
MTB 590 Multics Technical Bulletin

To: MTB Distribution

From: N.S.Davids and Mike Kubicar

Date: August 6, 1982

Subject: MRDS and DMS: Conversion Overview

Comments may be made:

Via electronic Mail:
Davids.Multics
Kubicar.Multics

Via forum (method of choice):
>udd>Demo>dbrnt>con>mrdsdev

Multics Project internal working documentation. Not to be reproduced
outside the Multics Project.

08/06/82 Page i MTB 590

Multics Technical Bulletin

CONTENTS

INTRODUCTION.................................. 1
WHICH TYPE OF DATABASE VFILE OR PAGE_FILE_ 2

08/06/82

CMDB EXTENSIONS................... 2
SWITCHING BETWEEN THE VFILE AND PAGE FILE

RELATION MANAGERS .•.....•.....••• 7 7 3
CONVERTING FROM A VFILE TO A PAGE FILE

DATABASE •••••••••••• 7 7 7 3
DMDM (command and rmdb request) AND CMDB,

AN INCOMPATIBLE CHANGE•.• 4
CURSORS. • 5
MRDS DSL PERMUTE.............................. 7
MRDS-DSL-MODIFY, MU MODIFY•. 9
MRDS-DSL-DELETE, MU-DELETE ...•...............• 10
DISPL"AY RRDS DB POPULATION•............... 11
MU GET REL SIZE:- . •............•. ·. 11
SCOPE.'7° •• • '7° ••••••••••••••••••••••••••••••••••• 12
CHANGES TO THE TUPLE DATA STRUCTURE• 13
OTHER CHANGES TO DATA STRUCTURES•.•..... 18
USER INTERFACE MODULES THAT NEED TO BE

MODIFIED TO HANDLE TRANSACTIONS 19
APPENDIX A - Modules that will not be

deleted and which reference the array
rm rel info.iocb ptr•..•..•...•. 20

APPENDIX B - Changes to include files 21
APPENDIX C - mu cursor manager, functional

specification :-....................... 24
APPENDIX D - mu cursor manager, cursor

access and storage mechanism design notes .. 26
APPENDIX E - example output from

display mrds db population•... 27
APPENDIX F-- User documentation for

convert mdb to page file 31
APPENDIX G-- dmdm--long and-cmdb list

examples......... 32

Page ii

MTB 590

MTB 590

MTB 590 Multics Technical Bulletin

INTRODUCTION

This MTB discusses in detail, areas of the MRDS/DMS conversion
which were not discussed in MTBs 587, 588, and 589 or areas
which were introduced in those MTBs but not completely dealt
with. This MTB in combination with MTBs 587 and 588 completely
describe the conversion of MRDS from vfile (and a few other
system routines) to the relation_manager_. -

Each section of this MTB describes changes to a particular
module or set of modules. If the number of modules is small
the section will be titled with their names, if the number is
large the section will be titled with the topic that is forcing
the change, i.e. "cursors" or "changes to the tuple structure".

08/06/82 Page 1 MTB 590

Multics Technical Bulletin MTB 590

WHICH TYPE OF DATABASE - VFILE or PAGE FILE

The db model structure has an element called db_type. This
element is referenced only in the mrds_rst_create_db module
where it is set to 1. The value 1 will indicate a vfile_ data
base while the value 2 will indicate a page_file_ data base.

CMDB EXTENSIONS

MRDS will not. be changed to use some of the more esoteric
features of the relation manager, i.e. multi-attribute
secondary indices. Given tnis the only change needed to the
cmdb user interface are the new control arguments "-page_file"
and "-vfile".

The code dealing with database creation will have to be
changed as described in mtb 588. In addition mrds rst create db
will have to set the correct value of db type in the db model
and the relation collection and index collection ids will have
to be stored in the rel info and attr info structures. Currently
the rel id in the rel info structure is declared as bit (12)
aligned~ Expanding this to the needed 36 bits will not change
the storage pattern of the rest of the elements in the structure.
Similarly the index id in the attr info structure which is
currently declared bit (8) aligned needs to be expanded to 36
bits. Note that because of the implementation of the relation
manager it will be necessary to call the
relation manager $create index with the attr info. index id
variable-in a cal I by reference mode so that the id is immediately
recorded in the model, this is needed in case the index creation
process is interrupted and the index needs to be deleted (via
the delete index request in rmdb).

08/06/82 Page 2 MTB 590

MTB 590 Multics Technical Bulletin

SWITCHING BETWEEN THE VFILE AND PAGE FILE RELATION MANAGERS

Within the mrds per database opening data structures (called
the resultant) will be a structure of entry variables. This
structure will be initialized to either the page file entries
or the vfile_ entries when the database is opened and before
the actual file structures containing the data are referenced.
References to the relation manager will be made via these entry
variables. The actual structure to be extended will be the
dbcb structure. It will also be required to extend the rsc
structure to include a pointer to the dbcb structure so that
mrds rst format file will be able to reference it.

Some of the rmdb modules do not execute in an "open database"
environment, i.e. there is no dbcb structure to reference.
The rmdb subsystem will have to determine the database type
and set up its own structure for these modules to use.

CONVERTING FROM A VFILE TO A PAGE FILE DATABASE

A conversion tool called convert mdb to pf, short name cvmdbp
will be created (see appendix F for user documentation). This
command will take an unpopulated mrds page file database and
load it from a populated mrds vfile database. rt will require
that the data models for both databases be identical and that
the vfile database be a version 4 database.

