75 db item = 1111. . -
76 db_data.state = current_state;
77 db data.top = parse stack top;
78 goto CASE (dpda.v1 (current table)):

79

*/

80 CASE (10):
81* stacking)

/* Obsolete -- Lookahead 1 (sometimes called read
with shared transition table. */

82

without

83 CASE (2): /* Read and stack and/or lookahead 1 (sometimes called
84* read without stacking) w1th shared transition table.

85* (Read transitions to state Sare coded as +S while
86* lookahead transitions to state Sare coded -S.) */
87 current_table = dpda.v2 (current table);

88
89 CASE (O): /* Read and stack and/or lookahead 1 with
90* default transition nor a marked symbol transition.

neither a
*/

91 CASE
92* read
93 CASE

(9): /*Obsolete -- Lookahead 1
without stacking). */

(sometimes called

(15): /*Read and stack and/or lookahead 1 with

94* a default transition. */
95 CASE (17): /*Read and stack and/or lookahead 1 with the table
96* continued at another state. */

97
98 if lookahead_count <= O /*Make sure a symbol is available. */

)))

l
99 then do;

100 call scanner;
101 lookahead_count
102 end;

lookahead_count+1;

103 search table:
104 /* Look current symbol up 1n the read list. */
105 lb =current table+1;

106 ub
107 do
108

current table+dpda.v2 (current table);
while (lb-<= ub);

=divide (ub+lb, 2, 17, O);

109 if dpda.v1 (i) = test_ symbol
110 then do;
1 1 1 next_state = dpda.v2 (1) ;

112 goto got_symbol;
113 end;
114 else if dpda.v1 (i) < test_symbol then

115 lb = i + 1;
116 else ub = i - 1;
117 end;

118 if dpda.v1 (current table+1) <
119 if dpda.v1 (current-table+1)
120 then do;

0 then
-1

121 current state
122 if db SW

-dpda.v2 (current table+1);

123 then do;

124 db data.type = "LK01D";
125 db-data.data = get terminal (lookahead get);
126 cail ioa_Snnl (•na~/", db_item); -

127 end;
128 goto NEXT;
129 end;

130 else do;
131 current table = dpda.v2 (current table+1);
132 goto search table;

133 end;
134
135 1f db sw then

136 cal 1 ioa_Snnl (" n4 i . current_state); .
137 call set 1 ine id (lookahead_get);

' l

138 recov_msg recov_msg 11 "at ";

139 recov_msg = recov_msg II
140 recov_msg = recov_msg
141 call print_recov_msg;

142 code = syntax_error;
143 go to parse_done;
144

145 got_symbol:
146 if db sw then

get_terminal (lookahead_get);
". ";

147 db_data.data = get_terminal (lookahead_get);

148 if next state < O
149 then do;/* This is a lookahead transition. */
150 db_data.type = "LK01";

151 current_state = -next_state;
152 end;
153 else do; /* This is a read transition. */

154 db_data. type = "READ";
155 db data.flag = "*";
156 if- parse_stack_top >= hbound (parse_stack, 1) then

157 call parse_stack_overflow;
158 parse stack top =parse stack top+1;
159 parse=stack- (parse_stack_top)-= current_state; /* Stack the current state. */

160 unspec (lstk (parse_stack_top))
161 lookahead_count = O;

unspec (lookahead (lookahead_get));

162 current_state = next state;

163 end;
164 1f db_sw then
165ca11 loa_$nnl (""a"/", db_ltem);

166 goto NEXT;
167
168 CASE (3): /* Multiple lookahead (k > 1) with shared look table. */

169 CASE (1) : /* Multiple lookahead (k > 1) without default transition.
170 CASE (14) : /* Multiple lookahead (k > 1) with default transition.
171 CASE (16): /* Multiple lookahead (k > 1) with the table

172* continued at another state. */
173
174 CASE (7): /* Obsolete state type -- Skip table. *I

175 CASE (8): /* Obsolete state type -- Skip recovery adjust table. */
176

))

*/
*/

J

' ' 177 CASE (4): /*Apply by rule and alternative with lookback table. */

178 CASE
179 CASE
i80 call

(5): /* Apply by rule and
(6): /*Apply by rule and
set_line_id (lookahead_get);

alternative without lookback. */
alternative with shared lookback table. */

181 recov_msg = recov_msg 11 "Unrecognized DPDA state encountered -- Parse fails.";
182 call print recov msg;
183 code = unrecognized_state;

