
,,..
Multics Technical Bulletin MTB-570

To: Distribution

From: John J. Bongiovanni

Date: 03/03/ 82

Subject: VTOCE Buffer Management

1. ABSTRAil .

This document describes a redesign of the physical buffer manager
for Volume Table of Contents Entries (VTOCEs). Under this
redesign. the I/0 activity to VTOCEs is reduced considerably. at
the expense of wired buffer space. Existing interfaces are
preserved, although some modules outside of the VTOCE physical
buffer manager are modified to improve efficiency.

The current physical buffer manager is described in general
terms. followed by an overview of the design. The internals of
the redesigned physical buffer manager are presented in some
detail. The performance trade-offs (I/O savings versus wired
memory increases) are quantified.

Send comments on this MTB by one of the following means:

By Multics Mail, on MIT or System M:
Bongiovanni.Multics

By Telephone:
HVN 261-9316 or (617)-492-9316

Multics Project internal working documentation.
distributed outside the Multics Project.

03/03/ 82

Not to be

page 1

- - _ _1

MTB-570

2. CURRENT SYSI.E.M

Under the New Storage System (post MR 4.0). a segment resides
entirely on one disk volume, and it is described by a Volume
Table of Contents Entry (VTOCE). which also resides on that
volume. The VTOCE, like all of Gaul, is divided into three
parts:· activation information. the file map. and permanent
information. The activation information is a representation of
the Active Segment Table Entry (ASTE). and it consists of
information either needed when a segment is active or likely to
be modified because a segment is active. The file map describes
the disk addresses assigned to each page in the segment. The
permanent information contains information which is never or
rarely changed. A VTOCE is 192-words long, which is three 64-word
sectors (a sector being the physical addressi ble unit of o.lder
disks).

The VTOCE is arranged so that the activation information and the
first part of the file map are in the first sector (the first
part of the file map reflects the first 96 pages of the segment).
The second sector cont~ins only the file map (pages 97 through
224). The third sector contains the remainder of the file map
and the permanent information.

The physical buffer manager for VTOCEs is the module vtoc_man. '""
vtoc man does all I/Os as 64-word (sector) I/Os. That is,· each
I/0 requested by vtoc_man is for a 64-word sector, or one-third
of a VTOCE. vtoc_man contains the entry get_vtoce to read one or
more sectors of a VTOCE. and the entry put vtoce to write one or
more sectors of a VTOCE. The caller of each of these routines
supplies a buffer and a bit mask (3 bits) indicating which of the
three sectors in the VTOCE are to be read or written. The number
of sectors read or written as a result of a call to vtoc_man can
be 1, 2, or 3. depending on the setting of the bit mask.
Correspondingly, vtoc_man issues 1. 2, or 3 I/Os t6 satisfy the
request.

Typically, only part of a VTOCE is read or written. An example is
segment activation. To activate a segment. the activation
information in the VTOCE is required. along with as much of the
file map as there are (non-null) records. The highest non-null
record (the ·current segment length) is part of the activation
information. So activation involves reading the first part of the
VTOCE to get the current length. If this is 96 or less. no. other
VTOtE I/O is necessary, as the requisite portion of the file map
has been read. If it is larger than 96. additional VTOCE I/Os are
necessary. Similarly, deactivating a segment involves writing the
activation information and file map back to the VTOCE. If the
current segment length is 96 or smaller, only the first sector
need be written.

page 2 03/03/82
I

I l
I

MTB-570

vtoc_man uses an array of 64-word buffers in the unpaged segment
vtoc buffer_seg. There may be up to 64 of these buffers (settable
by the site). Each buffer can hold one VTOCE part. and the
buffers are independent. When vtoc_man is called to read 3
VTOCE parts. for example. it acquires 3 buffers and then issues 3
I/Os. There is also an optimization wherein the buffers serve·as
a cache. so that I/Os are not initiated for a VTOCE part which is
in some buffer already, left over from some previous operation.

