
MULTICS TECHNICAL BULLETIN MTB-586

To: MTB Distribution

From: Jim Siwila

Date: 06/29/82

Subject: Online Documentation for Multics

This MTB surveys online documentation facilities that seem to
be applicable to ~ultics. It covers a number of possibilities-­
ideas that I've had, those of others on the Multics Project, and
some discovered through research. Some of these ideas will be
easier to implement than others, and some, perhaps, are more
urgently needed. I offer my opinion about that in the
Recommendations section at the end. To facilitate discussion of
the MTB, I am convening a Forum meeting named online_doc (od) in
my home directory (>udd>Pubs>Siwila). I encourage everyone to
comment further on the feasibility of these projects, suggest
procedures for implementing them, and recommend priorities.

Overview

There are several types of user assistance we might add to
Multics as well as some enhancements we can make in existing
facilities. First of all, Multics should probably offer more
information about the system itself in the form of explanations of
topic~ and concepts. We already offer some of this information in
gi info segments, and of course we have a lot of information
similar to this in our commands and subroutines infos, though
those could be made easier to read. Ideally, concepts and
commands would be integrated in a way that would permit ready
cross-referencing. As a part of this, or perhaps separately, we
could offer a tutorial on basic Multics information. It would
also be good to offer a few more specialized tutorials, such as
"teach emacs."

Secondly, more help could be available to users while they
are typing command lines. Increased interaction at this level of
processing is discussed often in the literature on man-machine
communications. For example, when prompted the system might tell
the user what kind of argument comes next on a particular command
line. It would also be good to offer more help with errors than
our current error messages give. Then too, I would like to
install the documentation commands where doc and explain doc so
that users could find out about Multics manuals while online.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 1

MULTICS TECHNICAL BULLETIN MTB-586

Finally, we must consider uses for INTELLECT. It seems like a
natural tool for online documentation retrieval, but some problems
have been encountered during experiments done thus far. Those
will be discussed in detail later in the report.

Help With System Concepts and Commands

A large part of the literature dealing with onlin• .
documentation concentrates on methods of displaying system
information. Multics already has a considerable amount of
information online in its info segments on commands and
subroutines and its general information infos. But more can be
done along this line. This winter I installed glossary items from
the MPM Reference Guide in gi infos in response to a long st9nding
request by Tom VanVleck to get more such information onllne (see
TR4579). That is just a small, interim fix, though. This part of
our help facility needs to be enhanced much more by adding
significantly to the general information type of files· and by
making the module info segments easier to read.

A number of people have suggested that we put more
information from our manuals o~line. There is, in fact, some
literature on user assistance systems that are built on
information that is in manual form. The simplest means of doing
this would be to place portions of manuals into gi info segments,
put the segments in >doc>info, and access them just as we do now.

That is not the direction suggested by the iiterature,
however. The ,articles I've read are about systems that can read
online versions of the manuals and extract info files from them.
CP-6 has a help facility like this. Perhaps its most interesting
feature is the single-sourcing of manuals and help files that
enables users to read most manual information online and to print
out the manuals as well. This is managed by compose-like controls
in the online manual files that designate manual only, help only,
and combined-purpose info text. Lee Baldwin has already created a
version of such a tool for Multics manuals. She has written
compose macros that enable her to create info segs directly from
the Commands and Subroutines manuals.

Cross-referencing on CP-6 is done manually. That is, each
info file itself contains explicit reference to related topics.
This information is written into the files by writers before they
become part of the help system. Some of the literature, however,
suggests that cross-referencing can be done dynamically by using
some kind of indexing system on the stored information. In an

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 2

MULTICS TECHNICAL BULLETIN MTB-586

article entitled "Using Offline Documentation Online," Lynne A.
Price describes the system she designed as her doctoral thesis at
the University of Wisconsin--Madison in 1978.(1) It would
probably pay us to look at that thesis to see how she converted
the data. With MRDS, it seems we have the perfect tool for
providing dynamic cross-referencing on Multics. In fact, Lindsey
Spratt has already written a tool for searching online information
by topics. He searches all topics and then arranges the results
of the search in a MRDS data base. From that data base we could
construct menus for particular topics that would include subtopics
and other related topics, including relevant commands and
subroutines. To interrelate them all, we could make commands,
subroutines, topics, and concepts all part of the same information
source, perhaps the stored versions of our manuals •