184 go to parse_done;
185
186 CASE (13): /*Apply by production with shared lookback table. */

187 current table = dpda.v2 (current state+2);
188 CASE (11): /*Apply by production with lookback table. */
189 CASE (12): /*Apply by production without lookback. */

190 production_number = dpda.v1 (current_state+2);
191 if production_number > O then
192 call calc2_ (production_number);

193 if
194 then
195 dcl

db SW
begin;

production_name char (variables_list. length

196 defined (variable characters)

(-production_names (abs (production_number))))

197 position (variables_list.position (-production_names (abs (production_number))));
198 db_data.type = "APLY";

199 db data.data = "(";
200 if- dpda.v1 (current state+1) < O then
201 db_data.flag = "*";-

202 call ioa $nnl ("ftafti", db item, production number);
203 if production names size > O then -
204 call ioa_$nnl-(" fta11 , production_name);

205 call ioa $nnl (")ft-sd = Ai •, dpda.v1 (current state+1));
206 if dpda.v1 (current state+1) > O -
207 then do; -

208 db_separator = "(";
209 do t =parse stack top to parse stack top-dpda.v1 (current state+1)+1 by -1;
210 call ioa_$nnT ("ft1aftd", db_separator, -parse_stack (t)); -

211 db separator = "";
212 end;
213 call ioa_$nnl (")");

214 end;
215 call ioa_$nnl ("ft/");

' ..

216 end;

217 /* Check for an apply of an empty production.
218* In this case the apply state number must be
219* pushed onto the parse stack. (Reference

220* Lalonde, W. R.: An efficient LALR Parser Generator.
221* Tech. Report CSRG-2, 1971, pp. 34-35.) */
222 if dpda.v1 (current_state+1) < 0

223 then do;
224 if parse_stack_top >= hbound (parse_stack, 1) then
225 call parse_stack_overflow;

226 parse_stack (parse_stack_top+1) = current_state;
227 end;
228 /* Delete lexical & parse stack entries. */

229 parse_stack_top = parse_stack_top-dpda.v1 (current_state+1);
230 if parse_stack_top <= 0
231 then do;

232 call set line id (lookahead get);
233 recov_msg- = recov_msg I I "lexical/parse stack empty -- Parse fails.";
234 call print_recov_msg;

235 code = logic error;
236 go to parse_done;
237 end;

238 lb = current table+3;
239 ub = current-table+dpda.v2 (current table);
240 test state =-parse_stack (parse_stack_top);

241 do
242 f
243 if

wh f le (1 b < = ub) ;
= d i v f de (ub+ 1 b , 2 , 17 , 0) ;
dpda.v1 (f) = test state

244 then do;
245 current state
246 goto NEXT;

dpda.v2 (1);

247 end;
248 else
249 lb

ff dpda.v1 (i) <test state then
j + 1;

250 else ub = i-1;
251 end;
252 current state = dpda.v2 (current_table+2);

253 goto NEXT;

)))

' '
254 get terminal: proc (lstk_index) returns (char (100) varying);

255
lstk index fixed bin parameter; 256 dcl

257 dcl alph;numeric (0:511) bit (1) unaligned internal

258 (32) (1) "O"b, /*
259 (4) (1) "O"b, /*

1 260 "1"b, /* $ */

261 (11) (1) uoub, /*
262 (10) (1) II 1 llb' /*
263 (7) (1) "O"b, /*

264 (26) (1) "1"b, /*
265 (4) (1) uoub. /*

control characters */
SP ! " # */

% & , () * + • -
digits */ .. < = > ? @> */

upper case letters */
[\] A */

266 "1"b, /* underscore */

267 "O"b,
268 (26)
269 (5)

/* */
(1) "1"b, /*

(1) "O"b, /*
lower case letters

{ I } -.. DEL *I
*/

I */

270 (384) (1) "O"b); /* rest of 9-bit ASCII code set */
271
272 if lstk.symbol (lstk index)= 0 then

273 return ("end-of-information");
274 else begin;
275 dcl temp char (100) varying;

static options (constant) in it (

276 dcl (length, min, rank, substr) builtin;
277 dcl symbol char (min (50, lstk.symlen (lstk index))) based (lstk.symptr (lstk index));
278 dcl terminal char (terminals_list.length (lstk.symbol (lstk_1ndex))) -