It is not reasonable to convert update mrds db version for
two reasons. First the function would no longer fit the name - a
confusing situation. Second umdbv requires that the calls to
mrds version 1 code be hardcoded in order. to read version 3
data models. The code to convert from a vfile data base to a
page file database would have to be independent of the existing
code:- -

08/06/82 Page 3 MTB 590

Multics Technical Bulletin MTB 590

DMDM (command and rmdb request) AND CMDB, AN INCOMPATIBLE CHANGE:

The long display form of the dmdm command and the listing
produced by cmdb both include the bit length and bit offsets
of the attributes within a tuple. In the case of varying
strings these numbers have never been correct; they are completely
meaningless for page file databases. They will be deleted
from the output (see appenaix G for examples of the output).

In addition, since the user needs an indication of the type
of database he is displaying, an indication of type will be
added to the display.

08/06/82 Page 4 MTB 590

MTB 590. Multics Technical Bulletin

CURSORS:

The maximum number of cursors that can be referenced is
based on the maximum number of keys (equivalent to maximum
number of attributes) and maximum number of tuple variables.

(max attrs + 1) *max tvs + 1
257 T 20 + 1 = 5141

The maximum number of cursors that can be used in any given
selection expression is far larger which implies that all 5141
cursors could be required.

max-and-groups * max-and-terms + 1
100 * 1 00 + 1 = 10001

Two methods of converting MRDS to use OMS:

The first and easiest method is to enlarge the iocb (cursor)
pointer array in the MRDS resultant from 20 to 5141. Given
that 10% of the array is actually used (514 cursors) during
the life of the database opening that would leave 4627 pointers
in each relation that are not used. For a maximum size data
base of 256 relations this is 2,369,024 (4627 * 256 * 2) words
that are allocated but never referenced.

The second approach requires changing all the mrds modules
that reference an iocb pointer in that array (appendix A).
References would be changed from a simple array reference to a
call to a procedure which returns a cursor pointer. This procedure
would manage MRDS' s use of the cursors so space would be allocated
only for those cursors that were actually used (see appendix C
for a functional spec). Note that there will be a performance
degradation from what we currently have, also an application
that needs all the cursors will not experience a savings in
allocated space (it will probably use more space). This method
does disconnect the space used for cursor management from the
maximums of tuple variables, and-groups, and and-terms making
it easier to increase these values and saves significant space
for an application that uses only a few cursors.

08/06/82 Page 5 MTB 590

Multics Technical Bulletin MTB 590

Recommendation:

Because of the potential for significant space savings in
the vast majority of cases I feel that approach two is the
best way to deal with cursors. The procedure mu cursor manager
will be written and calls to it will replace alT references to
the array rm rel info. iocb ptr and calls to the procedure
mu open iocb manager. This procedure will also open a relation
and store its opening id in the rm rel info structure if the
relation needs to be opened.

08/06/82 Page 6 .MTB 590

MTB 590 Multics Technical Bulletin

MRDS_DSL_PERMUTE

Calculation of access cost

of
For each tuple variable in each and-group permute
the following methods of access:

total primary key: each attribute in the primary
key has an "=" condition against it.

long key head: The first N attributes in the
primary key have an "=" condition against
them.

short key head: The first attribute of the
primary key has an inequality condition
against it.

indexed attribute: Access will be via some
secondary index.

unordered sequential: Each tuple will be access
in the order they are stored in the MSF.
Used if a sequential search is needed and
no updates may be performed.

ordered sequential: Each tuple will be stored
in primary key order. Used if a sequential
search is needed and tuples may be updated.

chooses 1

Each method has its own cost formula based on the operations
needed to perform the access method and an estimate of the
number of tuples that will be returned:

total primary key: cost =
TOTAL PRIMARY KEY COST

long key head: cost =-ACCESS COST
* # of tuples + ACCESS OVERHEAD

short key head: cost = ACC~SS COST
* # of tuples + ACCESS OVERHEAD

indexed attribute: cost = ACCESS COST
* # of tuples + ACCESS OVERHEAD

unordered sequential: cost-= US ACCESS COST
* relation size + US ACCESS-OVERHEAD

ordered sequential: cost-= OS ACCESS COST
* relation size + OS ACCESS OVERHEAD

Currently the ACCESS COST and ACCESS OVERHEAD for
long key head, short key head and indexed attribute are all the
same, it is not expected that this will change. The current
split of sequential into ordered and unordered is required
because tuples cannot be updated when using the
unordered sequential access method, this will not be the case
when using the relation manager and we can combine them into a
"sequential" access method. The costs and overheads are currently
the virtual cpu time (in hundredths of a second) needed to
perform the operation. Experimentation will be necessary in
order to assign new values. In order to keep permute independent

08/06/82 Page 7 MTB 590

Multics Technical Bulletin MTB 590

of the knowledge of which relation type (vfile_ or page_file_)
it is dealing with these cost constants cannot be hardcoded
into the code, instead the structure containing the
relation manager entry points will also contain fixed bin
variables which will be set to the value of the constants when
the structure is initialized.

Calculating number of tuples selected:

Currently all keys are stored in the same key tree so only
information about the average selectivity of a combination of
all the indices is available. For vfile relations this will
remain the case but page file relations will contain information
about the average selectivity of each index. This information
will allow better estimates of the number of tuples that will
be retrieved. The modifications needed to permute to do this
will not be extensive, it will require that an array of the
indexed attributes which are useable be kept and that a loop
over all useable indices be implemented to determine the index
with the minimum accessing cost. In addition the rm attr info
structure of the resultant will have to be expanded to include
the duplicate key count and the duplicate key count for the
entire relation may be removed from rm rel info.