. One thing we wouldn't want to do with a new help ~ystem is
force its elaborations on users, especially users who are
accustomed to our current help system. Users should be able to go
directly to the information they want when they know where it is.
For instance, they should be able to get help with a command just
as they do now, by typing "help COMMAND NAME." Even in the case
of new topics, users should be able to go directly to the subtopic
desired if they know the name, without having to go through a
series of menus. For example, the first menu for the topic
"access" will include the subtopic "nondiscretionary access."
When a user know she wants to read about nondiscretionary access,
she should be able to get that explanation immediately. That
doesn't mean she will not also get a menu of other options with
her request. But that menu will include only the subtopics and
other infos related directly to nondiscretionary access, including
the parent topic "access." It will not be the same menu that
would be displayed had the user asked for help with "access."

There is another viable model for constructing the system
information component of our online documentation--the ITS system
at MIT. That system has a hierarchical structure that directs the
user to the next logical level of information and also lets the
user select more randomly from a menu. The user enters this
hierarchy by typing "INFO." That puts.him in a menu of
directories from which he selects the type of system info he wants
to look at, including information about how to operate the help
system. An advantage to this highly structured arrangement is
that it provides a way of pointing to the next logical piece of

(1) Association of Computing Machines. SIGSOC Bulletin, v. 13,
Special Issue, pp. 15-20.

Multics Project internal working documentation.
Not to. be reproduced or distributed outside the Multics Project.

06129/Bi page 3

MULTICS TECHNICAL BULLETIN MTB-586

information. Some have pointed out that this type of presentation
also encourages browsing and inadvertent discovery.(2)

There are drawbacks inherent in this system. A user has·to
go through at least one menu, and usually more, to get what sh~
wants, which is annoying when when the user knows beforehand
exactly what she wants. Also, in arranging the informatton in a
set hierarchy, we are assuming that every user will want to learn
apcording to our model. As Kehler and Barnes point out, such.a
system becomes cumbersome with large complex sources of
information, requiring the user to retain a great de•l or
contextual information when searching for specific itetn.s. On the
other hand, the ITS system usually gives users a pretty good idea
of where they are in the hierarchy at any particular stage,
something Honeywell's Human Factors Guide indicates it is
important to do.(3) That is something an indexed syste~ like
Lindsey's can't do as well. Furthermore, in the latter we would
often be unable to display text with menus, especially those menus
displayed as the initial response to a query, because witho~t a
set hierarchy, we would have no basis for choosing which info seg,
of all those retrieved by the particular request, to display
first. The only time we could display an info seg with the
initial menu is when the topic name used in the request matched
the name of a particular info seg. However, by providing menus
along with direct access to specified information, an indexed
system like Lindsey's encourages users to browse while offering
the advantages of goal-directed searching.

I think that no matter which type of system we choose, we
should pay attention to the manner in which the explanations are
written. CP-6 specifies that "definite information 6oricerning
specific techniques for using" the system is the most a,ppropriate
for online user assistance.(4) For the most part our manuals do
not present information in this way; they describe the system
i~stead. Furthermore, users have complained that our manuals
don't exlain why things are done. I think we could. address that

(2) Thomas P. Kehler and Mike Barnes, "Interfacing to Text Using
HELPME," Association of Computing Machines SIGSOC Bulletin, v.
13, Special Issue, p. 117.

(3) Richard J. Frankosky, Human
Planners and Developers, 2nd
Systems, p-.--4-7.

(4) CP-~ FASTEXT Guide (CE59-00), p.

Factors Guide For Softwa·re
ed., Honeywell----Y-nformation

4-7.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 4

MULTICS TECHNICAL BULLETIN MTB-586

concern at the same time we're focusing on techniques for doing
things.