279 defined (terminal characters)
280 position (terminaTs_list.position (lstk.symbol (lstk index)));
281 if length (terminal)> 2

282 & substr (terminal, 1, 1) = "<"
283 & substr (terminal, length (terminal), 1) = ">"
284 then do;

285 temp = substr (terminal, 2, length (terminal)-2);
286 if length (symbol) > 0
287 then do;

288 temp = temp 11 " ";
1) = 11 II If 11 289 if substr (symbol, 1,

2901substr(symbol,1, 1) = " ' " then

291 temp =temp I I symbol;
292 else do;

'

293 temp

294 temp
295 temp
296 end;

297 end;
298 end;
299 else

300 then
301 temp
302 if

303 temp
304 else
305 temp

306 end;
307 else
308 temp

309 temp
310 temp
311 end;

temp 11

temp 11
temp

flllflll. .
symbol;
It II II If • .

if alphanumeric (rank (substr (terminal, I, 1)))

do;
= "reserved word II II II;

length (symbol) > O then

=temp I I symbol;
temp= temp I I terminal;
= temp 11 11111111. .
do;
= "operator symbol II II II;

= temp II terminal;
= temp II II II II ,. .

312 return (temp);
313 end;
314 end get_ terminal ;

,)) J

(' " 3 /* BEGIN INCLUDE FILE ca 1 c_s. incl.pl 1 06/24/76 J Falksen */

3 2
3 3 scanner:
3 4

proc;

3 5 dcl
3 6 dcl
3 7 init

3 8 dcl
3 9 init
3 10 dcl

3 11 dcl
3 12 dcl
3 13 dcl

3 14 dcl
3 15 dcl
3 16 dcl

3 17 dcl
3 18 dcl
3 19 dcl

3 20 dcl
3 21 dcl
3 22 dcl

3 23 ");

addr builtin;
alpha char (53) internal static options (constant)

("abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ");

alphanumeric char (63) internal static options (constant)
("abcdefghijklmnopqrstuvwxyz 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ");
char8 char (8); -

conversion condition;
convert builtin;
cu_$cp entry (ptr, fixed bin (21), fixed bin (35));

divide builtin;
exp op code fixed bin internal static options (constant) init (9);
flb-float bin (27);

hbound builtin;
index builtin;
lbound builtin;

mult_op_code fixed bin internal static options (constant) init (4);
next_char char (1) defined (input) position (next_char_pos);
one_char_ops char (8) internal static options (constant) init ("=+-*/()

3 24 dcl RW (12:21) char (8) internal static options (constant)
3 25 1n1t ('1abs", "atan", "cos". "e'', "list", "ln 11 , ''log", "pi", "sin 11 , "tan"):

3 26 dcl
3 27 dcl
3 28 dcl

3 29 dcl
3 30 dcl
3 31

3 32
3 33 MORE:

real code fixed bin internal static options (constant) lnit (10);
symbol_code fixed bin internal static options (constant) init (11);
substr builtin;

third_next_char char (1) defined (input) position (next_char_pos+2);
verify bu i 1 tin;

3 34 do while (next_char_pos > input_length);

3 35 call get line;
3 36 if input-- " "
3 37 then do;

3 38 call ioa_ (•Aa•, my_name);
3 39 input_length = O;

' "

3 40 end;

3 41 if input_length > 2 then
3 42 if subs tr (input, 1 • 2) = "
3 43 then do;

3 44 ca 11 cu_$cp (addr (third_next_char), input_length-2,
3 45 input_ length = O;
3 46 end;

3 47 if input = quit_arg
3 4S then do;
3 49 lstk.symptr

3 50 lstk.symlen
3 51 lstk.file
3 52 1 s tk. 1 i ne

3 53 lstk.symbol
3 54 return;
3 55 end;

3 56 end;
3 57 lstk.symptr
3 5S lstk.symlen

(lookahead_put) = input_ptr;

(1 ookal1ead_put) = 0;
(lookahead_put) = O;
(1 ookahead_put) = 1 ine_number;

(lookahead_put) = 0;

(lookahead put)
(lookahead::::put)

addr (next_char);
0;

3 59 lstk.file (lookahead put) = O;
3 60 lstk.line (lookahead-put)= line number;
3 61 if index (alpha, next_char) A= O

3 62 then do;

code);

3 63 i =verify (substr (input, next_char_pos, input_length-next_char_pos+1),
3 64 alphanumeric)-1;

