
..

_.

MTB 596 Multics Technical Bulletin

To: MTB Distribution

From: Melanie Weaver and Charles Hornig

Date: August 12, 1982

Subject: Tasking I

Send comments by one of the following means:

BY Multics mail (on System M or MIT):·
Weaver.Multics

By Telephone:
HVN 261-9312 or 617-492-9312

By Forum on System M (preferred method):
>udd>m>mbw>mtgs>tasking

··---. -·Multics0 Project internal working documentation. Not to be
reproduced outside the Multics Project.

1

Multics Technical Bulletin MTB 596

INTRODUCTION

This MTB proposes changes to the Multics system to support
user ring tasking. Tasks are sub-process entities whose
execution can be interleaved. The proposal includes general
descriptions of commands and subroutines to manipulate tasks, a
scheduling mechanism, and changes to the system to deal with the
more complex environment. -

It is becoming increasingly urgent to have a fully-supported
tasking facility on Multics. Already the ARPA network and emacs
use a prototype version that has evolved over several years.
Other products slated for the MR10 time frame need it too, such
as the expanded mail facility and the proposed inter-Multics
forum. It is especially suited to applications that involve
servers, making them faster to write, easier to maintain, and
more robust. Tasks can also improve the command level interface
by isolating different activities. Tasking is also being
considered as a means of implementing cheap processes for a
proposed Unix subsystem. In the future, we will need to support
tasking/real time extensions to PL/I, Ada, Fortran and/or Basic.

The existing prototype is not adequate by itself. It has
little documentation and is thus difficult to understand. It
creates a more complicated environment which the system has not
yet caught up to. Because of this, its use must be restricted.
Users are temporarily putting up with glitches that cannot be ~
tolerated in the long run.

The job of documentation, cleaning up the software, and
improving system support should take less than a person-year.
The tasks to be done are listed in Appendix A. The proposed
user-ring version is simpler and cheaper than implementing
multi-ring simultaneous tasks and is adequate for most of our
near-term needs (next year or two). Most work done on this
project will not be wasted in the event that we implement the
more general mechanism.

This MTB does not include the new/revised interfaces,
commands, include files, etc., although the prototype subroutine
interfaces are described in Appendix C. It also does not present
plans for implementing tasking in specific languages. Instead it
describes the basic mechanism, how it affects the system, and
what types of changes will be necessary.

SUMMARY

The proposed mechanism allows a process to have several
tasks, each with its own stack. Some tasks will share a LOT,
!SOT, user free area and standard I/O switches, while others will
have their own versions of these. Some tasks (as part of a run

2

MTB 596 Multics Technical Bulletin

unit) will have their own RNT (reference name space).
be several task groups, each with its own LOT, etc.
task in a run unit always gets a new LOT, etc.

There may
The first

The advantage of a task group is efficiency. LOTs, linkage
sections, etc. don't need to be reinitialized for each task.
Attachments for the standard three switches don't need to be
moved when switching to another task in the same group. However,
since all of a group's tasks share the same internal static and
external variables, all programs used in a task group must be
careful in their use of these storage classes.

Arbitrary programs that haven't been "cleared" to run in
task groups should be used only in tasks that have their own
exclusive environment. Perprocess static programs have their
static shared be all tasks. If a program wants to keep static
data that is task specific, i.e. not shared by any other task
even in the group, it must access the data via an external
mechanism, such as value with a pertask option. This would
include data about the task's stack.

:There are both subroutines and commands to manipulate tasks.
These include facilities to create, restart, stop and obtain
meters for other tasks. Each task has an ID. A task can be
created to run a command or a program can be invoked in an
existing task.

Locks set by set_lock_ will continue to be perprocess. One
task can only lock out another process, not another task.

_ Scheduling of tasks is not done by arbitrary time limits or
quanta. Rather a task runs until it - .
- goes blocked, or
- suspends itself, or

gets preempted by an event call, or
- requests that another task be scheduled, or ·
- reaches a time limit set by its creator, or
- -returns ·from an ex pl ic it call, such as an event call channel call.

- - A quit or_ -other condition that goes to command level_ wi 11 cause
the task to be suspended so that the command level "task" can be
scheduled~· A suspended task will not be ·rescheduled unless
explicitly requested or unless it gets a wakeup (if it was
blocked). When the scheduler runs, it picks the first task in
the list of tasks waiting to run that has the highest priority.

The current tasking mechanism has evolved over several years
and now meets most of the needs of the restricted server
environments it is used in. The system, however, does not
adequately support several parallel tasks in a process. Most of
the changes necessary, including uses of static, are required for
any reasonable tasking mechanism.

3

Multics Technical Bulletin MTB 596

Most of the changes are related to the dynamic linking
mechanism, which maintains much of the environment including ~
LOTs, I SOTs, reference names and 1 inkage se,ct ions. With tasking,
a process may have several such environments. Most linker
actions affect only the environment currently in use. However
some actions · are process wide in scope and must affect all the
environments. The system must be changed to operate in
multi-environment mode.

One of these actions is segment termination. This should
cause all of the ring's LOTs, linkage sections and RNTs to be
cleaned up. This part of segment termination should be done in
the user ring. hcs_$terminate_seg/file, which now only clean up
the current RNT, should be changed to invoke term • As a rule,
if segment names are to be deleted from the RNT, the linkage
sections should be searched for snapped links. There should be
new ring 0 interfaces that don't do any reinitialization.
Programs should be very careful about terminating segments that
aren't about to be deleted or truncated.