A similar concern was expressed by Fernando Corbato in a
letter to Charlie Clingen written in October 1980. He said our
info :segments are not designed for rapid communication ~f ideas.
He also noted that their prose is generally pretty turgid. He
recommended that "every screen load should be polished like a
precious gem." I think we have to look very c~re!ully_at wha~ we
actually display on the screen, and not be satisfied simply with
getting it there in a very clever fashion.

The need for such rewriting of our documentation should not
keep us from moving ahead now with an expansion of our general
system information facility. That worthwhile improvements can be
made in stages is demonstrated by Lee Baldwin's menu system for
displaying our existing info segs. We could proceed immediately
to single source all of our manuals, index them with Lindsey's
tools, and create a menu interface to the resulting MRDS data
base. Once we have all our documentation in a single source, we
can make improvements to manuals and online information

. simultaneously, and thereby save time.

Help With the Command Line

In his letter to Charlie Clingen, Fernando Corbato also
recommended two procedures that would facilitate typing of command
lines on Multics. The first he called semi-automatic command
completion. This would enable a user to send an incomplete
character response to the command processor, which would process
it if it were identifiable as a specific command or signal the
user that the sequence was not unique. His second recommendation
was that we provide a means for users to get a list of options
available at any point in the command line. For instance, the
user could Stop after typing a pathname argument and enter a
question mark (without a carriage return or line feed), and the
system would then provide a list of things, say control arguments,
that could be put in that position. After displaying the list,
the system should. redisplay the original command line with the
cursor positioned for further input. Such command line processing
is state-of-the-art right now. DEC has something very much like
this on its TOPS 20 system, and literature I've read indicates
that using contextual information in order to minimize what the

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 5

MULTICS TECHNICAL BULLETIN MTB-.586

user must explicitly request is now seen as an important part of
processing capability.(5)

Bill York has taken up the first of Corbato's suggestions in
his Bachelor's thesis at MIT. He has implemented a system which
uses the ESC key to tell iox $get line to find command$ ba~ed on
the character sequence provided and uses the question mark to list
the full names of commands that begin with the characters already
typed.

In the first case, when the user presses the ESt key, one of
several things happens:

1) If the character sequence already typed is uniqu~, that
is, it matches only one specific command, then the rest of
the command name is displayed and the cursor mcv~s one
space to the right, in position to receive a'r"guments to
the command; ·

2) If the character sequence already typed is n6t unique,
then the bell is sounded and the -0ursor remains where it
is, in order for the user to add characters to the
command name.

3) If the character sequence can be recognited as the
leftmost part of a specific command name, or names, as
many characters as possible are displayed automatically.
Then either the cursor moves one space to the right,· if,
as iridicated in 1, the characters provided match
unambiguously the name of· a single command, or the bell
is ~ounded and the cursor stays next to the character
sequence so that the command name can be further .
specified. For instance, if a user presses the ESC key
after having typed "prin", a "t" would be added to make
"print", the bell would sound, and the cursor would remain
in the space following the "t" in case the user wished to
type out a longer command name, such as "print_wdir."

(5) See N. Relles, N. K. Sondheimer, and G. P. Ingargiola,
of Computing
pp. · 1-5 and
Assistance,"

"Recent Advances in User Assistance," Association
Machines SIGSOC Bulletin, v. 13, Special Issue
Robert S. Fenchel, "An Integral Approach to Us~r
same source, pp. 98-104.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 6

MULTICS TECHNICAL BULLETIN MTB-586

Bill's system also allows users to stop while typing a
command name and type a question mark to get a list of the
commands that begin with the character sequence already typed.
The question mark is not displayed, and when the list is complete
the cursor is placed after the last character, ready for the user
to complete the command.

These lists of commands would be culled from a table that
would be created for each user's process based on the user's
search rules. Bill says, however, that the program used to
compile this table takes a long time to run, so a system-wide data
base, available to all processes, would be better.