Recommendation:

Maintain the current values of the cost constants until
experimentation with the relation_manager_ (vfile and
page_file_) can be done.

Implement a version of permute which utilizes the duplicate
key counts for each index.

08/06/82 Page 8 MTB 590

MTB 590 Multics Technical Bulletin

MRDS_DSL_MODIFY, MU MODIFY

The checks to be sure that the user has update scope set,
that the view in use can be used to modify tuples, and if the
database has been secured that the user has modify access on
each of the tuples he is trying to modify will be moved from
mu modify to mrds dsl modify. This will also be a small
performance improvement since it is necessary to make these
checks just once, not for every tuple being modified. In addition
mrds dsl modify will be changed to call mu cursor manager $get
inoraer to get the relation collection cursor. - Finally the
code calling mrds dsl search and mu modify will be changed so
that relation manager-$modify record by id is called instead
of mu modify and so that modify recora by id is passed an array
of 100 tuple ids. This will also be a performance improvement
since less calls will be executed. The module mu modify may
be deleted. -

It has been decided not to utilize
relation manager $modify record by search because of the
increased time- to convert both mrds dsl modify and
mrds dsl search. Once the conversion has been completed this
modification can be made.

08/06/82 Page 9 MTB 590

Multics Technical Bulletin MTB 590

MRDS_DSL_DELETE, MU_DELETE

The checks to be sure that the user has update scope set,
that the view in use can be used to delete tuples, and if the
database is secured that the user has access to delete tuples
will be moved from mu delete to mrds dsl delete. This will
also be a small performance improvement since it is necessary
to make these checks just once, not for every tuple being
deleted. In addition mrds dsl delete will be changed to call
mu cursor manager $get inorder-to get the relation collection
cursor. rinally the code calling mrds dsl search and mu delete
will be changed so that relation manager-$delete record by id
is called instead of mu delete and so that delete-record-by-id
is passed an array of-100 tuple ids. This win also- be a
performance improvement since less~calls will be executed. The
module mu delete may be deleted.

It has been decided not to utilize
relation manager $delete record by search because of the
increasea time- to convert- ooth mrds dsl delete and
mrds dsl search. Once the conversion has been completed this
modification can be made.

08/06/82 Page 10 MTB 590

MTB 590 Multics Technical Bulletin

DISPLAY_MRDS_DB POPULATION

The output for this command when the -long control argument
is used will be incompatibly changed. The output of the vfile
version, total number of bytes in the vfile records, number of
vfile keys and their total bytes, number of duplicate keys and
their bytes, tree height, number of pages, amount of ~ree space
and number of updates will be deleted. They will be replaced
with a list of the indexed attributes and the number of tuples
that each index can on the average be expected to select. The
formula for calculating the number of tuples selected will be:

(T/(T-D), if D ~= T
tuples selected = (

(T, if D = T
where:

T is the number of tuples in the relation

D is the number of duplicated key values for each index,
ala vfile status dup_keys.

For vfile relations the number of tuples selected will be the
same for -all the indices since the value D is not known for
each individual index. The list will not be displayed for
version 3 databases since D is not known.

In addition the message "Opening version <number> data model:
<path>" will be changed to "Displaying version <number> data
model: <path>". The reason for the change is that there is
no need to tell the user that the data model is being opened
and since there is no message that the data model has been
closed the user can be confused and think that some other
command to close the data model is required. See appendix E
for example outputs.

The procedure will use relation manager $get count and
get duplicate key count. The performance of the get_count entry
will not be a problem and it will return the exact number of
tuples in the relation at the time of the call.

MU GET REL SIZE

This module will
relation_manager .

08/06/82

use the

Page 11

get_count entry in the

MTB 590

Multics Technical Bulletin MTB 590

SCOPE

The module mrds dsl set fscope will need to be modified to
call the relation -manager -$set scope entry after the scopes
have been added to the dbc. - A pointer to the relation's
rm rel info structure is known so that the relation's page file
opening id is readily available. - -

The module mrds dsl delete fscope will have to be modified
to call either the relation manager $set scope or delete scope.
The set scope module will be-called 1f only part of the relation's
scope is being deleted, delete scope will be called if all the
scope for the relation is being deleted.

08/06/82 Page 12 MTB 590

MTB 590 Multics Technical Bulletin

CHANGES TO THE TUPLE STRUCTURE

Part of the modifications needed for mrds to effectively
use the new Data Management System are changes to the data
structures used by mrds. The major change will be to the
tuple structure. Currently, mrds calls iox directly to get
and put records to the relation data files. Each of these
records is a complete tuple in a format which is managed by
mrds. Before writing a tuple, mrds mu~t construct it from the
data given to it by· a user program. Likewise, when is needed,
mrds must extract it from the tuple.

This is not the situ at ion with the new Data Management System.
Mrds no longer manages the data in a tuple. This function
will be handled by the relation manager. When mrds needs to
read or write a tuple, the data items contained in the tuple
are described by a vector structure. The idea and purpose of
vectors .is described in the draft mtb "The Vector Concept".
The specific vector structure "simple typed vector", used by
mrds is described in draft mtb-545, "DM: Relation Manager
Functional Spec".