Another linker activity that has process scope is setting
LOT and ISOT entries of segments with perprocess static. The
LOT/ISOTs should be initialized to lot/isot faults so that the
linker doesn't have to update them all ot task create have to
initialize them separately. However, the lot/isot fault-handlers
must know how to find the values. The linker must maintain a
perprocess LOT and ISOT for segments with perprocess static.

The run unit mechanism also must change. It was designed to
be executed sequentially, not in a process with parallel tasks.
The two mechanisms are incompatible, since changes made· by one
would not be propagated properly in the other. In addition, the
change to initialize the LOT to lot faults, needed for efficient
tasking, will invalidate the whole (expensive) algorithm now used
by run units to clean up. Run· units should be reimplemented
using tasking by adding an option for a separate RNT.

At process termination time, all tasks should be terminated
in an orderly, graceful way. The last task to be terminated is
each task group should call execute epilogue • The original task
(on stack 4) should close the remaining Tocbs. There is an
urgent need for a process to unwind its stack (i.e. invoke
cleanup handlers) when it terminates. This should be done by
each task as well.

The tasking mechanism is only available in the user ring.
Even with this restriction it is suitable for use in daemon-style
servers, language-defined tasking, co-routines, compiler writing
and command level organization. It will significantly increase
productivity in these types of applications.

4

MTB 596 Multics Technical Bulletin

The two diagrams following this section illustrate some of
the task structure ideas mentioned above. Figure 1 shows the
relationships among six tasks in a process. It shows how user
environment data structures are shared by task groups and run
units. Figure 2 shows the different states a task can have and
which task ctl entries change states. It lists some of the
reasons for-(reTstarting and suspending tasks.

5

O'I

task 2

task 1 stack (incl.

task 1 external
variables

linkage
sections

perprocess info
(in task 1 user

PROCESS WITH·6 TASKS
USER RING ENVIRONMENT

.
task 3 stack (incl. LOT)

task 3 external variables

task 3 linkage
sections

~
i::
I-'
rt
I-'·
0
Ul

8
CD
0
:;:,'
::s
I-'·
0
pi

. I-'

b:I
i::
I-'
I-'
CD
rt
I-'·
:::s

Task Groups

task 6
stack

task 4 stack
(incl. LOT)

task 4 external
variables

task 4 RNT

task 4 linkage sections

Figure 1

task 5 stack (incl. LOT)

external variables

task 5 linkage sections

1 + 2
3

4 + 6
5

Run Unit

4 + 5 + 6

J-~urnes that linkage sections of perproce~J~ static segments are allocated in task ,)~s
~r free area.

~
b:I

V1
\0

°'

MTB 596 Multics Technical Bulletin

TASK STATES

and task ctl entries that change states

stopped
(suspended)

$start

$stop
ready

I

$schedule
nonexistent

dead running

. $start is used

- after creating the t~sk

- when an ipc_ wakeup has arrived

after a condition (from command level in another task)

$stop is used

- when the task goes blocked

- when a condition handler tries to get to command level

- when another task wants to be sure the task won't run
for awhile

Figure 2

7

ipc_

Multics Technical Bulletin MTB 596

BASIC TASKING MECHANISM

A task is a subset of a process and is identified only in
the user ring. Lower rings do not differentiate between tasks
since they primarily perform "utilities" on behalf of the user
ring. Each task has its own user ring stack. It may either have
its own LOT, ISOT and user free area (expensive type) or share
those of its creator (cheap type). Tasks that share the same LOT
are called a task group. Execution of several tasks may be
interleaved.

Each task's stack is a separate segmen~. These segments
always retain their own segment numbers, i.e., an executing
task's stack does not necessarily have segment number.= ring zero
stack segment number + ring number. This would be a problem if
tasking were to run in inner rings, since the hardware
automatically sets pointer register 6 by the above algorithm when
transferring into an inner ring. However the hardware does not
set pointer register 6 in the outermost ring used.

Each task has a associated data structure that contains such
things as meters, the current state, priority, scheduling
information, and threads to sibling and parent task data
structures. It is allocated in system free area and accessed
through a pointer in the task's stack header.

/

Tasks are " managed by the subroutine task ctl and
Many of the task ctl features are described- below.
features will probably be described in another MTB
summarized below because they are an important part
general mechanism.

TASK CREATION

by ipc •
The ipc_

but are
of the

_ Tas.ks are created by task ctl $create. The information
given to task ctl $create includes- pointers to the task overseer
and argument aata-structure, as well as cpu limit, priority, and
environment flags. See the attached documentation for task ctl •
task ctl $create assigns an ID, creates a stack, initializes the
stack header and related environment and sets up a stack frame on
the new stack for task alm , an alm control procedure. It then
returns to its caller~ leaving the new stack frame with its
return pointer set to task_alm_.

The new task is not runnable until task ctl $Start is
called. This entry threads the task into the task scheduler's
ready queue. When at last the task is scheduled, it returns to
the most recent frame on the stack. Thus the fledgling task
awakes in task alm • task alm calls a system-supplied
task overseer I whTch sets up an any other(system) handler, moves
the standard r;o attachments to per task group iocbs if switching

8

MTB 596 Multics Technical Bulletin

task groups, and calls the task overseer specified in the task
create data.