As to Corbato's second recommendation, Bill estimates it
would take one programmer 6 months to implement such a system.
Putting together the data base that this procedure would draw on
would take more time, however.

·The system Bill has implemented requires no change to the
command processor. The actions signalled by the ESC key and
question mark take place independent of the command processor.
Only when the user deems the command line finished by typing a
carriage return does processing pass to the command processor.
Likewise, Bill doubts that any significant change would have to be
made in the command processor to implement a cue request that
could be invoked from any position on the command line.

One problem that Bill's implementation poses, ~nd the same
one could be posed by a system used to implement Corbato's second
recommendation, is that it requires that input be transmitted one
character at a time, a procedure that can be quite expensive on a
network. Users would have to be aware of that additional expense
when using these help systems. An alternative to this could be an
interactive system that processes larger units at one time. For
instance, to provide the kind of help contained in the cue request
recommendation, we might create a system that responded to a cue
request by

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 7

MULTICS TECHNICAL BULLETIN MTB-586

prompting the user for the remaining arguments on the command
line. If a user asked for help after typing "set acl
path.compout," three prompts would appear:

access modes:
User id:
control arguments (optional):

In fact, we might return these prompts anyt;.irp:e.• t,he Yl!ier sends
a correct but incomplete command line to the coinm.and· p.rq.Q·~$.s.or.
That would eliminate the need for many error messag·e.::I; tl1~t. are now
returned because of insufficient arguments. To dq t.f:liis. we would
have to get the network's front end to read a keY like £SC as a·
break key. Otherwise, we would have to use a carriage return both
to request help and process the command line, and th~~ QQU1¢
complicate processing from the user's point of view •. For
instance, if the carriage return is used ~s a cue, th~n typirig it
will sometimes brings back a request for optional cqn~rQl
arguments the user has no intention of using, thereby slowing him
down. Clearly it would be better to have separate kiy~ for ·
requesting help and sending the line to the command pro,ce.ssor.
Using such a procedure, we could still return the p~~mpts, ratber
than an error message, when a user types a carriage re.tt1rn after a
command line that requires more arguments.

Somethi~g else we might do to improve the. ease with which a
user enters commands is make parsing of the command line more
flexible. That way some errors could be understood by the command
processor, and it could proceed to process the commaQ.d• without
sending the user an error message. Likewise, when a. cqrnma?'ld' s
arguments are incorrect, the command could make certc;itn reasonable
assumptions .about what the user intends and process a,ccordingly.
It would, of course, be necessary to tell the user wh.a:t
assumptions are being made and give him a chance to mqdify them.
But that would be superior to sending an error message and thereby
forcing the user to figure out his mistake and retype the request.
In a way, this flexible parsing acts like a natural language.
interface. When people talk to one another, they glq~s · ove.,r- many
imperfections in communication because they assume tti·ey kl'lOW what
the other means in spite of the mistake. If they come, a.cross a
misspelled word while reading, they can often figure ou..t what is
meant anyway, whereas the command processor does· not unq:e·rstand
anything that is misspelled. Flexible parsing would make the
command interface act much more like communication betwe-en people
rather than the current mode of communication betweeJ) a person and

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 8

MULTICS TECHNICAL BULLETIN MTB-586

a machine. There is a very interesting article on this subject by
three people from Carnegie-Mellon.(6)

Help With Programming Languages

Originally, I had the idea that we could provide help with
programming languages in a manner similar to the cue request on
the command line discussed above, something like what we do now
for pl1 subroutines in emacs pl1 mode (ESC AD). This, CISL
programmers believe, isn't feasible because the syntax of
languages is too varied to provide reasonably accurate and short
lists of options.

One simple enhancement would be to provide info segments on
programming errors. This would be easy to implement in that.we
would simply be adding to our info segments. But it would take
writers a long time to write infos for all the error messages
generated by Multics compilers. Fortran, the compiler I'm most
familiar with, has close to 400 error messages when you include
runtime io errors. PL1 has at least as many, followed by .COBOL,
BASIC, and Apl. There will always be times when such information
is useful, but I think its value would decrease if we implemented
debugging tools like those described below--a program manipulation
system or an interactive compiler.

