
~ultics Technical Bulletin 
Char*(*) Functions 

To: Distribution 

From: T. Oke & H. Hoover 

Date: 04/20/82 

MTB-581 

Subject: Ansi77 Fortran Functions Returning Character*(*) 

Comments should be sent to the author(s): 

via Multics Mail: 

Oke.Calgary, Westcott.Calgary, Hoover.Calgary, or 
MPresser.Multics on System M. 

,... via Mail: 

M. E. Press~r 
Honeywell Information Systems 
575 Technology Square 
Cambridge, MA 02139 
(617) 492-9320 or (HVN) 261-9320 

T. Oke or H. Hoover or B. Westcott 
The University of Calgary 
2500 University Drive N.W. 
Calgary, Alberta, Canada 
T2N 1N4 
(403) 284-6201 

Multics project internal working documentation. Not to be 
reproduced or distributed outside the Multics.project. 



Multics Technical Bulletin 
Char*(*) Functions 

1 ABSTRACT 

MTB-581 

This MTB recommends a strategy for extension of the ~xisting 
FORTRAN compiler to support the ANSI77 feature of 
'character*(*)' functions. A 'character*(*)' function returns 
a character string of a length specified at invocation, by the 
caller. By contrast, the size of the return value of all 
other types of FORTRAN function is fixed at compile-time and 
independent of the caller. 

2 PROBLEM 

In FORTRAN, the name of a function is also the name of a 
variable local to that function and of the same type as the 
function. The value returned by the invocation of a function 
is defined to be the value, upon exit from the function, of 
the local variable of the same name as the function. Thus it 
is convenient to refer to the local variable whose name is the 
same as that of the function as the function value. 

For functions of any type other than 'character*(*)', the 
amount of storage needed for the function ~alue is known at 
compile-time. Thus the function value can be allocated in 
either static or automatic storage, in the compilation unit of 
the function, just like any other local variable. The amount 
of storage . required for the function value of a 
'character*(*)' function is not known until run-time, because 
it is specified by the caller. Thus, the storage needed for 
the function value cannot be allocated in either static or 
automatic storage within the function's compilation unit. 

The current version of the FORTRAN compiler always allocates 
the function value in automatic storage. The only difficulty 
in adding 'character*(*)' support is: How do you allocate 
storage for the function value? The solution of this problem 
must not degrade the performance of regular functions and 
should not require recompilation of existing programs. 

l SOLUTION 

The ANSI77 definition of FORTRAN is such that the language can 
be implemented with no need for run-time storage allocation. 
In particular, it is possible to implement 'character*(*)' 
functions so that storage for the function's return value is 
allocated at compile time. However, there are serious 
drawbacks to using this approach in the Multics implementation 
of FORTRAN. Therefore, we propose to allocate the function 

Page 1. 



MTB-581 Multics Technical Bulletin 
Char*(*) Furictions 

value of 'character*(*)' functions by a run-time extension of 
the function's stack frame. 

We justify this proposal in three steps: 

First we explain how storage for the function value can be 
allocated at compile-time. 
Then we indicate the problems with this approach. 
Finally we show how run-time allocation by stack frame 
extension will overcome these problems. 

According to the ANSI77 FORTRAN standard, the caller of a 
'character*(*)' function must specify (with an unsigned integer 
constant or integer constant expression) how long a string will 
be returned. Thus the space for the function value of a 
'character*(*)' function can be allocated (at compile time) in 
the caller, and passed to the function (at run-time) as a hidden 
parameter. 

The caller of a character function cannot tell whether that 
function is a 'character*(*)' function or a fixed-length 
character function. Thus, if the above strategy were adopted, 
fixed-length functions must abide by the same calling sequence as 
'character*(*)' functions. This is a problem, since we have 
existing programs that call fixed-length character functions. 

If we implement 'character*(*)' function via the above strategy, 
we must either break some existing compiled programs or suffer a 
performa~ce degradation in all fixed-length character functions: 
If we continue to allocate storage for the function value in 
fixed-length character functions, we won't break existing 
programs but we will have reduced efficiency in new programs, due 
to the extra overhead of copying the result into the caller's 
(unneccesary) temporary. If, on the other hand, we have 
fixed-length character functions use the caller's temporary to 
hold the function value (as in the 'character*(*)' case), some 
existing programs will break, since they will not have generated 
a temporary (so changing the function value may also illegally 
alter a parameter). 

Another problem with the ·above strategy is in compatibility with 
other languages: Since they assume the same calling conventions 
for character functions as the current FORTRAN implementation, 
the result of. calling a 'character*(*)' function from outside 
FORTRAN may be incorrect. 

The above problem of choosing between efficiency and 
compatibility with existing compiled programs can be avoided by 
choosing a different method of implementing 'character*(*)' 
functions: have the function dynamically allocate the function 

Page 2. 



Multics Technical Bulletin 
Char*(*) Functions 

MTB-581 

value by extending its stack frame. This would make 
'character*(*)' functions run slightly slower than with the above 
method. However, there would be no compatibility problems, and 
fixed-length character functions would run at the same speed as 
now. 

It is slightly against the "flavor" of FORTRAN to do dynamic 
storage allocation, but this "flaw" is internal, hidden from the 
view of the users. Besides, there is already precedent in the 
current FORTRAN compiler for dynamic storage allocation: the 
restriction in .ANSI77 FORTRAN that expressions involving string 
concatenation m~y not be used as parameters has been ignored. 
The length of the temporary to which the expression is assigned 
is not known at compile-time, so the temporary is generated at 
run-time by stack extension. 

4 PERFORMANCE 

The performance of the above method of 'character*(*)' functions 
should not suffer noticably with the implementation. The method 
of implementing the stack movement will·be quite simple, with the 
size of the current stack frame, in the frame header, being 
·incremented by the size of the string, determined from the 
descriptor. Additional fixed space may be required to hold a 
descriptor of the temporary, but this can be allocated on the 
stack at compile time, and filled in at run-time. On return fr~m 
the function, the same code as is currently used will remain, 
with the length of the string for the EIS copy coming from the 
descriptor of the string. 

5 OPTIMIZATIONS 

It is not seen at this time that any form 
possible, over and above the normal 
optimization. All the code which will be 
extension of 'character*(*)' functions will 
macro templates, which will be hand-optimized 
and be as short as possible. 

6 DOCUMENTATION 

of optimization is 
character function 

introduced by the 
be in the form of 

to run as quickly 

The FORTRAN manual and reference quide, and 
•egments must be updated to indicate that 
functions are available. 

appropriate info 
'character*(*)' 

Page 3. 



MTB-581 

7 HARDCORE SUPPORT 

Multics Technical Bulletin 
Char*(*) Functions 

No hardcore support is necessary, all code is local to the 
FORTRAN system. 

8 PROBE SUPPORT 

Support of 'character*(*)' functions will require some form of 
descriptor to enable probe to find and print the intermediate 
value of the function during the execution of the function. This 
will require further information on the symbol table utilities 
and probe to fully determine what is necessary and how it may be 
implemented. 

9 CROSS-LANGUAGE CALLS 

As noted in the SOLUTION section, the above method has been 
chosen, not only to prevent the breaking of existing FORTRAN 
character functions, but also to retain compatability with 
cross-languag~ calls. 

Page 4. 