Al though there in only one type of vector described in
mtb-draft, "The Vector Concept", in .reality there are two.
The first is the general type vector. In addjtion to describing
where the data is located, the general type vector describes
which of the dimensions of the vector the data i tern belongs
to. This allows the possibility of omitting fields in the
vector during calls to relation manager • In earlier design,
it was decided that this feature was overly complex. Because
of this, the simple vector type was created for use by mrds.
A simple vector is basically an array of pointers to the data.
Using this type of vector is simpler and cheaper. Also, few
if any calls would have to be made to the vector util subroutines
to manipulate the vectors. There will be -the restriction,
though, that incompletely specified vectors can not be used.
This is not a problem since mrds currently handles only complete
tuples at the low levels. Null attribute values are not permitted.
The only place that specifying incomplete tuples might be
desirable is during a modify operation. This is not necessary,
though, since mrds will always read a tuple before modifying
it. Thus, it can copy the fields that don't change into the
new tuple.

08/06/82 Page 13 MTB 590

Multics Technical Bulletin MTB 590

The current tuple structure used by mrds is:

dcl 1 tuple aligned based (t_ptr),
2 rel id bit (12) unal,
2 attr exists (tuple num atts) bit (1) unal,
2 var offsets (tuple-nvar atts) fixed bin (35) unal,
2 force even word (tuple pad length)

- - fixed-bin-(71) aligned,
2 data char (tuple_max_dlen) unal;

where:

rel id
is the relation id in the file. Currently it is always
one.

attr exists
is true if the corresponding attribute in the tuple has
other than a null value. Currently, all mrds attributes
must have non-null values.

var offsets
is the bit offset, into the data area, of the start of a
varying attribute.

force even word
Is for padding. Currently it is not used.

data
is the data area where attribute values go.

The new vector structure is:

dcl 1 simple typed vector
2 type - -
2 number of dimensions
2 dimension-

3 value_ptr

where:

type

based (simple typed vector ptr),
fixed bin (17) unal~ -
fixed bin (17) unal,
(tv number of dimensions refer
(typed vector

.number of dimensions)),
pointer una1;

indicates the type of the vector structure. 1 indicates
a general typed vector structure and 2 indicates a
sirnple_typed_vector structure.

number of dimensions
is the number of dimensions present in the vector.

08/06/82 Page 14 MTB 590

MTB 590 Multics Technical Bulletin

dimension.value ptr
is a pointer to the value of the dimension.

The changes needed to mrds to replace tuple structures with
vectors are of two general kinds. First of all, code which
reads or writes the internal structure of a tuple must be
changed to operate on simple vectors. The second is that code
which manages tuple storage space must be changed to work correctly
with vectors. ',

There are several differences between tuples and vectors
that are relevant to mrds. The first, and most obvious, is
that a vector is accessed differently than a tuple. The tuple
structure is a template for a record which will actually be
stored in the database via vfile operations. The structure
contains both the data that is to be stored and control information
that specifies how to access that data. Information concerning
the maximum length, data type, and start of the attribute (for
fixed length attributes) is contained in the model definition
of the database. During database open, this information is
copied to the resultant for ease of access. The attributes
values of the tuple are stored in tuple.data. Their order is
not the definition order; all of the fixed length tuples are
stored first, followed by all the varying length ones. Storage
order in each of these two sections is definition order. Only
the portion of the varying length data that is actually defined
is stored in the tuple to conserve space. The array tuple. exists
is a bit array which tells whether a particular field in the
tuple is val id or not. The bi ts correspond one to one with
the attributes in definition order. Currently, mrds does not
support the notion of a null attribute. All attributes in the
tuple must be defined. Thus, all the bits will be set. The
reason they exist in the database is historical. The field,
tuple.var offsets, describes where in the tuple a varying
attribute-begins. The value describes the bit offset of the
start of the data from the beginning of tuple.data.

The tuple structure will be eliminated from mrds. It will
be replaced with the vector structure which will be used in
all data store/retrieve calls to relation manager . The vector
structure, unlike the tuple structure, does not include a section
to hold the actual data. It is basically an array of pointers,
where each pointer locates the value of the attribute in the
corresponding position of the relation. Mrds no longer has to
manage the contents of the records in the storage files.
Relation manager now takes over this job. To mrds, a complete
tuple will now appear as an array of pointers to attribute
data.

There are three types of changes that need to be made to
mrds in order to use the vector instead of the tuple structure.

08/06/82 Page 15 MTB 590

Multics Technical Bulletin MTB 590

The first is to change the manner in which mrds retrieves data
from tuples. Since it now manages the contents of a tuple,
mrds has to calculate where in the record the attribute data
is and then copy it out. With the vector structure, mrds will
directly have a pointer to the data. Currently, when mrds
needs to obtain an attribute's value, it starts with a pointer
to the rm attr info structure in the resultant which describes
the attribute -of interest. There is one of these structure
for each attribute in each relation of a database. The structure
contains, among other things, whether or not the attribute is
varying, the definition order of the attribute, the position
in the tuple, and the length. Mrds uses this, and a pointer
to the tuple itself, to extract attribute data. The bit offset
in rm attr info specifies where the attribute begins and can
be either positive or negative. If positive, the attribute it
describes is a fixed size one. The number is the bit offset,
from the start of tuple.data, of the beginning of the attribute' s
value. If negative, the number describes a varying attribute.
The absolute value of the offset is an index into
tuple.var offsets. This value is a bit offset of the start of
the varying data object. Using the appropriate offset, mrds
builds a pointer to the start of the attribute data value.
The maximum size of the data object is obtained from a descriptor
in the rm domain info structure.