TASK DESTRUCTION

A task is destroyed by getting it to return to the task overseer
frame. There are two ways to do this. One is- for the
user-specified task overseer to return {possibly after a goto).
The other is for the task to call task ctl $die, which does a
nonlocal goto to task overseer • The finish condition is not
signalled.

Task overseer returns to task alm , which calls task ctl
to unthread the task from the ready-queue, mark it as dead~ and
invoke the scheduler. The scheduler checks for dead tasks and
destroys them, which involves "destroying" stacks, iocbs, etc.

SCHEDULING

Task scheduling is currently performed by
task_ctl_$schedule. Each ready task (started and not stopped or
killed) has a priority and is in the ready queue. The scheduler
picks the first task in the ready queue with the highest priority
and then moves the task to the end of the ready queue.
Scheduling a different task involves the following actions:

- save the current task's ips mask
- save the standard iox switches
--reset the "official"- process stack pointer for the ring

{stored in the PDS)
- save/restore the current value of PR6 from a location in

the stack header
- change cl intermediary

__ -. restore the standard iox switches with the values saved
in the new task {when switching task groups)

- restore the new task's ips mask
task~ctl_$schedule returns in the new task. This entry is
usually called by ipc_$block, which wakes up another process only
when there are no tasks ready to run. Block removes the task
from the ready queue and wakeup restores it.

iE£... = Task Interaction

As -mentioned above, ipc_ and the tasking software must
cooperate to schedule tasks. In addition, ipc creates a
separate task for each event call channel. Currently the tasking
features are in a separate version of ipc and have been merged
with the recent ipc improvements. This will be discussed in
more detail in another MTB.

9

Multics Technical Bulletin MTB 596

It has been suggested that tasking primarily use something
other than ipc_ since it is all within a single process.
However, the new mechanism would have to be similar, and there
would still have to be interaction with ipc for compatibility.
The ipc_ facility of optionally creating separate tasks for event
call channels simplifies their use.

The ipc mechanism should be able to handle the expected
task schedulTng requirements. Device management uses call
channels. Language-defined calls will mostly use wait channels
(perhaps with the argument list pointer passed as the message).
There will need to be some extensions, such as the one to handle
the wait with time limit feature needed by Ada.

METERS

Process usage meters are kept for each task in the task's
control data. They are incremented whenever another task is to
be scheduled. The actual scheduling code is charged to overhead
meters. There are a subroutine and a command to obtain the
values.

~ = COMMAND LEVEL INTERACTION

Getting to Command Level

Command level is generally in the original task. The
process's first stack in the user ring is considered the original
task even if tasking has not been explicitly initialized.
Whenever another task wants the user to get to command level,
such as after a condition, it must stop itself and schedule the
original task. To accomplish this, all other tasks establish a
special cl intermediary, which is called when condition handlers
come to command level. cl intermediary suspends the task, which
means that it can only be restarted explicitly, and invokes the
scheduler. Since the original task has a high priority, it gets
scheduled quickly.

Terminal I/O

Each task group has its own standard iox attachments which
all start out synned to user i/o. Terminal I/O logically belongs
to the original task. There is no indication of which task
issued an output line. Of more concern, it is generally
impossible to determine which task a piece of terminal input
belongs to if more than one task expects input on the same I/O
switch (e.g. user i/o). In the long run, the I/O /video system ~
as a whole should be changed to handle this situation.

10

MTB 596 Multics Technical Bulletin

For the time being, an adequate solution is for the command
that invokes a specified command in another task to temporarily
stop the current task. This prevents the caller from executing
(and thus doing I/O) while the callee is executing. The
assumption is that both tasks do terminal I/O. In general, the
calling task in this case is the original/command level task
which must be restarted when needed. If the called task signals
a condition and the handler tries to come to command level, that
task's cl_intermediary restarts the original task.

Another alternative may be for each task group that is to do
terminal I/O to have its own window. This can be specified at
task creation time or dynamically. Most tasks will not be doing
terminal I/O. At this stage of the video system development,
there is not likely to be any identification of the windows'
owners or of which window, if any, is currently active. There
are still several problems to be solved with this approach.

Ideally there should be an integrated task/video desk
management system.

Task Commands

At command level, there are commands to manipulate other
tasks. In particular, the following facilities are available:

list
abort

stop
start
execute

display the tasks' status and numeric identifier
cause the specified task to be cleaned up and : -
destroyed
cause the specified task to be suspended
cause the specified task to be resumed
cause the specified task to execute the specified
command line

· c • By- using the execute facility, for example, -one can cause probe
to· be invoked in a task that was stopped by a condition.

·· - · Commands-for the above exist but need to be refined before being
installed.

ARGUMENT PASSING

There are two explicit ways that arguments can be passed to
another task--via task creation and via the generate_call
facility (which invokes a program in another task). They can
also be passed in subroutine calls to other tasks in PL/I and Ada
tasking. Tasking imposes some restrictions on the passing of
arguments. The argument list and the arguments themselves must
exist for the lifetime of the program invocation in the called
task, which may be different from the lifetime of the caller.
The safest place for them is thus in system_free_area~-which is

11

Multics Technical Bulletin MTB 596

perprocess, although they could be copied into some other shared
segment or directly into the target task._

It is expected that the interfaces included in the appendix
will change, most likely to include an argument list pointer.
The tasking subsystem should be changed to free the argument list
allocation as soon as the task or program invocation ends. To
make these interfaces more useable, there should be a program to
copy arguments into system free area and create an argument list
there. The interface will-be described el$ewhere.