Note that the "unit of issue", when dealing with vtoc_man. is the
VTOCE part, and not the VTOCE. In a general sense, vtoc~man only
barely realizes that the parts belong to the same logical entity
(this is not entirely true. but it is a valid description of the
buffering strategy).

vtoc_man was designed when main memory was a scarce system
resource. It represents a very clean design aimed at conserving
main memory (buffer space) without excessive I/0 overhead. The
careful design of the VTOCE itself has kept I/0 activity to
VTOCEs relatively light (typically, 10% of all disk I/0 traffic
is· VTOCE I/O). However, as larger systems have evolved and the
eeonomics of components have changed. the assumptions behihd the
original design have become less valid. Main memory is much
cheaper, and disk I/O is a common bottleneck on large systems. By
redesigning vtoc_man. VTOCE I/O traffic can be reduced at the
expense of large buffer space.

3. DESIGN OVERVIEW

The design is quite simple. and can be summarized concisely:

vtoc buffer_seg remains an unpaged segment. It contains a
site-~ettable number of buffers. each of which is 192-words
long (i.e., each can hold an entire VTOCE). There is no
particular limit to the number of such buffers. other than
the amount of abs-wirable space available. vtoc_buffer _seg
is described in vtoc_buffer.incl.pl1. which is attached.

vtoc_man retains all existing entry points and interfaces.

All requests to vtoc __ man$get vtoce result in reading the
entire VTOCE (unless those parts requested are already in
some buffer).

All requests to vtoc_man$put vtoce cause only those parts
indicated by the bit mask to be written. Any optimization
possible is done. so that as few I/Os as possible are
issued. The alternative (viz., writing an entire VTOCE)

03/03/82. page 3

MTB-570

causes performance degradation at segment deactivation time,
as it would be necessary to read the VTOCE before writing it
back to disk (adding an extra I/O per deactivation).

The dctl and disk_control entries to read and write a single
sector are changed to entries to read and write some
(supplied) number · of consecutive sectors. This requires
additional information to be carried in the disk queue
entry. The revised queue entry can be seen in

.dskdcl.incl.pl1, which is attached.

4. iNTERNALS

The following is an
vtoc_man$get_vtoce and
vtoc_man are not changed
identical to that in the

vtoc_man$get vtoce

outline the procedural flow of
vtoc_man$put_vtoce. The other entries in
substantially. The locking strategy is
current system and is not discussed.

Search for a buffer which holds some part of this VTOCE
(identified by Physical Volume Table (PVT) index and VTOCE
index). If found and out-of-service (I/O in progress). await
the completion of the I/O.

If it is found and not o~t-of-service, check wh~ther it
contains the VTOCE parts requested by the caller. If so,
return them.

Find a buffer which is not out-of-service and initiate an
I/0 request to read the VTOCE into that buffer.

Await completion of the I/O, and repeat the process
(asynchronous things are going on, so it is not guaranteed
to be the case that the buffer is still assigned to the
requested VTOCE; if it is not, which is unlikely but
possible. the process is repeated).

vtoc_man$put_vtoce

Search for a buffer which contains some part of this VTOCE.
If it is out-of-service, await completion of the I/O. If no
buffer is found. find a buffer which is not out-of-service.

Copy the VTOCE parts supplied into the buffer.

Initiate the I/0 to write the VTOCE parts to disk. Note that

page 4 03/03/82
t ~

MTB-570

5.

there is one case where this cannot be done in a single I/0
(viz. parts 1 and 3). This will be done by initiating one

· I/0. awaiting its completion. and initiating the second I/O.
There is currently no supervisor module which writes parts 1
and 3 •

.Q..THER CHANGES

The following are other changes to vtoc_man. to be made at the
same time, but not related to the primary objectives of the
design. These changes will improve the processor efficiency of
vtoc_man at a modest increase in memory.

The linear list of buffer descriptors is replaced by a
doubly-threaded used list. As buffers are used, they are
moved to the tail of this list. Finding a buffer involves
following the used list µntil one is found which is not
out-of-service. This replaces a linear search of buffer
descriptors.

A h~sh table is used to determine whether a given VTOCE {as
identified by a PVT index and a VTOCE index) has a buffer
assigned. This replaces a linear search.

6. URFORMANCE

In the words
"There's no
here.

of the cashier at Colleen's Chinese Cuisine.
such thing as a free lunch". And that's the case

Metering during peak activity on System M and MIT indicate that
between 20% and 25% of all VTOCE I/Os can be eliminated with this
design. This corresponds to between 1% and 2% of all disk I/Os.