The modification needed to use the vector structure is
relatively straightforward. Mrds will use the field
rm attr info. defn order to find the attribute' s definition order
in- the -relation. It will use this value as an index into
simple typed vector.dimension.value ptr. This will give mrds
the data pointer it needs. The maximum data size can still be
retrieved from rm_domain_info's descriptor.

The next change that is necessary is in the way mrds builds
a tuple for storage into the database. The routine which does
this is mu build tuple. The code in it performs three functions.
The first- is, of course, inserting values in a tuple from a
move list. Mu build tuple also does encoding of data with
user supplied encode procedures, and checking of the data after
it's been encoded. Any data conversions that are needed are
also done by this procedure.

The code associated with inserting values in tuples wi 11
have to be rewritten to use the vector structure. This should
not be a time consuming task as building a vector is a simpler
operation than building a tuple. Mu build tuple will construct
the vector structure by simply copying the pointer from the
move list into the value ptr of the simple typed vector. If a
conversion or encode procedure call is necessary, the fin al
value will be created in temporary storage and a pointer to it
placed in the vector structure. One other routine which builds
tuples is mu_get_tuple. Since it is doing so for a temporary

08/06/82 Page 16 MTB 590

,..

MTB 590 Multics Technical Bulletin

relation or an rmdb create relation function, no conversion or
encoding will be required.-

The other change needed to convert to the vector structure
is the manner in which space is allocated for tuples. Currently,
mrds will allocate tuple space on each store if it is storing
a tuple to a different relation than on the last store. If
the relation is the same one, the previous space can be reused.

The internal structure of a tuple varies from relation to
relation. Thus, space needs to be allocated and released for
each different relation stored. For vectors, there is, no
reason to allocate and deallocate vector structures with each
store. A single structure can be allocated when the database
is opened and used through the life of the database. The same
pointer in the dbcb that points to the tuple space used in the
last store (dbcb.sti ptr) can be used to point to this static
vector structure. Aflocating the biggest possible vector will
not take a prohibitively large amount of storage space. Also,
space must be allocated for data items that will be placed in
the tuple if their values must be converted or encoded. This
space can be allocated in the area which mu build tuple is
passed via pointer. The area is emptied on each call to dsl $store
so there is no need to ever free the data items. -

The changes to structures allocated for a retrieve will be
slightly more extensive. Currently, mrds allocates all the
tuple space before any retrieves actually happen. Since several
tuples may actually be needed to do the comparisons specified
in a selection expression, space for as many tuples as are
needed to satisfy the where clause are allocated and pointed
to by the structure, tuple info. Tuple info is pointed to by
dbcb. ti ptr. When the- search fist is bui 1 t in
mrds dsl gen srch prog, pointers to where the tuple actually
will-be -placed are copied from the tuple info structure into
the search list. -

Relation manager will allocate any space it needs when
retrieving tuples from the database; mrds must not reserve
space for the tuples. Therefore, when the search list is built,
a pointer to the actual tuple location can not be obtained.
The search list will have to be modified so that, instead of a
pointer to a t.uple, an index into tuple_info. tuple is kept.
Then, when the search program needs to access an attribute of
a particular tuple, it will use this index to get the correct
pointer from tuple info. Of course, when the tuple is retrieved
from the database,-it must be stored into the correct position
in tuple info.tuple immediately. Relation manager should be
given the area pointed to by dbcb.retrieve area ptrto allocate
the space it needs. It is passed down- to the mu retrieve
routine via a pointer. This area is emptied on each call to
dsl_$retrieve. Allocations in it do not have to be freed.

08/06/82 Page 17 MTB 590

Multics Technical Bulletin MTS 590

OTHER CHANGES TO DATA STRUCTURES

There are two other minor changes that will have to be made
related to data structures. The first one is to the tuple id unbl
data structure. This structure will no longer be used by mrds.
It is now used in the conversion of vfile descriptors to mrds
tuple ids. This conversion is, even today, not necessary and
is present only for historical reasons. Using relation manager,
mrds must not alter the tuple ids it is given so this code
must be removed.

Also, since mrds will no longer manage indices in the data
files, the key list structure that is used to identify these
indices must be deleted.

08/06/82 Page 18 MTB 590

MTB 590 Multics Technical Bulletin

USER INTERFACE MODULES THAT NEED TO BE MODIFIED TO HANDLE TRANSACTIONS

See mtb 587 (MRDS and DMS) for the discussion on what changes
to make.

Commands

display mrds db population
unpopulate mrds-db
update mrds db version
convert_mdb=to=pf (proposed in this mtb)

Subroutines
dsl $define temp rel
dsl-$delete­
dsl-$get population
dsl-$modify
dsl-$retrieve.
dsl=$store

RMDB Subsystem

create index
delete index

08/06/82 Page 19 MTB 590

Multics Technical Bulletin MTB 590

08/06/82

APPENDIX A - Modules that will not be deleted and which
reference the array r~_rel_info.iocb_ptr

mrds dsl de~ine te~p rel.pl1
mrds-dsl finish-file7pl1
mrds-dsl-gen srch prog.pl1
mrds-dsl-optimize7pl1
mrds-dsl-search.pl1
mu delete. pl 1
mu-get rel size.pl1
mu-get-tid7pl 1
mu-sec-get tuple.pl1
mu-sec-make res.pl1
mu=store.plT

Page 20

\

MTB 590

MTB 590 Multics Technicil Bulletin

APPENDIX B - Changes to include files

The following set of include files have fields which no longer
have meaning when using the relation manager. They will have to
be changed as will any modules using these fields. The following
include files must be modified:

mdbm_comp_val_list:

This structure contains fields which are bit offsets into the
tuple. These are the fields comp val list .db offset and
comp val list.db offset2. These fields must be changed to be the
position-of the attribute in the tuple.