CO-ROUTINES

Tasking should include a co-routine facility. Co-routines
are necessary for simulation languages such as Simula and are
recommended for improving the organization of compilers. They
significantly reduce compiler complexity. The current PL/I
compiler often uses internal static variables to simulate
co-routines.

Co-routines are implemented on separate stacks but have
different scheduling requirements from ordinary tasks. The
switching overhead must be about the same as a single procedure
call. However, the requirements are simpler than for general
tasking. Co-routines are synchronous; two interacting
co-routines cannot both be active at once. The target is known
during "calls" and "returns", so the priority mechanism can be
bypassed. The current ipc entries cannot be used in this case,
but it should not be difficult to add the necessary capability to
task_ctl_ (or possibly ipc_).

LOCKING

· Locks set by set lock will continue to be perprocess. This
is consistent with inner rings having no knowledge of tasking.
set lock cannot wait in an inner ring for a lock set by another
task in the same process, since the other task cannot run until
the inner ring returns. Thus tasks cannot use set lock to lock
out other tasks. Locks can still be used in inner rTngs, but
waiting for them will block the whole process.

Eventually it will be desireable to have per task locking.
In particular, the Data Man~gement System (DMS} would then be
able to handle multiple simultaneous transactions in a process,
with each in a separate task. Since part of the DMS is to run in
ring 2, there will have to be a way to deal with busy locks in
inner rings. There are two general approaches to handling an
inner ring's discovery of a lock locked by another task.

12

MTB 596 Multics Technical Bulletin

-One approach is to continue restra~ning the task mechanism
to the outer ring. In this case, an inner ring that tried to
lock a lock locked by another task in the same process would have
to back out of all its work and return to the outer ring. The
task would then have to go blocked to allow the other task to
run. This is unacceptable because it is too clumsy and
expensive.

The other approach is to extend the tasking mechanism to
lower rings, at least to ring 2 and preferably to ring o. This
would cause a process to potentially have several stacks in each
ring. In this case, a program such as set_lock_ could go blocked
when it encounters a lock locked by another task. The task
scheduler could then resume another task in whatever ring that
task was stopped. This approach has its own significant
implementation issues which should be discussed in another MTB.

RUN UNITS AND SEGMENT TERMINATION

The current run unit mechanism will not work in conjunction
with t~sking. It was designed to work with only one stack in the
user ring. It depends on the fact that execution of a run unit
and its parent environment are not interleaved. When a run unit
terminates, the run unit manager attempts to clean up the
environment heuristically by comparing LOT entries. Based on
this information, it updates perprocess static and terminates
segments. It also unsnaps all links in perprocess static
segments that were snapped during the run unit.

- Besides being expensive and heuristic, this mechanism will
not-work in a tasking environment. Other tasks are executed in
parallel, possibly using some of the same segments, including
perprocess static ones. The environment must be kept up to date.
Also the LOT comparison method itself will become impossible. It
depends on ·uninitiated segments having LOT:entries of zero and
initiated segments with no active linkage sections having LOT
entries set to lot faults. As explained below, there are two
reasons why LOT entries should always be··-initialized to lot
fault.

While invalidating the current mechanism, tasking itself can
replace it. It already provides many of the same features. Two
that it does not currently provide are the option of a separate
RNT (reference name table) and automatic termination of segments
used- -only by the task/run unit. This section discusses the
changes needed to support run units under tasking. The resulting
new mechanism will be simpler and more robust.

Segment termination is an issue even if run units are
ignored. In this case also, the current mechanisms assume that
there.is only one environment to clean up. It is discussed in

13

Multics Technical Bulletin MTB 5·96

this section because it is related to and complicated by the
changes for run units.,

RNT and LOT Reinitialization

The main change needed is an option in task creation to
create a new RNT for the task. The separate RNT feature of run
units is used in the field and should not be eliminated from the
system.

Adding and deleting the RNT itself is not difficult.
However, multiple RNTs are a problem when terminating a segment.
In that case, the reference names for that segment should be
deleted from all RNTs in a ring. This is not always done in run
units today. Currently, segment termination and reference name
management are both done in ring O, even though the RNTs are not
in ring o.

This is related to the non run unit problem of how to
reinitialize all of a segment's LOT entries when the segment is
terminated, also currently done in ring O. makeunknown sets the
segment's current LOT entry to zero. As explained -below, we
would like to make the default LOT entry value always be a lot
fault (currently lot faults are set by initiate). Then a LOT
entry will need to be reinitialized only if there is an active
linkage section, which can be done by term_.

Given the above change, hes $terminate_noname is not likely
to cause trouble because it only aeletes one null reference name.
It will not terminate a segment that has an active linkage
section or a name in any RNT (unless someone uses
hcs_Sterminate_name incorrectly).