The cost in wired memory is approximately 128 additional words
per buffer. With the current default number of buffers (32).
this is an additional 4KW of wired memory. With the current
maximum number of buffers (64). this is an additional 8KW of
wired memory.

03/03/ 82 page 5

MTB-570

7 • .S..UMMARY OF CHANGES

All changes required to implement this design are indicated below
by module.

acti v·ate
Call vtoc_man$get_vtoce for the entire VTOCE. instead of
reading part 1 to determine how many parts to read.

dctl
Rework for new queue format.

device_meters
Recompile with new include files.

disk_control
Rework for new queue format.

disk_init
Recompile with new include files.

disk_meters
Recompile with new include files.

disk_queue
Rework for new queue format.

get_io_segs
Recompile with new include files.

ioi_assign_disk __ cha nnel s
Recompile with new include files.

hc_dmpr_primitives
Call vtoc man$get_vtoce for the entire VTOCE. instead of·
reading part 1 to determine how many parts to read.

init vtoc man
Change to initialize the new vtoc_buffer seg.

spg_f s_info_
Recompile with new include files.

truncate.::.vtoce
Call vtoc_man$get vtoce for the entire VTOCE. instead of
reading part 1 to determine how many parts to read.

update vtoce
Call vtoc_man$get _vtoce for the entire . VTOCE. instead of
reading part 1 to determine how many parts to read.

page 6 03/03/ 82

Ii·

MTB-570

verify_lock
Recompile for new include files.

vtoc __ buffer _meters
Rewrite to print new metering data.

vtoc_interrupt
Rework for new sector I/0 scheme.

vtoc_man
Rewrite.

wired_shutdown
Recompile with new include files.

03/03/82 page 7

~) ('
dskdcl. incl .alm 02/04/82 1714.1r w 02/04/82 · 1713.1

"BEGIN INCLUDE FILE dskdcl.1ncl.alm

"Created 02/04/82 1712.6 est Thu by convert include file,
Version of 12/01/81 1540.3 est Tue. - -

"Made from >user_dir_dir>Mult1cs>Bongiovanni>htd>no_salvage_dir>dskdcl.1ncl.p11,
" modified 02/04/82 1712.5 est Thu

Structure dlsk_data

equ disk_data_slze,72

equ disk_data.subsystems,O

equ

equ
equ

equ

disk_data.free_offset,1

disk data.status mask,2
disk=data.array,S

disk_data.offset,8

equ dlsk_data.name,9

Structure disktab

equ
equ
equ
equ
equ
equ
equ

equ

equ
equ
equ
equ
equ
equ
equ

equ

equ

disktab. lock,O
disktab.nchan, 1
disktab.ndrives,2
dlsktab.channels_online,3
dlsktab.dev_busy,4
dlsktab.dev queued,6
dlsktab.wq,S

disktab.free_q,10

dlsktab.abs mem addr,11
dlsktab.errors,13
dlsktab.ferrors,14
disktab.edac_errors,15
disktab.pg_io_count,16
disktab.vt lo count,18
dlsktab.call_lock_meters,20

disktab.lnt_lock_meters,24

disktab.alloc_wait_meters,28

" UPPER

" LEVEL 2

" UPPER

" DOUBLE
" DOUBLE
" LEVEL 2

• LEVEL 2

" LEVEL 2

" LEVEL 2

" LEVEL 2

,,
45099

)

equ disktab.run_lock_meters,32

equ disktab.pg_wait,36
equ disktab.vt wait,40
equ disktab.pg=io,44
equ disktab.vt _io,48
equ disktab.queue,52

equ disktab.chantab,308

equ disktab.devtab,500

Structure quentry

equ quentry_size,4.