Modules which reference these fields in mdbm_comp_val_list:

mrds dsl gen srch prog
mu retrieve - -

mdbm_key_list:

The structure, key list, is used by mrds to manage indices in
the relation data files. Since mrds will no longer manage indices
when using relation manager, the structure should be deleted.

Modules which reference key_list:

mu store

mdbm rm attr:

The field, rm attr info.bit offset is a bit offset into the
tuple if positive ;-or an index into the tuple. var offset if negative.
Rm attr info. bit offset can be deleted since bit-offsets into tuples

·are no Tonger meaningful.

Modules which reference this field in mdbm rm attr:

08/06/82 Page 21 MTB 590

Multics Technical Bulletin

mrds dsl define temp rel
mrds-dsl-eval expr -
mrds-dsl-eval-func
mrds-dsl-gen srch prog
mrds-dsl-get-rslt-info
mrds-dsl-retrieve-
mu build-tuple
mu-get data
mu-get-tuple
mu-sec-get tuple - - :,-mu sec ma~e res
mu-store

mdbm rm rel info:

MTB 590

rm rel info.max data len is the maximum length, in characters,
of the data portion of the tuple. This number is no longer meaningful
since relation manager handles the tuple structure. It can be
deleted. -

Modules which reference this field in mdbm rm rel info:

mrds dsl define temp rel
mrds-dsl-eval expr -
mrds-dsl-eval-func
mrds-dsl-gen srch prog
mrds-dsl-retrieve­
mrds-dsl-select clause
mrds-dsl-store
mu build-tuple
mu-get data
mu-get-tuple
mu-retrieve
mu-sec get tuple
mu-sec-make res
mu-store
rmdb_create_and_pop_rel

mdbm_tuple_id:

This set of structures has been rendered obsolete. Mrds no
.longer interprets the internal structure of tuple ids. It considers
them to be a one word identifier.

Modules which reference this include file:

08106182 Page 22 MTB 590

MTB 590

mu_get_tid
mu sec get tuple
rrndb create index

mrds rel desc:

Multics Technical Bulletin

The field rel desc.attributes.bit offset is the bit offset of
the attribute within the tuple. This is no longer meaningful.

Modules which reference this field in mrds rel desc:

mrds_drn_get_attributes

08/06/82 Page 23 MTB 590

Multics Technical Bulletin MTB 590

APPENDIX C - mu_cursor_manager functional specification

entry: mu_cursor_manager$get

Returns the indicated cursor ptr, creating it if necessary.
If the relation is not yet opened it will be opened and its
opening id stored in the rm rel info structure. If storage ptr
is null storage will be allocated. -

Usage:

declare mu cursor manager$get entry (ptr, fixed bin, fixed
bin, ptr, ptr, fixed bin (35));

call mu cursor manager$get (rmri ptr, tuple variable index,
coilection_index, storage_ptr, cursor_ptr, code);

where:

rmri ptr
-pointer to the relation's rm rel info structure.

tuple variable index
is the index of the tuple variable within the selection
expression

collection index
is the index of the collection, the tuples themselves have
an index of -1, the primary key has an index of O, and each
of the secondary keys is number 1 through N.

storage_ptr
is a pointer to -the storage where the cursor ptr and
rel name-tuple variable-collection id relationship for a given
database index-is kept. If the pointer is null storage space
will be created. The call that creates the first cursor
should have a null storage_ptr.

cursor ptr

code

is a pointer to the cursor associated
rel_name-tuple_variable-collection_id.

08/06/82 Page 24

with the

MTB 590

MTB 590 Multics Technical Bulletin

is a standard error code.

entry: mu_cursor_manager$delete_all

Deletes all the cursors in the storage area and closes all
the relations with cursors in the storage area.

Usage:

declare mu cursor manager$delete all entry (ptr, fixed bin
(35));- - -

call mu cursor_manager$delete (storage_ptr, code);

where:

storage ptr
is- a pointer to the storage where the cursor ptr and
rel name-tuple variable-collection id relationship for a given
database index-is kept. -

code
is the standard error code.

08/06/82 Page 25 MTB 590

Multics Technical Bulletin MTB 590

APPENDIX D - mu cursor manager
cursor access and storagi mecha~ism design note~

The number of cursors that can be associated with an open
database can range from 1 to over 2 million. The access mechanism
must be based on the number of cursors in order to preclude storage
or access inefficiencies. It has been decided to use two mechanisms,
the first will be based on an array overlaid on a segment, the
second on a keyed vfile. Both the segment and the vfile will be
created in the current mrds temp directory.

The search key for both mechanisms will be a 144 bit string
made up of the rmri ptr, tuple variable index, and collection id.
The "record" associated with the key will be the pointer to-the
cursor.

The first mechanism will be used when the number of cursors is
less than "N". The value of "N" must be determined experimentally
but is expected to be less than 1O,000. The array will start
with O elements and be built up 1 element at a time using an
insertion sort mechanism. An ALM program for efficiently moving
blocks of characters (bi ts) will be written so that the expense
of shifting the array to do an insert will be minimal.

In the second mechanism
built and . loaded from the
storage ptr will be changed
base of-a segment.

the keyed sequential vfile must be
array. The input output parameter
to point to an iocb instead of the

Note that current plans call for cursors to be deleted only
when the database is closed.

The cursors themselves will be stored in an extensible area in
a temp segment in the process directory. The process directory
is used so that segments to extend the area are all located in
the same directory.