If we were to write info segments that explain programming
errors, we could use them to enhance emacs error scan mode. That
way, while in error scan mode, a programmer could ask for a more
detailed explanation of what a particular error message might
indicate. There is, however, a problem with emacs error scan mode
that this enhancement will not change. The error scan mode works
off error messages generated by the compilers, and these error
messages are often inaccurate because of the error recovery
procedures that Multics compilers use. So, under these
conditions, error scan mode will only be as helpful as the
compiler's error messages.

A structured language editor might actually be the logical
next step for Multics. Such an editor has been built by !RIA in
France, and in fact, it was demonstrated at CISL last year. This
system uses· a parser to create a syntax tree that can then be

(6) Phil Hayes, Eugene Ball, Raj Reddy, "Computers With Natural
Communication Skills," Computer Science Research Review,
1979-80, pp. 39-51.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 9

MULTICS TECHNICAL BULLETIN MTB-586

scanned logically. For instance, a programmer can ask to see two
logical levels of a program starting from a certain p6i'n't, and
what he will get is an abstracted representation of Just ~b~t
logical portion he's asked for. This system can also ·check the
syntax of lines as they are typed.

Most of the hard work required to implement such a s'ystem on
Multics has already been done. We have a very suitable editor in
emacs; all that would need be done is to create a 'frew ·errracs mode
with a new type of buffer, one that would contain th~ s:Yntax
trees. This would not be difficult and shouldn't .. tak~ :ffi'tlch tltne .

. As for the structured language editor itself, LALR has done the
hard work of constructing a parser for such a syste'm, plus we
might be able to use the IRIA model to work from.

The structured language editor could be an intef'me'diate step
toward the state-of-the-art in programming assista'nce;;.·-i'n'teractive
compilers. IBM has built one of these "check-out cO'mpilers," and
what it does is compile each line of code as it is i~~ed .. Because
of the size of its memory, Multics is an ideal system On which to
implement such a compiler. In addition, an interacti~e ~ompil~r
could re pl ace probe and debug, at least for pl 1. It wo'uld,
however, be a big job, requiring at least seven to ei~ht m~n-years
of work according to Peter Krupp's estimate.

Help With Errors

The explain error program that is available at ~IT 6ould, in
an expanded form~ provide very helpful user assista~~~. This
program permits a user to follow up an error with a f~~u~~t for
further explanation of the error. It also lets the uie? aski
independently of committed errors, what specific conditi~ns
signify. For example, the user could type:

explain_error record_quota_overflow

to find out about that error. If he had committed that error, he
could simply type "explain error," and the progr~m woUld lobk up
the stack for a frame with an error and print an expliriation for
it.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 10

MULTICS TECHNICAL BULLETIN MTB-586

At present, explain error works on system faults only. It
does not explain program-errors such as:

print: Entry not found. >user dir dir>Pubs>Siwila>foo

The.explain error tiommand cannot explain errors like that now
because program execution does not stop for such errors. However,
because the com err and sub err subroutines raise conditions,
the sam~ procedijre followed ~y sjstem faults, it is conceivable
that ~xplain error could be made to explain program errors. It
won't do to simply save error code because often another error can
slip in before you get a chance to query the first one. We will
probably have to suspend execution of the program, the way system
faults do, in order to keep track of the condition.

Benson Margulies has proposed a mechanism whereby users would
(optionally) be thrown into a little interactive error handler
routine when they get errors, where they could ask for more
information about the error. This would have the advantages of an
improved version of explain error plus it would allow the user to
select the type (new user, programmer, etc.) and amount of
information given. This system would require a supporting system
that would enable users to set defaults for their environments
(e.g., use of parentheses on the command line). But Benson and
others have already done some work on the latter, and Benson says
that neither is a hard job.