3 65 if i < 0 then
3 66 i = input_length-next_char_pos+1;
3 67 chars = subs tr (input, next_char_pos, i) ;

3 6S next_char_pos = next_char_pos+i;
3 69 lb = lbound (RW, 1);
3 70 ub = hbound (RW, 1) ;

3 71 do wh i 1 e (1 b <= ub);
3 72 i = divide (ub+lb, 2, 17. 0);
3 73 if RW (i) = chars

3 74 then do;
3 75 lstk.symbol (lookahead_put) = i ;
3 76 return;

3 77 end;
3 78 if RW (i) < chars then

) >) ,,

l
3 79 lb i + 1;

3 80 else ub = i-1;
3 81 end;
3 82 do 1 = 1 to sym_num;

3 83 if sym_.name (i) = chars
3 84 then goto found_sym;
3 85 end;

3 86 i, sym num = sym num+1;
3 87 sym_.na~e (sym_num) = chars;
3 88 sym_.val (sym num) = 0.0;

3 89 found sym:
3 90 lstk.def (lookahead put) = addr (sym (1));
3 91 lstk.symbol (lookahead_put) = symbol_code;

3 92 return;
3 93 end;
3 94 else do;

'

3 95 i =verify (substr (input, next_char_pos, 1nput_length-next_char_pos+1).
3 96 "0123456789.")-1;
3 97 if i < O then

3 98 i = input_length-next_char_pos+1;
3 99 if i > 0
3 100 then do;

3 101 if subs tr (input, next_char_pos+i,
3 102 then do;
3 103 i = i + 1;

3 104 if subs tr (input, next_char _pos+l,
3 105 I subs tr (input. next_char_pos+l,
3 106 then i = j + 1 ;

1) = .. e ..

1) = 11+11

1) = II_ II

3 107 i = j + verify (substr (input, next_char_pos+i, next_char_pos+i+1),
3 108 "0123456789")-1;
3 109 end;

3 110 on conversion begin;
3 1 1 1 msg = "missing operator";
3 112 goto error;

3 113 end;
3 114 flb =convert (flb, substr (input, next char pas, i));
3 115 lstk.value (lookahead_put) = flb; - -

3 116 lstk.symbol
3 117 lstk.symlen

(lookahead put)
(l ookar.ead=put)

real_code;
i;

' •

3 118 next_char_pos = next_char_pos+i;

3 119 return;
3 120 end;
3 121 else do;

3 122 j = index (one_char_ops, next_char);
3 123 if i A= 0
3 124 then do;

3 125 lstk.symbol (lookahead_put) = i .

3 126 next_char_pos = next_char_pos+1;
3 127 if i = mult_op_code then

3 128 if next_char = U *II

3 129 then do;
3 130 lstk.symbol (lookahead_put) = exp_op_code;

3 131 next_char_pos = next_char_pos+1;
3 132 end;
3 133 return;

3 134 end;
3 135 end;
3 136 end;

3 137 if subs tr (input, next_char_pos, 1)
3 138 then do;
3 139 next_char_pos = next_char_pos+1;

3 140 goto MORE;
3 141 end;
3 142 msg = "i 11 ega l char ". .
3 143 msg = msg 11 subs tr (input, next_char_pos, 1);
3 144 goto error;
3 145

3 146 get_line: proc;
3 147 dcl code fixed bin (35);
3 148 dcl cu_$arg_ptr_rel entry (fixed bin, ptr, fixed bin (21), fixed bin (35), ptr);

3 149 dcl
3 150 dcl
3 151 dcl

3 152 dcl
3 153 dcl

(error_table_$end_of_info, error_table_$long_record) fixed
iox_$get_line entry (ptr, ptr, fixed bin (21), fixed bin
iox_$user_input ptr ext static;

k fixed bin (21);
length builtin;

3 154 line_number = l ine_number+1;

3 155 next_char_pos = 1 ·
3 156 if number_of args A= O then

)

bin (35) external static;
(21), fixed bin (35));

)) ••

(l
3 157 if current_arg < number_of_args

3 158 then do;
3 159 current arg = current arg+1;
3 160 call cu_$arg_ptr_rel (current_arg, input_ptr, input_length,

3 161 code, arg_list_ptr);
3 162 if code A= 0 then
3 163 go to bail out;

3 164 end;
3 165 else
3 166 then

if current_arg
do;

number_of_args

3 167 current arg = current_arg+1;
3 168 input_ptr = addr (newl i ne);
3 169 input_length = length (newline);

