
MULTICS TECHNICAL BULLETIN MTB-587

To: MTB Distribution

From: Paul W. Benjamin

Date: 07/19/82

Subject: MRDS and DMS

Forum Meeting: >udd>Demo>dbm_test>con>MRDS_Development

INTRODUCTION

In MR 10. 2 there will be an initial implementation of the Data
Management System (DMS). A raft of documents has been written on
this subject and I will assume that the reader is familiar with
them. In MR10.2 the Multics Relational Data Store facility (MRDS)
will be converted to use DMS. This document will provide a high
level description of that conversion and detail some of the design
considerations. Three documents will follow:

MTB-588
MTB-589
MTB-590

MRDS and DMS:
MRDS and DMS:
MRDS and DMS:

Conversion Overview
Vfile Relation Manager
Conversion Design

Multics Project internal working documentation. Not to be reproduced
or distributed outside the Multics Project.

- 1 -

MTB-587 MRDS and DMS

SOME BACKGROUND

MRDS, while often criticized, is also widely used. Ford alone
estimates that there are approximately 1000 MRDS databases on
their system of which at least 250 are in production and heavily
used. These, of course, are all vfile databases. No matter how
a conversion of these databases might-be approached, it would be
both costly and time consuming. There is also no guarantee that
DMS will be as fast as vfile , in fact there is a school of
thought that it will be slower,-there being a price to be paid in
its increased protection and concurrency controls. In addition,
the conversion to DMS will involve "gutting" much of MRDS. The
DMS effort is ambitious, massive and not without risk. If MRDS
was altered to communicate with the relation manager, and for
some reason, DMS was not ready in the MR 10. 2 timeframe, there
would be no MR 10. 2 MRDS. For these reasons, the determination
was made that the MRDS group would write a vfile relation manager,
concurrently with the conversion. What is a vfile- relation manager?
We will take the relation manager design and -write a series of
entrypoints that perform the same (or similar) tasks, using vfile •
Essentially, this means removing all vfile calls from MRDS and
repackaging them elsewhere. With this: 1)users will be spared
costly conversion; 2) users will not pay a performance penalty if
DMS is slower than vfile ; and 3) there will continue to be a
working MRDS, even if some unseen obstacle delays the DMS effort.
Calls to the relation manager will be made to entry variables
that point to the correct relation manager. So, in most cases,
MRDS code will not be cognizant of the type of database it is
diddling, but rather be calling an entry variable which points to
the correct routine.

- 2 -

MRDS and DMS MTB-587

PEOPLE and PLANS

The primary goal of this effort is to be able to deliver to the
DMS people a version of MRDS that uses the relation manager by
December 1 of this year. In hopes of reaching that goal, the
MRDS group has been staffed to a level that is unparalleled in
recent memory. We have a total of six full-time people with
myself as project leader, Roger Lackey, Noah Davids and 3 new
people, Mike Kubicar, Donna Woodka and Ron Harvey. Donna is in
the AEP and is tentatively scheduled to leave about a month before
the above-mentioned goal. Obviously, we will attempt to get an
extension. Note that, in addition to the size of the group,
responsibility for LINUS has been moved to another project.

So, documents are currently being prepared, with meetings along
the way to avoid controversy. A series of target dates follow.
The are called targets rather than goals in that we have no solid
feeling for the time that it will take to do these things. The
dates:

Documents complete:
Begin vfile relmgr:
Begin Conversion:
Complete vfile relmgr:
Complete Conversion:
Complete Integration

Testing:
Complete Documentation:

- 3 -

FW231
FW230
FW233
FW239
FW244

FW248
FW305

MTB-587 MRDS and DMS

DESIGN CONSIDERATIONS

The remainder of this document consists of various considerations
that will be 0£ interest in the conversion.

Which Relation Manager?

At database opening time, MRDS will determine whether it is dealing
with a page file or a vfile. An array named relmgr array will
consist of entry variables named relmgr $XXX. It will be initialized
using 1 of 2 constant arrays, named- relation manager array and
vfile relmgr array. The relation manager array will consist of
the entries in relation manager and-vfile relmgr array will consist
of the entries in the- vfile relation manager with names of the
form vfile_relmgr_$XXX.