08/06/82 Page 26 MTB 590

MTB 590 Multics Technical Bulletin

APPENDIX E - example output from display_mrds_db_population

Each example has 2 parts. The first part is the output as it
currently looks, the second part (indented 3 spaces) is how the
output will look after the change.

! display_mrds_db_population db1

Opening version 4 data model: >udd>m>databases>db1

RELATION

personnel
parts

! display_rnrds_db_population db1

TUPLES

1 'JO
500

Displaying version 4 data model: >udd>rn>databases>db1.db

RELATION TUPLES

personnel 100
parts 500

08/06/82 Page 27 MTB 590

Multics Technical· Bulletin

! dmdbp db1 -long

Opening version 4 data model: >udd>rn>databases>db1.db

Vfile version: 40/41

Relation:
Tuples:

Bytes:

Relation:
Tuples:

Bytes:

! drndbp

personnel
100
557

Vfile keys: 300
d up keys: 98

tree height: 2
free space: 1

parts
500
117

Vfile keys:
dup keys:

tree height:
free space:

db1 -long·

1000
0
2
1

bytes: 691
bytes: 166
pages: 10

updates: 309

bytes:
bytes:
pages:

updates:

157
470
50
309

MTB 590

Displaying version 4 data model: >udd>rn>databases>db1.db

RELATION TUPLES

personnel 100

parts 500

08/06/82

INDEX

ssn
sex

part_ no

Page 28

AVE TUPLES SELECTED

1
50

MTB 590

MTB 590 Multics Technical Bulletin

! dmdbp old db1

Opening version 3 data model: >udd>m>databases>old db1

RELATION TUPLES

personnel 100
parts 500

! dmdbp old db1

Displaying version 3 data model: >udd>m>databases>old db1

RELATION

personnel
parts

08/06/82 Page 29

TUPLES

100
500

MTB 590

Multics Technical Bulletin

! dmdbp old db1 -long

Opening version 3 data model: >udd>m>databases>old db1

Vfile version: 40/41

Relation:
Tuples:

Bytes:

Relation:
Tuples:
Bytes:

personnel
100
557

Vfile keys: 300
tree height: 2
free space: 1

parts
500
117

Vfile keys:
tree height:
free space:

1000
2
1

! dmdbp old_db1 -long

bytes: 691
pages: 1 O

updates: 309

bytes:
pages:

updates:

157
50
309

MTB 590

Displaying version 3 data model: >udd>m>databases>old db1

RELATION

personnel
parts

08/06/82 Page 30

TUPLES

100
500

MTB 590

MTB 590 Multics Technical Bulletin

APPENDIX F - User documentation for convert_mdb_to_pf

convert_mdb_to_pf (cvmdbp) convert_mdb_to_pf (cvmdbp)

'·'

SYNTAX AS A COMMAND:

convert_mdb_to_pf vfile_db_path page_file_db_path

FUNCTION: Loads a newly created mrds page_file_ database from a
populated mrds vfile database.

ARGUMENTS:

vfile db path
is- the path (relative or absolute) to the populated vfile
database. The ".db" suffix is not required.

page file db path
is the-path (relative or absolute) to an unpopulated page_file_
database. The ".db" suffix is not required.

NOTES:

The data model of the two databases must be the same.

08/06/82 Page 31 MTB 590

Multics Technical Bulletin MTB 590

APPENDIX G - dmdm -long and cmdb list examples

Each example has 2 parts. The first part is the output as it
currently looks, the second part (indented 3 spaces) is how the
output will look after the change.

! dmdm db1 -long

DATA MODEL FOR DATA BASE >udd>m>database>db1.db

Version: 4
Created by:
Created on:

FOOBAR.Multics.a
07/28/82 1544.7 mst Wed

Total Domains:
Total Attributes:
Total Relations:

RELATION NAME: parts

4
7
2

Number attributes: 3
Key length (bits): 288
Data Length (bits): 612

ATTRIBUTES:

Name: part name
Type: Key -
Offset: 1 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: order name
Type: Data
Offset: 289 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

08/06/82 Page 32 MTB 590

MTB 590 Multics Technical Bulletin

Name: part no
Type: Data- Index
Offset: 577 (bits)
Length: 36 (bits)
Domain info:

name: type
dcl: real fixed binary (17,0) aligned

RELATION NAME: personnel
Number attributes: 4
Key length (bi ts): 288
Data Length (bi ts): 666

ATTRIBUTES:

Name: last name
Type: Key
Offset: 1 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: first name
Type: Data
Offset: 289 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: ssn
Type: Data Index
Offset: 577 (bits)
Length: 81 (bits)
Domain info:

name: ssn
dcl: character (9) nonvarying unaligned

Name: sex
Type: Data Index
Offset: 658 (bits)
Length: 9 (bits)
Domain info:

name: sex
dcl: character (1) nonvaryfng unaligned

08/06/82 Page 33 MTB 590

Multics Technical Bulletin

! dmdm db1 -long

DATA MODEL FOR VFILE DATA BASE >udd>m>database>db1.db

Version: 4
Created by:
Created on:

FOOBAR.Multics.a
07/28/82 1544.7 mst Wed

Total Domains: 4
Total Attributes: 7
Total Relations: 2

RELATION NAME: parts
Number attributes: 3

ATTRIBUTES:

Name: part name -Type: Key
Domain info:

name: name
dcl: character (32)