equ quentry.next,O
equ quentry.write_sw_word,0
bool quentry.write_sw,400000
equ quentry.sect_sw_word,0
bool quentry.sect_sw,200000
equ quentry.testing_word,O
bool quentry.testing,100000
equ quentry.retry_word,O
bool quentry.retry,040000
equ quentry.used_word,0
bool quentry.used,020000
equ quentry.swap_word,0
bool quentry.swap,010000
equ quentry.cyl inder_word,0
equ quentry.cylinder_shift,0
bool quentry.cylinder_mask,007777

equ quentry.pdi_word,1
equ quentry.pdi_shift,30
bool quentry.pdi_ mask,000077
equ quentry.coreadd_word,1
equ quentry.coreadd_shlft,6
equ quentry.dev_word,1
equ quentry.dev_shlft,0
bool quent~y.dev_mask,000077

equ quentry.sector_word,2
equ quentry.sector_shift,15
equ quentry.n_sectors_word,2
equ quentry.n_sectors_shift,9
boo·l .quentry. n_sectors_mask, 000077

equ quentry.time,3

Structure chantab

equ

equ
equ

)

chantab_s 1ze,24·

chantab.chx,O
chantab. toi_ctx,1

)

II LEVEL 2

" DOUBLE
" DOUBLE
" DOUBLE
" DOUBLE
" LEVEL 2

" LEVEL 2

" LEVEL 2

" UPPER

" DL

" DL

" DL

" DL

" DL

" DL

'))

l
equ
equ

equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
boo.1
equ
equ
bool

equ
equ
equ
bool
equ
equ
bool

equ

equ
bool
equ
bool
equ

equ
equ

equ
equ
bool

equ
equ
equ
equ

· equ
equ
equ
equ
equ

chantab.statusp,2
chantab.chan1d,4

chantab.1n_use_word,6
chantab.in_use,400000
chantab.act1ve_word,6
chantab.active,200000
chantab.rsr_word,6

" DOUBLE

• DL

" DL

chantab.rsr,100000 "DL
chantab.prior word,6
chantab.pr1or~040000 • DL
chantab.1rii use word,6
chantab.ioi-use~020000 "DL
chantab.inop_word,6
chantab.inop,010000 "DL
chantab.broken_word,6
chantab.broken,004000 " DL
chantab.action code word,6
chantab.action-code-shift,9
chantab.action=code=mask,000003

chantab.qrp,7
chantab.command_word,7
chantab.command_shift,9
chantab.command_mask,000077
chantab.erct_word,7
chantab.erct_shift,O
chantab.erct_mask,000777

chantab.select_data,8

chantab. limit shift,24
chantab.limit=mask,007777
chantab.mbz_shift,21
chantab.mbz_mask,000007
chantab.sector_shift,0

chantab.connect_time, 10
chantab.connects,12

" UPPER

" LEVEL 2

" DOUBLE

chantab.deta11ed_status_word,13
chantab.detailed_status_shift,28
chantab.detailed_status_mask,000377

chantab.rstdcw,15
chantab.scdcw,16
chantab.sddcw,17
chantab.dcdcw,18
chantab.dddcw,19
chantab.dscdcw,20
chantab.dsddcw,21
chantab.rssdcw,22
chantab.status,23

Structure qht

equ
equ

qht.head,O
qht. ta i 1 ,0

• UPPER
" LOWER

(l ,,

Structure devtab

equ devtab_sf ze,8

equ
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
equ
bool
equ
equ
bool

equ
equ
equ
equ
equ
equ

devtab.pvtx word,0
devtab.pvtx=shfft,27
devtab.pvtx_mask,000777
devtab.fnop word,O
devtab.fnop~000400
devtab.was broken word,O
devtab.was=broken~000200
devtab.broken word,0
devtab.broken~000100
devtab.abandoned word,0
devtab.abandoned~000040
devtab.buddy_word,O
devtab.buddy_shfft,6
devtab.buddy_mask,000077
devtab.pdf_word,0
devtab.pdt_shift,0
devtab.pdf_mask,000077

devtab.queue count,1
devtab.cylfnder,2
devtab.seek_distance,3
devtab.read count,4
devtab.wrfte count,5
devtab.tfme_Tnop,6

Structure pvtdi

equ
bool

" DU

" DU

• DU

" DU

" DOUBLE

·equ
bool
equ
bool

pvtdi.sx shfft,24
pvtdi.sx-mask,007777
pvtdi .usable sect per cyl shift, 12
pvtdi.usable=sect=per=cyl=mask,007777
pvtdi.unused sect per cyl shift,0
pvtdi.unused=sect=per=cyl=mask,007777