3 170 end;
3 171 else do;
3 172 input_ptr = addr (quit_arg);

3 173 input_ length = length (quit_arg);
3 174 end;
3 175 else do;

3 176 input_ length = 0;
3 177 read 1 ine: -
3 178 call iox_$get_line (iox_$user_input,

3 179 addr (next_char), buffer_length-input_length,
3 180 input_ length = input_length+k;
3 181 if code= error_table_$long_record

3 182 then do;
3 183 buffer_length = buffer_length+200;
3 184 al locate buffer set (buffer_ptr);

3 185 substr (buffer, 1 • input_length) = input;
3 186 free input;
3 187 input_ptr = buffer_ptr;

3 188 next_char_pos = input_length+1;
3 189 goto read line; -
3 190 end;

3 191 if code = error table_$end_of info
3 192 then do;
3 193 input_ptr = addr (quit_arg);

3 194 input_ length = length (quit_arg);
3 195 end;

k, code);

l I .,

3 196 end;

3 197 next_char_pos = 1 . .
3 198 return;
3 199 end get_l ine;

3 200 end scanner;
3 201
3 202 /* END INCLUDE FILE calc_s. tncl .pl 1 */

315

..

J ')) If

316

4 1 calc2_
4 2

l

proc (prod_no);

4 3 /* SEMANTICS SEGMENT calc2_.incl .pl1

l

4 4* Generated
4 5* Generated

by:
at:

Prange.SLANG.a using LALR 7.0 of Friday, September 17, 1982
TCO 68/80 Multics Billerica, Ma.

4 6* Generated on: 09/18/82 1408.0 edt Sat

4 7* Generated from: >user_dir_dir>SLANG>Prange>stb>calc.s::calc2_. lalr
4 8**/
4 9

4 10 dcl prod_no fixed bin parameter;
4 11
4 12 go to prod (prod_no);

4 13
4 14 /* -order
4 15* +

4 16* -
4 17* *
4 18* I

4 19*
4 20*
4 21* <nl>

4 22* **
4 23* <real>
4 24* <symbol>

4 25* abs
4 26* atan
4 27* cos

4 28* e
4 29* l tst
4 30* ln

4 31* log
4 32* pi
4 33* sin

4 34* tan
4 35*-tl
4 36*-table calc2 t . incl .pl 1

4 37*-sem calc2 _.incl .pl 1
4 38*-production

l
"

4 39*-parse */

4 40 dcl (abs, a tan, cos, Jog, log10,
4 41 /* <calc> .. :::: <1 i ne ... > I I 4 42 /* <1 i ne ... > .. :::::; < l i ne>

4 43* <line ... > <line>! */
4 44 /* < 1 i ne> : : = l 1st <nl>
4 45* <symbol> = <expression> <nl>

4 46* <expression> <nl> I
4 41* <nl>! */
4 48 prod (5) :

4 49 do j = sym_num to 1 by -1 ;

*/
sin,

4 50 ca 11 ioa - ("A8a = "'f 11. sym_. name (i),
4 51 end;

4 52 return;
4 53 prod (6):

tan) builtin;

sym_.val (j)) ;

4 54 lstk.def (ls top-3) -> sym.val = lstk.value (ls_top-1);

4 55 return;
4 56 prod (7):
4 57 ca 11 ioa (II::;: -"f II 1 lstk.value (ls_top-1));

4 58 return;
4 59 /* <expression> : := <term>
4 60* <expression> + <term> I

4 61* <expression> - <term> I */
4 62 prod (10):
4 63 lstk.value (ls_top-2) = lstk.value (ls_top-2) + lstk.value (ls_top);

4 64 return;
4 65 prod (11):
4 66 lstk.value (ls_top-2)

4 67 return;
4 68 /* <term> : := <factor>
4 69* <term> * <factor> I

4 70* <term> I <factor> I
4 71 prod (13) :
4 72 lstk.value (ls_top-2)

4 73 return;
4 74 prod (14) :
4 75 lstk.value (ls _top-2)

4 76 return;

lstk.value (ls_top-2) - lstk.value (ls_top);

*/

= lstk.value (ls _top-2) * lstk.value (ls_top);

= lstk.value (ls_top-2) I lstk.value (ls_top);