The issue is not simply extending the mechanism in use
today. Currently most programs call term to terminate a segment
that might be the target of snapped links and/or have an active
linkage section. It runs in the user ring.
hcs_$terminate_seg/f ile are called for other segments and only
clean up the RNT and the LOT. However one task cannot so easily
assume that a segment is not being used by another task. There
are exceptions, such as "private" segments of programs that are
not likely to run in more than one task. But heavy-handed
terminating, even with proper cleanup, should be reserved for
segment deletion or truncation. Interfaces that don't thoroughly
clean up should be used with great caution.

Keeping this in mind, the problem at hand is to upgrade the
current interfaces to be more robust under tasking. term_ must
know how to clean up multiple LOTs, linkage sections and RNTs.
It should call new hes entries that terminate a segment without ""

14

MTB 596

reinitializing the environment.
been completed.

Multics Technical Bulletin

Some of this work has already

We feel that most callers of hcs_$terminate_seg/f ile should
be calling term instead. A new entry in term_ could provide the
optimization oI searching linkage sections only if there are
non-null reference names and/or active LOT entries.

It would probably be too incompatible to force all the
callers of hes $terminate_seg/file to be changed.abruptly, for
example by deleting the entries or making them no longer work.
It would be better to have hcs_$terminate_seg/f ile somehow invoke
term •

There are at least two ways to do this. One is to move term to
ring O (bound sss active). That would force ring 0 to know
about multiple LOTs~ RNTs,-etc. The job of cleaning up the user
ring environment belongs in the user ring. The other way is to
effectively make hes $terminate seg/file be writearounds to term
in the user ring. This can be-accomplished by changing hes_ and
the linker to provide a kind of automatic resolve linkage error
facility. The entries to be deleted would be added to a-table

- along with their replacements. When the linker detects an
external symbol not found error, it searches the table for a
replacement before returning a linkage error. Then some of the
hes entries could be routed to term_.

In any case, hes $terminate seg/file cannot remain as they
are today, updating only the LOT and the RNT of the current task.
At least they have to remove reference names from all RNTs and

- ,_make sure that all LOTs contain lot faults for the segment.

If ring 0 is to continue to reinitialize LOT entries and to
delete reference names, it must have available'lists -of all the
LQTs and RNTs. The lists would be accessed.through a perprocess
information structure. Some such structure is needed anyway for
handling perprocess static--see below. The·lists would have to
be kept: up to date, but we feel that this is• preferable to having
ring 0 know about the format of the actual task control data.

Automatic Segment Termination

The other run unit feature to be discussed is the automatic
termination of segments used only by the task/run unit. This is
expensive, somewhat heuristic, and depends con the way LOTs are
initialized. Currently a segment is automatically terminated if
its entry in the non-run unit LOT is zero and if it is not
perprocess static or a temp segment or part of a known area.
Howeve~ in tasking it becomes much harder and more time-comsuming
to ·figure all of that out.

15

Multics Technical Bulletin MTB 596

This method of finding the segments would also make initiate
more expensive under tasking. It depends on having LOT entries ~
of zero for unused segment numbers. Currently initiate fills in
lot faults, so it would have to be changed to find and update all
the LOTs. It is necessary for all LOTs to contain lot faults for
all initiated segments, because a segment can be executed in a
task without having been referenced through the linker and having
its linkage section combined. It would be more efficient to
simply initialize the LOTs with all lot faults.

Actually automatic termination of segments could be
eliminated. It does not affect the functionality of run units.
At worst there would eventually be several initiated segments
that nobody knew about. At least, nothing would get terminated
by· mistake.

There is another way to do it which should have been done in
the first place. It depends on keeping the reference name count
up to date. Currently run units create and delete RNTs without
updating the reference name count.

First we must make sure that the reference name count is
correct at the beginning of the run unit. The copy RNT option
should add the number of names in the new (copied} RNT to the
reference name counts in ring a.

When deleting the RNT at the end, the run unit manager
should decrement the reference name counts by the number of names
in the RNT. There is no need to delete individual RNT entries in
this case. Instead, a new hes entry should decrement the
reference name count and terminate- the segment if the count goes
to zero.

This method will not terminate any segment that has null
reference names. Individual progr~ms are still responsible for
terminating those. This will automatically prevent segments such
as temp segments and area components from being terminated. Any
segment used outside the run unit will have null reference names
.and/or names in another RNT. Since run units are intended only
for fairly self-contained programs, it is reasonable to assume
that a run unit will not pass pointers to tasks outside the run
unit. In other words, it is unlikely that tasks outside the run
unit will use the run unit's segments while bypassing the
reference name count.

Run Units' Spawning of Tasks

(The reader should know that
varieties: -old reference names,
-new_reference_names.} -

16

run units come. in three
-copy_reference_names and

MTB 596 Multics Technical Bulletin

Run units may spawn other tasks and run units. Except for
run units with their own RNT, these should share the RNT of the
creating run unit (rather than the RNT of the original task}.
Spawned tasks should be able to have their own LOTs, since this
feature will be needed by PL/I tasking.

Generally all spawned tasks should
unit ends. (See below for a discussion
least an RNT cannot be deleted while
using it. There are a couple of ways
terminated.

be terminated when a run
of task termination.} At
there are any tasks left
to find the tasks to be

One is to wait until an RNT is about to be deleted (by the
run unit that created it} and then terminate all tasks using that
RNT. This will leave intact all spawned run units that have
their own RNTs. Tasks spawned by a run unit that uses the
original RNT will not be terminated until process termination.