Structure disk_lock_meters

equ disk_lock_meters_size,4

equ disk_lock_meters.count,0
equ disk_lock_meters.wafts,1
equ disk_ 1 ock_meters. watt_ ti me ,.2 • DOUBLE

equ RST_LISTX, 1 " MANIFEST
equ sc_LISTX,2 • MANIFEST
equ DSC_LISTX,6 • MANIFEST
equ RSS_ll STX, 8 • MANIFEST

"END INCLUDE FILE dskdcl.fncl.alm

)

)

))

(' (..,

dskdcl. incl .pl 1 02/04/82 1714.1r w 02/04/82 1712.5 72837

/•Begin include ft le dskdcl.incl.pl1 Last Modified February 1982 •/
/• Structures used by the Dtsk DIM •/

/•format: style4,delnl,insnl,tree,ffthenstmt,indnontterend •/
dcl disk_seg$ ext; /• dfsk data segment •/

dcl dtsksp ptr,
diskp ptr;

dcl

dcl

'}'.page;

disk data based (dtsksp) aligned,
2 subsystems fixed bin,
2 free offset bit (18),
2 status mask bit (36),
2 pad (5) f i xed bin, ·
2 array (32),

(
3 offset bit (18),
3 pad bit (18) ,
3 name char (4)
) unal;

disktab based (dtskp) aligned,
2 lock bit (36) unal,
2 nchan fixed bin,
2 ndrtves fixed bin,
2 channels online fixed bin,
2 dev busy-bit (64),
2 dev-queued bit (64),
2 wq (0:1) like qht,
2 free q like qht,
2 abs_mem_addr fixed bin (26) unsigned,
2 pad fixed bin,
2 errors fixed bin,
2 ferrors fixed bin,
2 edac errors fixed bin,
.2 pg to count (0:1) fixed bin,
2 vt=io=count (0:1) fixed bin,
2 call lock meters like disk lock meters,
2 int Tock meters ltke dtsk Tock meters,
2 alloc wait meters like disk lock meters,
2 run lock meters like dfsk lock meters,
2 pg watt (0:1> fixed btn <52>. -
2 vt-waft (0:1) ffxed btn (52),
2·pg-to (0:1) fixed btn (52),
2 vt-to (0:1) fixed bin (52),
2 queue (64) like quentry,
2 chantab (8) like chantab,
2 devtab (0 refer (dtsktab.ndrtves)) like devtab;

dcl qp ptr,
cp ptr:

/• pointer to df sk subsystem tnfo •/
/• pointer to djsk DIM info structure •/

/• dfsk subsystem tnformatton •/
/• number of subsystems •/
/• offset of first unused location in segment •/
/• mask for checking for disk error •/
/•. 1 tne up on O mod 8 boundary •/
/• per subsystem info •/

/• location of data for this subsystem •/

/• name of subsystem •/

/• control structure for DIM's •/
/• data base lock •/
/• number of disk channels •/
/• highest disk drive number •/
/•number of dtsk channels actually tn use •/
/* busy bit for each device •/
/• requests queued bit for each device •/
/• watt queue head/tail •/
/•free queue head/tall •/
/* absolute memory address of this structure •/

/• error count •/
/• fatal error count •/
/• count of EDAC correctable errors •/
/• count of page 1/0 operations •/
/• count of VTOCE 1/0 operations •/
/• lock meters for call stde of DIM •/
/* lock meters for Interrupt side of DIM •/
/*meters for queue entry allocations·•/
/* lock meters for run calls •/
/• total time spent watttng for page 1/0 •/
/• total time spent wafting for VTOCE 1/0 •/
/• total time spent doing page l/D •/
/• total time spent dotng VTOCE 1/0 •/
/• queue entries •/ ·
/• channel information table •/
/• device information table •/

/• pointer to queue entry •/
/• pointer to channel Information table •/

('

dC'l

dcl

-~·-

)

quentry based (qp) aligned,
(
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

next bit (18),
write_sw bit (1),
sect sw bit (1),
testing bit (1),
retry bit (1),
used bit (1),
swap bit (1),
cylinder fixed bin
pdi unsigned fixed
coreadd bit (24),
dev unsigned fixed
sector bit (21),
n sectors fixed bin
pad bit (9).
t i me b it (36)