Tutorial Help

The need for tutorial help to teach new users the basics of
Multics as well as special subsystems like emacs, qedx, LINUS,
compose, and others is obvious. That's why we've written the New
User's Introductions and user guides for editors, etc. in recent
years.· It would be a nice enhancement of online documentation if
we could offer such help online, especially if that help could let
the user interact with the instruction, that is, practice as he
goes what he is being preached. In fact, interactive learning is
probably the most effective learning, more so even than a
well-written tutorial manual.

The "teach emacs" tutorial at MIT does just this. This
tutorial is unique, however. It is simply a segment which is
placed in emacs for the user. The user then performs the various
emacs operations that the segment describes. One thing the user

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 11

MULTICS TECHNICAL BULLETIN MTB-586

can't do with the segment is write out changes to it. That way
the segment is preserved for future use. We may be able to write
tutorials like this for the other Multics editors (thoug'h
programmers at the preliminary design review were sk~ptical), but
we can't write them for things like LINUS, compose, or for the
basics of Multics.

There may be several ways to deal with this. We could make
the general system help described above tutorial t6 so.me extent.
This could be done by putting the simpler descriptiqriS 6f topics
ahead of the more technical descriptions. This would be riecessary
anyway for topics that both new users and non-programme·r·s and
experienced programmers might ask about. For instanc~, the topic
"segment" would have to have an explanation like the one in the
New User's Introduction as well as a more technical description.
A drawback to this approach is that users who don't want the more
basic explanation may be forced to see it anyway. The only way to
handle that inconvenience is to keep track of the u~et'~ .
experience level and give him the appropriate explanatib~. In any
event, this method of providing help with the basid8 of Multics
would not allow the user to practise in any structured way what is
being taught.

Another approach, one that can work with any of the
subsystems or subsets of information, is to provide a segment that
goes through the basic concepts step by step, without any
interactive learning by the user. Mike Auerbach of HIS UK has
written such a segment for basic Multics concepts needed by new
users·. Trouble with this approach is that it remains abstract.
The user must remember a great deal of information before getting
a chance to apply any of it. The system used for thts type of
tutorial could be mor~ structured than Auerbach's. It could be
con~tructed hierarchically and enable the user to select the .
succession of topics from menus. But the fundamental problem of
its abstractness would remain.

Probably the best way to write tutorials is to ti~e a
subsystem specifically designed for interactive tutorial~.·
Several programmers mentioned Control Data's Plato system. Such a
system would cost quite a lot to buy, but no more, probably, than
it would cost to build one ourselves. The question the·n is ·how
much use we'd make of such a system. At this point we can at
least estimate how many tutorials we'd want to write. 'How much
customers would use them is something Marketing Educatiriri should
be better able to judge. We'd probably want tutorials for our
commonly used editors--emacs, ted, and qedx--for LINUS, WORDPRO,
and read mail and send mail if they're not made obsolete by

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 12

MULTICS TECHNICAL BULLETIN MTB-586

Executive Mail. We'd also want tutorials for an introduction to
Multics and a programming introduction for applications
programmers and maybe even one for system administrators. Then
too, there is the graphics system and SORT/MERGE.

Help With Documentation

We presently have several info segs that contain information
about Multics manuals (manuals.gi, order manuals.gi, and
documentation.gi), but we don't yet provide the user with a way to
find out where certain things are documented in manuals or with
online descriptions of manuals. Last year Betsy Kerr and I put
together a data base that can provide users with this information
and two commands for searching that data base--where doc and
explain doc. These commands were not installed because they used
a MRDS ~ata base, and it was felt that we should not offer such a
product to MRDS customers only. Now, however, we can package a
porti~n of MRDS separately so that sites that don't have MRDS can
buy a particular data base without buying the entire MRDS package.
This should allow us to implement where doc and explain doc in
good faith, and it opens the door for us to put other parts of our
online documentation package in a MRDS data base. I have kept the
data base up-to-date, so installation could take place in a very
short time.