Another scheme is to assign run unit IDs which would be
propagated to all spawned tasks. All spawned run units would be
threaded together. Before a run unit is terminated, all of its
spawned tasks and run units (except possibly run units with their
own RNTs) could be found and terminated.

This could be simplified somewhat by not allowing run units
to spawn other run units. A process could still have several run
unit tasks at the same time.

LINKAGE AND STATIC SECTION CHANGES

Perprocess Static

~ · = Tasking will not work properly until the system provides
more robust support of perprocess static segments; After several
years of experience with run units and the prototype tasking, we
have found most of them (see appendix B for a list of them}. The
problem is that a perprocess static segment-may first be used in
one task and then used again in another task that does not share
the same LOT and !SOT. The second task, however, must use the
same copy of the segment's static section even if it did not
exist when the segment was first referenced. Current run units
do not have this problem because the run unit manager sees to it
that perprocess static segments' linkage and static sections are
properly updated/cleaned up when a run unit returns. This is ·
clearly not feasible for tasks, which run in parallel.

A solution is to have a
linker checks before combining
solution is more complicated
secti.ons cannot be separated

17

process !SOT (PISOT) which the
the static section. A complete
because a discussion of static
from a discussion of linkage

Multics Technical Bulletin MTB 596

sections. It also turns out that what happens to iox is a major
consideration. There are several alternatives for handling ""­
perprocess segments' static and linkage sections, each with
different side-effects. First we present the one we prefer,
followed by others to allow the reader to make a more informed
judgement.

ALTERNATIVE 1

Continue to have all tasks share the linkage sections of
perprocess static segments. The main reason this is currently
done is that no perprocess static segments have separate
static--it is always part of the linkage section. This has the
following implications:

- There must be a PLOT and a perprocess set of external
variables as well as a PISOT. The linker would always
allocate perprocess linkage and static sections in the
original task's linakge area.

- Perprocess static segments must always use the same RNT,
since all tasks share the links. This may mean more
complicated RNT management. Changes to specify which RNT to
use are much simpler than having a single RNT with different
"branches" for each run unit. The current run unit
mechanism unsnaps links in perprocess static segments that
were snapped during run units. This is not feasible in
tasking.

- Likewise, perprocess static segments cannot link to the
static sections of non-perprocess static segments or to
non-perprocess external variables. This can be enforced by
the linker.

- Part of lot fault handler can be in alm and just copy PLOT
and PISOT entries when appropriate. This avoids having to
special-case the LOT entry of lot fault handler (except in
the original task). - - -

- Whenever a task from a different task group is scheduled,
the user input, user_output and error output switch
attachments must be moved. (The actual switch is in iox's
static.} This means that a switch synned to user output
always uses the attachment of the task it is used in,-rather
than that of the task it is defined in.

18

MTB 596 Multics Technical Bulletin

ALTERNATIVE 2

Have only static sections be perprocess. All linkage
sections would be per task group. iox_ would no longer be
perprocess static. Implications of this alternative are:

- Since each task has its own standard switches, it is no
longer necessary to do move attaches when switching to a
different task group.

- iox and print attach table must be
several switches named user_input,
error_output.

able to deal with
user_output and

- iox_'s perprocess information, e.g. user_i/o and the iocb
name space, are initialized when a task is created. The
iocbs themselves are allocated in a perprocess area.

- The user output, etc. switch names will always map into the
task's Iocal switches. A switch synned to user_output
always uses the actual attachment of the task that made the
syn attachment.

- All perprocess static must be separate from linkage
sections. The error table macros must be changed to
optionally generate separate static. (The binder cannot
internally resolve links to other components' separate
static because the static pointer is not in a dedicated
register when the reference is made.)

- There need be no PLOT.

- The local RNT is always used.

-- -lot fa.ult handler 's LOT entry must be filled in when the
- task: is -created-; so its linkage section must be either

shared or pre-combined.

OTHER ALTERNATIVES

Same as alternative 2 but have a separate perprocess static
object segment section for iox instead of initializing
perprocess information when tasks are created. This would only
be generated by alm and the binder, since iox is probably the
only segment that needs both types of static. -Having to support
a whole extra object segment section seems an excessive cost for
not having to do move_attaches.

Combine alternatives 1 and 2 by
static to be separate but keeping iox

19

forcing all perprocess
all perprocess. This

Multics Technical Bulletin MTB 596

avoids the iox confusion but has the overhead of both the extra
separate static and the move_attaches.

Combine alternatives 1 and 2 by sharing linkage sections and
reimplementing the way iox handles the three standard switches
(possibly with builtin functions). This would create even more
iox_ confusion and is probably too incompatible.

Pertask Static

Distinct from the above discussion, some programs need per
task (not task group) static, for example to keep data about the
stack they are running on. These include
cu $get/set cl intermediary, trace and probe. A new pertask
object segment section would not be adequate. It cannot be
linked to, because most links are per task group. probe and
trace each have several modules that must access the data, so the
task data must be external. A solution is to have something like
a per task value segment, perhaps adding a pertask option to
value • This can be used by user programs also. Stack header
variables would work but are less flexible·and limited to a few
system programs.

EXTERNAL VARIABLES

External variables are used to implement the storage classes
of PL/I external static and Fortran common (when not specified to
be in the Multics hierarchy). They are referenced through
*system links. The linker allocates them as a threaded list in
the user free area. The list is accessed through a pointer in
the stack header.