Name:
Type:
Domain

Name:
Type:
Domain

order name
Data

info:
name: name
dcl: character (32)

part no
Data- Index

info:
name: type

nonvarying unaligned

nonvarying unaligned

dcl: real fixed binary (17,0) aligned

RELATION NAME: personnel
Number attributes: 4

ATTRIBUTES:

08/06/82

Name: last name
Type: Key
Domain info:

Name:
Type:

name: name
dcl: character (32) nonvarying unaligned

first name
Data

Page 34

MTB 590

MTB 590

MTB 590 Multics Technical Bulletin

Domain info:
name: name
dcl: character (32) nonvarying unaligned

Name: ssn
Type: Data Index
Domain info:

name: ssn
dcl: character (9) nonvarying unaligned

Name: sex
Type: Data Index
Domain info:

name: sex
dcl: character (1) nonvarying unaligned

08/06/82 Page 35 MTB 590

Multics Technical Bulletin

! cmdb db1 -list
CMDB Version 4 models.
! pr db1.list -nhe

MTB 590

CREATE MRDS DB
Created by:

LISTING FOR >udd>rn>databases>db1.cmdb
FOOBAR.Multics.a

1
2
3
4
5
6
7
8
9

Created on: 01128182 1551 .3 mst Wed
>udd>m>databases>db1 .db Data base path:

Options: list

domain:

attribute:

relation:

name char (32) nonvarying unaligned,
sex char (1) nonvarying unaligned,
ssn char (9) nonvarying unaligned,
type fixed bin (17,0) aligned;

last name name,
first name
part name
order name
part_no

name,
name,
name,
type;

10
1 1
1 2
1 3
1 4
15
1 6
17
1 8
19
20

personnel (last name* first name ssn sex),
parts (part=name* order name part_no);

index:

NO ERRORS

personnel (ssn sex),
parts (part_no);

DATA MODEL FOR DATA BASE >udd>m>databases>db1.db

Version:
Created by:
Created on:

Total Domains:
Total Attributes:
Total Relations:

4
FOOBAR.Multics.a
01128182 1551.3 mst Wed

4
7
2

RELATION NAME: parts
Number attributes: 3
Key length (bits): 288
Data Length (bits): 612

ATTRIBUTES:

08/06/82 Page 36 MTB 590

MTB 590 Multics Technical Bulletin

Name: part name
Type: Key -
Offset: 1 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: order name
Type: Data
Offset: 289 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: part no
Type: Data- Index
Offset: 577 (bits)
Length: 36 (bits)
Domain info:

name: type
dcl: real fixed binary (17,0) aligned

RELATION NAME: personnel
Number attributes: 4
Key length (bits): 288
Data Length (bits): 666

ATTRIBUTES:

Name: last name
Type: Key
Offset: 1 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: first name
Type: Data
Offset: 289 (bits)
Length: 288 (bits)
Domain info:

name: name
dcl: character (32) nonvarying unaligned

08/06/82 Page 37 MTB 590

Multics Technical Bulletin MTB 590

Name: ssn
Type: Data Index
Offset: 577 (bits)
Length: 81 (bits)
Domain info:

name: ssn
dcl: character (9) nonvarying unaligned

Name: sex -
Type: Data Index
Offset: 658 (bits)
Length: 9 (bits)
Domain info:

name: sex
dcl: character (1) nonvarying unaligned

08/06/82 Page 38 MTB 590

MTB 590 Multics Technical Bulletin

! cmdb db1 -list -page file
CMDB Version 4 models.- -
! pr db1.list -nhe

CREATE MRDS DB
Created by:

LISTING FOR >udd>m>databases>db1 .cmdb
FOOBAR.Multics.a

Created on: 07/28/82 1551.3 mst Wed
>udd>m>databases>db1.db Data base path:

1
2
3
4

domain:

Options: list page_file_

name char (32) nonvarying unaligned,
sex char (1) nonvarying unaligned,
ssn char (9) nonvarying unaligned,
type fixed bin (17,0) aligned; 5

6
7
8
9

attribute:

1 0
1 1
1 2
1 3
14 relation:

last name name,
first name
part name
order name
part_no

name,
name,
name,
type;

1 5
1 6

personnel (last name* first name ssn sex),
parts (part=name* order-name part_no);

17
1 8
1 9
20

NO ERRORS

index:
personnel (ssn sex),
parts (part_no);

DATA MODEL FOR PAGE FILE DATA BASE >udd>m>databases>db1 .db

Version:
Created by:
Created on:

Total Domains:
Total Attributes:
Total Relations:

4
FOOBAR.Multics.a
07/28/82 1551.3 mst Wed

4
7
2

RELATION NAME: parts
Number attributes: 3

ATTRIBUTES:

Name:
Type:

08/06/82

part_name
Key

Page 39 MTB 590

Multics Technical Bulletin

Domain info:
name: name
dcl: character (32)

Name: order name
Type: Data
Domain info:

name: name
,dcl: character (32)

Name:
Type:
Domain

part no
Data- Index

info:
name: type

nonvarying unaligned

nonvarying unaligned

dcl: real fixed binary (17,0) aligned

RELATION NAME: personnel
Number attributes: 4

ATTRIBUTES:

Name: last name
Type: Key
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: first name
Type: Data
Domain info:

name: name
dcl: character (32) nonvarying unaligned

Name: ssn
Type: Data Index
Domain info:

name: ssn
dcl: character (9) nonvaryin~-unaligned

Name: sex
Type: Data Index
Domain info:

name: sex
dcl: character (1) nonvarying unaligned

08/06/82 Page 40

MTB 590

MTB 590