An Outline for an Online Documentation System

To draw a clearer picture of how a help system might appear
to users, especially the system documentation component, I'm
presenting here an outline I've devised for such a system. It
includes cross-referencing, and users can enter it at any point •

. Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 13

MULTICS TECHNICAL BULLETIN MTB-586

Were.a user to type "help" without any arguments, the following
menu and explanation would.be displayed:

Press F4 key to quit

(1) Help with System Concepts (5) A Multics tutorial
(2) Help with Commands (6) An Emacs Tu tori.al
(3) Help with Subroutines (7) Documentation for Multics
(4) Help with Errors

Multics provides online help through "info segments" such as
this one. Usually, an info segment comes with a "menu" like the
one above. The menu enables you to choose another irtfo segment
by typing the number associated with it in the menu~ To get
the help YQU are seeking now, type the number of the subject
listed above that you would like more help with. Whenever you
want to get back to. this m~nu, press function key 2 (usually
labelled F2). ·

The first option in this menu would provide a list of system
categories something like the one Lee Baldwin has constructed for
commands. The bottom window would contain a revised version of
the topics.info segment currently on the system. That would
explain how to get topic descriptions by using the help command.
It would also have to explain the menu and tell the user how to
get to the menu of system categories directly, which would
probably be with an argument to the help command (e.g., "help
concepts").

The second option in the menu above would provide Lee's
categories of commands menu. The bottom window wuld contain a
revised version of the modules.info segment, which would explain
basic use of the help comand and how to get the command categories
menu (e.g., "help commands").

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 14

,. MULTICS TECHNICAL BULLETIN MTB-586

By selecting an option in the concepts menu, the user would
get a menu of subtopics for that category along with an
explanation of the concept selected •. System concepts would be
cross-referenced with commands, so when the user selected one of
these subtopics, the ensuing menu would include relevant commands.
Similarly, by selecting an option in the commands menu, the user
would get a menu of commands classified in that category, along

.with options for topics of related interest. A request for a
command description would then yield another menu, this one
containing the major divisions of the description. Lee has
already devised such a menu:

(1) All
(2) Brief
(3) Syntax
(4) Function

(5) Arguments
(6) Control arguments
(7) Access required
(8) Notes

The menu displayed here is for the copy command; the menu varies
according to the info seg of the command in question.

The Help with Subroutines option in the first menu would
produce a menu of subroutine categories similar to the ones for
commands and concepts. The bottom window would contain an
explanation of how to get subroutine infos from command level.
Selecting a category would yield a menu of individual subroutines,
and selecting one would give the user a menu composed of entry
points.

The Help with Errors option would describe the error
reporting system on Multics. Similarly, the other options in the
first menu would explain how to get the help indicated. The
Multics Tutorial explanation may be accompanied by a menu,
depending on just what kind of a tutorial we construct. In any
event, users should be able to get to at least the basic tutorial
from within this hierarchy of menus. They should not have to
return to command level. The Documentation for Multics option
would very likely have a menu containing the info segs related to
manuals and online user assistance (e.g., where doc, explain doc,
manuals.gi, help). This selection would also i~clude in the­
bottom window a general explanation of Multics documentation so
that the user could make an informed choice among the options in
the menu.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 15

MULTICS TECHNICAL BULLETIN MTB-586

How to Use "INTELLECT

From the time Honeywell purchased INTELLECT, online
documentation was considered a likely application for the product.
In fact, Jim Paradise wanted to use the where doc/explain doc data
base as the display model for INTELLECT. In one way it makes
sense to let users ask for help in the way they know best--natural
language. With INTELLECT specifically, however, there ate a
number of problems. First of all, it is cumber so.me to o·pen and
thus is most efficient when the user stays in it for awhlle.· When
asking for help, though, the user is usually making o~ly on~ q~ery
and then exiting. If we could figure out a shorth~fid ~ay Of
entering INTELLECT and then keeping it open for later queries,
while distinguishing between INTELLECT queries and other input, I
think it could be practical, at least in that regard.