There must be a separate set of these variables for each
task group in order to adhere to PL/I tasking rules. This makes
their use by perprocess static programs confusing. It is
unacceptable for these programs to reference different variables
in different tasks. Therefore perprocess static segments must
use perprocess external variables. There are at least three ways
to do this:

- Have perprocess static segments use only the external
variables of the original ta~k. This may be best if that
task's RNT is to be used by perprocess static segments.

- Implement a separate, perprocess set of external variables.

- Prohibit perprocess static programs from
static. This can be enforced by the linker.
that do to use perprocess value variables
static eds segments instead.

20

using external
Change the few

or perprocess

MTB 596 Multics Technical Bulletin

REALLOCATING LOTS

A LOT that is currently being used must contain a valid
entry for every initiated segment. Sometimes the LOT fills up
and must be enlarged, which always involves reallocating and
moving it. This affects every task, since each has a lot_ptr in
its stack header. Each task group's LOT must be grown. All
tasks in a task group must have their lot_ptrs changed to point
to the new LOT.

The first LOT enlargement is usually done in ring 0 by
initiate. The problem is how to get all the other LOTs enlarged
and update all the lot pointers. We do not want ring O to have
to know how to find all the task groups.

All the updating can be done in the user ring by the task
scheduler. Before running the new task, the scheduler can check
that the LOT sizes are the same. If the new task's LOT size is
smaller, the scheduler will change lot ptr to point to the new
LOT. If the new task is in a different- task group, and if that
group's LOT has not yet been grown, the scheduler will grow it.

RNT ALLOCATION

Tasking will force a change in RNT management, even if there
is no multiple RNT feature. Currently the RNT consists of a
header and a threaded list of names. Both are allocated in the
RNT area to minimize page faults. If the area fills up, a larger
one is created and the old one copied into it. This is done in
ring -0 -and includes changing the rnt ptr in the stack header.
The problem in tasking is that there-are several stacks, each
with a copy of the rnt_ptr. If nothing is changed to deal with
thi-s, -reallocation will cause most of the rnt_ptrs to become
invalid.

There are several possible solutions:

Teach ring 0 to update all stack headers that contain the
same rnt_ptr.

- Start with a larger RNT area and don't reallocate it.

- Don't have a separate RNT area. Use system free area
instead. This may cause more page faults.

- Remove the RNT header and search rules from the RNT area so
that they will not be reallocated. If the RNT area gets
reallocated, there may be more page faults. This is the
alternative.we prefer.

21

Multics Technical Bulletin MTB 596

PROCESS L TASK TERMINATION

During process termination, all tasks must be terminated in
an orderly fashion. The environment must be properly cleaned up,
which is not done today. This section summarizes the proposed
mechanism, then discusses some details.

All normal process termination (when the environment is
intact) will be funneled through the common code in logout.
terminate_process should be used only by logout, etc. or when
the environment ii too sick to clean up (e.g. when there are bad
iocb threads). logout will cause each task to terminate itself
by signalling finish, unwinding the stack, and, for the last task
in a task group, calling execute epilogue • The original task
will be the last. After it has finished the usual termination,
it will close iocbs, call execute epilogue in inner rings, and
call terminate_process_. - -

The common code in logout will be changed to call task_ctl_$
terminate_process. This entry will set up invocations of the
terminate task command in all but the original task. It will
rearrange-the task priorities so that the scheduling will be done
in the correct order, with the original task last. If logout was
not invoked in the original task, an invocation of another
command entry in logout will be prepared in the original task
with arguments specifying the reason for process termination, ..,....
absentee logout message if any, etc. Before scheduling any other
task, task ctl will disable its priority setting and task
creation features.

terminate task will signal finish and cleans up the stack.
This will be acne 'Jieither by a nonlocal goto to task overseer
or by calling unwind stack • The latter offers more control7
The caller can set up a time limit and an any_other handler.
Also in this case at least, if not in the general case, cleanup
handlers should be prevented from doing nonlocal gotos and thus
circumventing the whole operation. If terminating the last task
in a task group (probably known by an argument), it will call
execute_epilogue~. The code currently in execute_epilogue_ that
closes iocbs will be moved to another procedure. When done,
terminate task {or task overseer) will call task ctl Skill,
which sets the task's aead bit7 When the scheduler Ts next
invoked, it checks for dead tasks and destroys them.

Back in the original task, logout will signal finish, call
unwind stack , call execute epilogue , print the logout message,
close all iocbs and call terminate_process_. If a process is not
using tasking, calling task_ctl_$terminate_process_ has no effect

It may be possible to speed all of this up somewhat by only
signalling finish within run units. This requires changes to the ..._

22

MTB 596 Multics Technical Bulletin

PL/I manuals and assumes that system programs do not have
specific finish handlers.

23

Multics Technical Bulletin MTB 596

APPENDIX A

Remaining Work

Define and document new system/user structures and interfaces.

Clean up tasking software, including the commands.

Add options to task_ctl_$create to make a new RNT.

Change the linker to maintain lists of perprocess static segments
and to properly allocate their linkage and static sections.

Either change ref name and/or callers to know about multiple
RNTs or make all perprocess static segments have separate static.

Add automatic segment termination facility for run units based on
reference name counts.