Scope

While DMS has an excellent approach to concurrency control, MRDS
is saddled-with the existing scope mechanism. Existing applications
must continue to function. MRDS has scope setting of r, d, m, s
and null (r = read, d = delete, m = modify and s = store). DMS
has only r, w and null. Further, MRDS allows the user to reduce
scope, something that cannot be done under DMS. We could go so
far as to make an incompatible change to MRDS, the DMS approach
being satisfactory, but what happens to applications that assume
the existence of the current scope mechanism? The solution is
that the existing MRDS scope strategy will be retained, i.e. the
scope shall be enforced by MRDS code. A reduced form of these
scopes, however, will be communicated to the relation manager.
The mapping is as follows (the notation dms indicates any combination
of d, m ors):

Permit Ops User's Reduced Scope
r r
rd ms rw

Prevent Ops Other Users' Reduced Scope
null rw
dms r
rd ms null

Further, the documentation will encourage the usage of the prevent
op "null" on pagefiles that have concurrency control. This usage
is the most efficient, since redundant MRDS code will not be
executed and the concurrency controls of the relation manager
will be fully utilized.

- 4 -

MRDS and DMS MTB-587

"""" Temporary Relations

Neither concurrency nor protection should be used for temporary
relations. Concurrency is meaningless as temp rels are single-user
relations. Protection is not worthwhile either, since users cannot
modify temp rels and are per-process. There has been some discussion
of a future capability of modifying temp rels and the temp rel
code should contain a comment that indicates that this issue should
be revisited if that change is made. For now, the call to
relation manager $create relation, when creating temp rels, should
be made - with both concurrence switch and protected switch in
pf_creation_info OFF. -

Transactions

Most calls to the relation manager, when accessing protected files,
will require a transaction to be in progress. What follows is a
list of relation manager entrypoints, broken into what requires
a transaction andwhat does not:

TRANSACTION REQUIRED:

create index
delete-tuple by id
delete-tuple-by-search
destroy index -
get count
get-description
get-population
get-max and min attributes
get-tuple by id­
get-tuple-by-search
get-tuple-id-
modify tuple by id
modify-tuple-by-search
put_tuple - -

NO TRANSACTION REQUIRED:

close
create cursor
create-relation
destroy cursor
destroy-relation by opening
destroy=relation=by=path
open

For those entrypoints requiring transactions, MRDS will start one
if there is none already in progress. A transaction may, however,
have been started by either LINUS or the user. So, suppose the
user hits the break key in the midst of some sort of transaction.
A listener level is pushed but the transaction still exists. The
user can invoke MRDS again, and this time no transaction would be
started because one was in progress. This operation would complete
and the user could type "start" and resume the original operation.
If that operation aborted for some reason the transaction would
be rolled back, and with it, the work done at the higher listener
level. This is clearly an unfortunate prospect.

To avoid this, MRDS will establish condition handlers when it
starts a transaction. On quit, it will call txnmgr $suspend txn.
This will prohibit any further transaction-mode work :ln her process,

- 5 -

MTB-587 MRDS and DMS

and no new transaction can be started. On start , it will call
txnmgr_$resume_txn. On cleanup, it will call txnmgr_$abort_txn.

Rollbacks and Aborts

DMS will do an admirable job of rolling back page files when a
transaction aborts or is rolled back. The problem is that not
everything that MRDS will modify in the course of a transaction
will be on page files. What MRDS will change can range from
automatic storage to the data model. To compound the problems
that this poses, the MRDS code that modified both pagefile and
data model, for example, may have successfully completed and no
longer be in the stack when the transaction aborts. I will try
and deal with this range of possibilities on a point by point
basis.

Automatic Storage

This is the easiest to deal with. All automatic storage
that is altered within the confines of a transaction should
be restored in a rollback or abort. This is not as difficult
as it may sound. Any initialization that occurs should be
done inside the transaction loop. Any variable data that
may change within the transaction should be saved prior to
entering the transaction. If a rollback and restart occurs,
the data can then be returned to its original state. Automatic
storage should not be a concern for aborted transaction,
because the stack and its storage will disappear. Likewise
for transactions that are rolled back by the user.