4 77 /* <factor> : := <primary>

))) II

t) ' 4 78* <factor> ** <primary>! */

4 79 prod (16) :
4 80 lstk.value (ls_top-2)
4 81 return;

lstk.value (ls top-2) ** lstk.value (ls_top);

4 82 /*
4 83* +
4 84* -

<primary>
<primary>
<primary>

<reference>

4 85* (<expression>) ! */
4 86 prod (18) :
4 87 lstk.value (ls_top-1) lstk.value (ls top);

4 88 return;
4 89 prod (19) :
4 90 lstk.value (ls top-1) = -lstk.value (1 s_ top);

4 91 return;
4 92 prod (20):
4 93 lstk.value (ls_top-2) = lstk.value (ls_top-1);

4 94 return;
4 95 /* <reference> : := <real>
4 96* <symbol> I
4 97* e I
4 98* pi I
4 99* sin (<expression>)

4 100* cos (<expression>) I
4 101* tan (<expression>)
4 102* atan (<expression>) I

4 103* abs (<expression>) I
4 104* ln (<expression>) I
4 105* log (<expression>) I */

4 106 prod (22):
4 107 lstk.value (1 s_top) = lstk.def (ls_top) -> sym.val;
4 108 return;

4 109 prod (23):
4 110 lstk.value (ls_top) = 2.71828182845904523536;
4 11 1 return;

4 112prod (24):
4 113 lstk.value (ls_ top) = 3. 14159265358979323846;
4 114 return;

4 115 prod (25):
4 116 lstk.value (ls top-3) = s1n (lstk.value (ls_top-1));

l
•

4 117 return;

4 118 prod (26):
4 119 lstk.value (ls_top-3) = cos (lstk.value (ls_top-1));
4 120 return;

4 121 prod (27):
4 122 lstk.value (ls_top-3) = tan (lstk.value (ls_top-1));
4 123 return;

4 124 prod (28):
4 125 lstk.value (ls_top-3) = atan (lstk.value (ls_top-1));
4 126 return;

4 127 prod (29):
4 128 lstk.value (ls_top-3) =abs (lstk.value (ls_top-1));
4 129 return;

4 130 prod (30):
4 131 lstk.value (1 s_top-3) = log (lstk.value (ls_top-1));
4 132 return;

4 133 prod (31):
4 134 lstk.value (ls_top-3) = 1og10 (lstk.value (ls_top-1));
4 135 return;

4 136
4 137 end calc2 -
1 317

J)) tf

.,
318

319 parse_stack_overflow: proc;
320 dcl ltrim builtin;
321 dcl omega picture "zzzzz9";

322
= hbound (lstk, 1); 323 omega

324 ca 11 set_l ine_id (lookahead_get);

325 recov_msg
326 recov_msg
327 recov_msg

= recov _msg 11
= recov msg
= recov_msg

"exceeded 11 ;

1 tr i m (omega) ;

328 " entries of the parser's lexical/parse stack.
329 call print recov msg;
330 code = stack overflow;

331 goto
332 end
333

334

parse_done;
parse_stack overflow;

335 set_l ine_id:
336

proc (lookahead_use);

337 dcl lookahead use fixed bin parameter;
338 dcl omega picture "------";
339

340 dcl
341

ltrim builtin;

342 recov_msg = "ERROR on line";

343 if lstk.file (lookahead_get) A= O
344 then do;
345 omega = lstk.file (lookahead_use);

346 recov_msg
347 recov_msg
348 end;

recov _ msg 11
recov_msg

1 tr i m (omega) ;
II_ II• ,

349 omega = lstk. line (lookahead use);
350 recov_msg = recov_msg I I ltrim (omega);
351 recov_msg = recov_msg 11 : 11 ;

352 return;
353 end set line_id;

., '
.,

,

Parser cannot continue.";

354

355 print_recov_msg: proc;
356 dcl addr builtin;
357 dcl code fixed bin (35);

358 dcl iox_$put_chars entry (ptr,
359 dcl iox_$user_output external
360 dcl length builtin;

361 dcl newline char (1) Internal
362 ") ;
363 dcl substr builtin;

364

ptr, fixed bin
static ptr;

static options

365 recov_msg = recov_msg I I newline;

(21). fixed bin (35));

(constant) inlt ("

366 call iox_$put_chars (iox_$user_output, addr (substr (recov_msg, 1, 1)),

367 length (recov_msg), code);
368 return;
369 end print_recov_msg;

370 end calc2_p;
79
80 end calc2;

))

"

) ·•