Change lot fault handler to handle perprocess static segments
differently7 - -

Finish changing term to update all LOTs, RNTs and linkage
sections.

Add new hes entries for segment termi~ation.

Change hcs_$terminate_seg, etc,
correctly?

Reimplement run.

to reinitialize LOTs, RNTs

Change process/task termination to properly clean up.

Create a mechanism such as per task value or add pertask option
to value • Make sure value 's perprocess option and its users
work correctly. -

Change probe, trace, binder and cu_$get/set_cl_intermediary to be
per task.

Write program to allocate and copy argument lists.

Coordinate with development of video system for effective desk
management system. (longer range?)

24

MTB 596

. """' -

Multics Technical Bulletin

APPENDIX B

List of Perprocess Static Segments

bound audit
bound:=: de bug::
bound mail system
bound-memo- -
bound-metering
bound-msg facility
bound:=:search_facility_
bound trace
bound-command env
bound-ssu
bound-exec com
bound::probe_ -
bound full cp
bound-io commands

operator pointers - .,.. trace_operator_po1nters_
bound_ipc_
bound command loop
bound-sss active -
bound-sss-wired -

bound extended mail
bound-graphics-system
bound:=:tp_runtime_ -

bound_old_cp_

25

Multics Technical Bulletin MTB 596

APPENDIX C

Prototype task_ctl_ Interfaces

06/30/82 task ctl

Function: Manage multiple tasks within a process. Each task
has its .own stack, and may also have its own static storage.
Execution of several tasks may be interleaved.

Entry points in task_ctl_:

:Entry:create: 12/03/81 task_ctl_$create

Syntax:
call task_ctl_$create (task_create?data~tr, task_~d, code);
dcl task_ctl_Screate entry (ptr, fixed bin (35), fixed bin (35));

Function: Creates a new task and returns its task ID. The task
will be in the stopped state.

Arguments:
task_7reate_data_ptr

points to a task create data structure. (Input)
task id - -

is set to the task ID of the created task. (Output)
code

is a standard Multics error code. (Output)

Notes: The task create data structure is declared in
task_create_data7incl.pl1. It contains the following information:

version fixed bin
version of the suructure,

overseer variable entry (ptr)
first procedure to be called in the new task,

data_ptr ptr
pointer to be passed to the overseer,

vcpu_limit fixed bin (71)
CPU time limit for task {0 if none),

priority fixed bin
priority of task,

comment char {64)
description of task for the curious,

top level bit (1) unal,
ON if the task is to be independent of the creating task,

shared static bit (1) unal,
ON if the task is to share the static of its creator.

Ill

:Entry:current_task: 12/03/81 task_ctl_Scurrent_task

Syntax: .
task_id = task_ctl_Scurrent_task {);
dcl task_ctl_Scurrent_task entry () returns (fixed bin (35));

Function: returns the ID of the running task.

Arguments:
task id

is set to the task ID of the running task. (Output)

:Entry:die: 06/30/82 task_ctl_Sdie

Syntax:
call task ctl $die;
dcl task_ctl_$die entry;

Function: Causes the current task to be aborted. The stack will
be unwound to its base, and the task will then be destroyed.

:Entry:generate_call: 06/14/82 task_ctl_$generate_call

Syntax:
call task ctl $generate call (task id, procedure, data ptr, code);
dcl task_ctl_$generate_call entry (fixed bin {3?), entry, ptr,

fixed bin (35));

Function: Call a specified procedure within a task.

Arguments:
task id

15 the task ID of the task in which the procedure ·is to be
called. {Input)
procedure

is the procedure to be called withing the task. It must be an
external entrypoint. (Input)

data_ptr
is a pointer which will be passed to the procedure. If it is
null, the procedure will be called without arguments. (Input)

code
is a standard Multics error code. (Output)

:Entry:get_task_usage: 12/03/81 task_ctl_$get_task_usage

Syntax:
call task_ctl_$get_task_usage (task_id, info_ptr, code);
dcl t~sk_ct~_$get_task_usage entry {fixed bin (35), ptr,

fixed bin (35));

Function: Return usage figures for the specified task. The

interface is similar to that of hcs_$get_process_usage.

Arguments:
task id

is the ID of the task for which resource usage figures are
desired. (Input)

inf o_ptr
points to the process_usage structure used by
hcs_sget_process_usage. (Input)

code .
is a standard Multics error code. (Output)

:Entry:schedule: 06/14/82 task_ctl_sschedule

Syntax:
call task_ctl_Sschedule ();
dcl task_ctl_Sschedule entry ();

Function: Find the highest priority runnable task and dispatch
it. If this is not the current task, the current task will be
suspended.

:Entry:start: 12/03/81 task_ctl_$start

Syntax:
call task ctl $Start (task id, code);
dcl task_ctl_$start entry (fixed bin (35), fixed bin (35));

Function: Start the specified task. The task will now be
considered runnable.

Arguments:
task id

is the task ID of the task to be started. (Input)
code

is a standard Multics error code. (Output)

:Entry:stop: 12/03/81 task_ctl_$stop

Syntax:
call task ctl $stop (task id, code);
dcl task_ctl_$stop entry (fixed bin (35), fixed bin (35));

Function: Stop the specified task. The task will no longer be considet
runnable.

Arguments:
task id

is the task ID of the task to be stopped. (Output)
code

is a standard Multics error code. {Output)