Per-Process or Per-Opening Data

This begins to get more interesting. Things that fall in
this category include internal static variables and the resul­
tant. Clearly, copies of internal static variables or portions
of the resultant should be made and then reinstated at rollback
or abort time. What, however, can be done with this data
when the user has started and then aborts or rolls back the
transaction? MRDS may no longer be in the stack, may have
"successfully completed" its work. The answer to this is
non-trivial. What we feel is needed· is a means of providing
"rollback handlers" of some kind. I need to be able to tell
the transaction manager that, if a rollback occurs, procedure
X needs to be executed. Further, the transaction manager
needs to be able to keep a list of these procedures because
a transaction can encompass many operations, none cognizant
of the others. It now seems unlikely that there will be
such a feature in MR 1O.2, al though there is some sentiment
for getting to it eventually. What MRDS is faced with is
identifying those data i terns that are effected by this and
insure that none are going to represent a critical problem.

- 6 -

MRDS and DMS MTB-587

This is perhaps the riskiest area of this whole effort, from
the point of view of MRDS.

One example is that statistics about searching are kept in
the resultant and then used by the search program in choosing
the most optimal method of search. If MRDS cannot roll back
the potentially bogus information left residual by an aborted
transaction, then search optimization will suffer. Note that
this is only an issue where the user has started her own
transaction and it aborted. This is what I would call a
nonfatal design flaw. It can be tolerated but not indefinitely.

Note further that the resolution to most of these issues is
to convert everything in sight to page files. Unfortunately
that would essentially constitute a rewrite of MRDS and is
not doable given personpower and time constraints. (Sure
would like to, though ..•)

Per-Database Data

The only thing that falls into this category is the model.
Fortunately, the model is fairly static and the only transaction
work that will effect is in the restructuring subsystem.
The problems here are similar to those discussed in the last
paragraph, but much more clear cut. Until such time as some
sort of rollback handling capability is implemented, the user
will not be able to start her own transactions when using
rmdb. The restructuring programs will merely start transac­
tions and, if informed by the transaction manager that one
is already in progress, refuse to proceed.

- 7 -

MTB-587 MRDS and DMS

Template for Conversion

The following is a template that shows how a typical MRDS module
will interact with DMS:

mrds_typical:
proc (.•.) ;

I* Save off significant data *I
I* for rollback or aborts ~/

txn id = O;
restart: code = O;

if must start txn ()
then do;

end;

on cleanup call cleanup handler;
on start call start handler;
on quit call quit handler;
call begin_transaction;

call initialize;

I* initialize will simply set defaults etc. */

I* Now we can call relmgr and access the DB */

call done;
return;

must start txn:

end;

proc returns (bit (1));

if db type = vfile
then return ("O"b);

if db protected = "O"b
then return (11 0 11 b) ;

call txnmgr_$get_current_txn id (tid, tix, mode, ec);

if ec = error table $no current txn
then return (11T11 b)T -

return ("O"b);

cleanup_handler:
proc;

end;

call abort transaction;
call restore;

-:- 8 -

MRDS and DMS

start handler:
proc;
call txnmgr_$resume txn (txn_id, ec);

end;

quit_handler:
proc;
call txnmgr $suspend txn (txn id, ec);
call continue_to_signal_ (ec)T

end;

restore: proc;

I* Restore the "significant data" saved above */

· end;

done:

end;

proc;
if txn id "= O

then if code = 0
then call commit_transaction;

else do;
call restore;
if <should restart>

then do;

end;

call rollback transaction;
goto restart;-

else call abort_transaction;
end;

begin_ transaction:
proc;

MTB-587

call txnmgr_$begin txn (mode, bj_old, txn_id, ec);
end;

commit transaction:
proc;
call txnmgr_$commit txn (txn_id, ec);

end;

abort transaction:
proc;
call txnmgr_$rollback txn (txn_id, ec);

end;

end mrds_typical;

- 9 -