This spring s·teve Herbst and I tried to build a lexicon for
the where doc/explain doc data base. This data base presented a
problem for INTELLECT-that all documentation data bases would
present--it has field values longer than 80 characters, the
maximum length INTELLECT can handle. To deal with this, Steve
arranged each field as a separate file. Thus the long fields
could be split into separate records arranged in one file. When
INTELLECT retrieved one of the long files, such as a manual's
description, all the records would come out in the order they were All\.
loaded and produce a paragraph of information. The trouble with
this approach was that the data base paraphrase of users' requests
did not appear logical to the user. Because the file names and
field names were redundant, paraphrases could come out in such
forms as "full name full name" or full name rel full name~"
Furthermore, each line of of text came-out with the manual's order
number attached to it because each line was a differ~rit record in

·the file.

Another problem that this application pointed out is that
user queries of a documentation data base are too rich
semantically for INTELLECT to handle. INTELLECT is
keyword-driven, but often, the same word or phrase was needed for·
several different files. For instance, "tell me about the help
command" and "tell me about AG91" would cause ambiguity or worse
for the lexicon because in one case "tell me about" is needed to
ask about a topic and in the other to ask about a manual. The
where doc/explain doc data base is relatively limited as
documentation data bases go, so another application is likely to
be even harder to work out. At this point, I have to say that
INTELLECT is not applicable to online documentation.

Multics Project internal working documentation.·
~ot to be reproduced or distributed outside the Multics Project.

06/29/82 page 16

MULTICS TECHNICAL BULLETIN MTB-586

Recommendations

Based on the literature and what other systems are
implementing, I think the top priorities for Multics online
documention should be to significantly enhance the system
information available and to increase the ease of typing command
lines. The first of these will require quite a bit of work on the
part of one programmer and two or more writers, but it would
satisfy what users probably expect first from
documentation--explanations of how to do things with the system.
We need not implement single sourcing immediately; that can be
done in a second stage. The first stage should include putting
text from our manuals into info segments, creating a data base for
topics that would cross-reference all of our info segs, and
building a menu interface to display subtopics and related
commands and facilitate the reading of the info segments.

The second of the top two priorities can be accomplished
simply by installing the programs Bill York has already ~ritten.
This latter is a very important area, perhaps the cutting edge for
ease-of-use, so I think we should go beyond what Bill has already
done. We should immediately take up Fernando Corbato's second
suggestion to provide a means of listing options available at any
point in the command line, and we should immediately begin
investigating flexible command line parsing. These improvements
in command line processing will go the furthest towards
facilitating communication with Multics.

As this report indicates, there is much that can be done to
improve Multics online documentation with relatively little
expense. Much work has already been done; we need only polish it
a bit. I recommend that we buy the teach emacs tutorial from MIT
and install it. It's ready to use. Likewise, the where doc and
explain doc commands are ready to use, and we should take
advantage of them.

As for a basic Multics tutorial, I think we should construct
a hierarchical system with menus that will lead the user
progressively through the information. This would be very easy to
program. The biggest job would be for a couple of writers, who
might need four or five months to put together and polish all the
pieces. It might actually take less time, though, if large
portions of the tutorial-like New User 1 s Introduction to Multics
(CH24 and CH25) could be used online. ·

We could also buy the explain error program from MIT. It
needs some work, though, before it-can handle the full range of

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06/29/82 page 17

MULTICS TECHNICAL BULLETIN MTB-586

errors, and we could probably build an interactive error handler
with same amount of work. Benson is anxious to work on this, and
in this case, I think it would be best to build our own system
rather than take up a partially completed one because the end
product will be better.

Perhaps the biggest project touched upon in this report is
that dealing with programming help. Because so much application
programming is done on Multics, I think we should provide more
online help for this task. An interactive compiler would be
ideal, but it would require an immense amount of work. Multics
could, however, be state-of-the-art with a structured language
editor, 9nd we may be able to build such an editor in a fairly
short time.

Currently, Multics offers quite a lot of information online.
What the proposals outlined in this report would do is increase
that information and make it much easier to get. Since
ease~of-use is a crucial concept in computing now, I think we
could make Multics an even more attractive system by implementing
as marty as possible of the online documentation facilities
discussed in this MTB.

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

06129182 page 18