) unal;

(11) •
bin (6),

bin (6),

(6) unsigned,

chantab based (cp) aligned,
2 chx fixed bin (35),
2 ioi_ctx fixed bin (35),
2 statusp ptr,
2 chanid char (8),
(
2 padO bit (18),
2 in use bit (1),
2 active bit (1),
2 rsr bit (1),
2 prior bit (1),
2 ioi use bit (1),
2 i nop b i t (1) ,
2 broken bit (1),
2 action code bit (2),
2 pad1 bit (9)
) unal,
(
2 qrp bi t (1 S) ,
2 pad2 bi t (3) ,
2 command bit (6),
2 erct fixed bin (8)
) unal,
2 select data,

(-
3 limit bit (12),
3 mbz bit (3),
3 sector bit (21)
) unaligned,

2 connect_time fixed bin (52),
2 connects fixed bin,
2 detailed status (0:8) bit (8) unal,
2 rstdcw bit (36),
2 scdcw bit (36),
2 sddcw bit (36),
2 dcdcw bit (36),
2 dddcw bit (36),
2 dscdcw bit (36),

. 2 dsddcw b t t (36) ,
2 rssdcw bit (36), ·
2 status btt (36) aligned;

)

/• queue entry •/

/• index to next queue entry •/
/• non-zero for write operation •/
/• non-zero for single sector operation •/
/• non-zero tf quentry ts for disk ready test •/
/• non-zero tf retry has been performed on broken device •/
/• non-zero tf queue entry in use •/

/•disk cylinder number•/
I• pdt of device •/
/• memory address for data transfer •/
/• disk device code •/
I• disk sector address •/
/• number of sectors for sector I/O •/

/• low-order microsecond clock at queue •/
/• ttme entry was queued •/

/• channel information table •/
/• to manager channel index •/
/• toi channel table index •/
/• pointer to hardware status word •/
/• channel name •/

/• non-zero tf channel being used •/
/• non-zero tf channel active •/
/• non-zero if RSR tn progress •/
/• priority of current request •/
/• non-zero tf channel usurped by IOI •/
/• non-zero if channel inoperative •/
/• non-zero tf channel broken •/
/• saved from status •/

/• rel ptr to queue entry •/

/• peripheral command •/

I• error retry count •/
/• data passed to IOM on select •/

/• ltmtt on number of sectors•/

I• sector address •/
/• time of last connect •/
/• count of connects performed •/
/• detailed status bytes •/
/• restore command •/
/• select command •/
/• select data xfer •/
/• command to read or write •/
I• data xfer DCW •/
/• RSR command •/
/• RSR data xfer •/
I• RSS command •/
/• saved status •/

)

)

)

(l
%fjage;
dcl 1 qht ali.gned based,

2 (head, tail) bit (18) unal;

dcl dp ptr,
pvtdip ptr;

dcl

dcl

dcl

devtab based (dp) aligned,
(
2 pvtx fixed bin (8),
2 inop bit (1),
2 was broken bit (1),
2 broken bit (1),
2 abandoned bit (1),
2 pad bit (11),
2 buddy unsigned fixed bin (6),
2 pdi unsigned fixed bin (6)
) unal,
2 queue count fixed bin (8),
2 cylinder fixed bin (11),
2 seek distance fixed bin (35, 18),
2 read=count fixed bin,
2 write count fixed bin,
2 time_Tnop fixed bin (52);

pvtdi based (pvtdip) aligned,
(
2
2
2
)

sx fixed bin (11),
usable sect per cyl
unused=sect=per=cyl
unal;

f i xed bi n (11),
fixed bin (11)

disk_lock_meters based aligned,
2 count fixed bin,
2 waits fixed bin,
2 wait_time fixed bin (52);

dcl (
RST LISTX init (1),
SC LISTX init (2),
DSC LISTX init (6),
RSS-LISTX init (8)
) fixed bin (12) static options (constant);

/•End of include file dskdcl.incl.pl1 •/

(l
/• queue head/tail structure •/

/• pointer to device information table •/
/• pointer to dim_info in PVT entry •/

/• device information table •/

/• index of PVT entry for device •/
/• device inoperative •/
/• device previously broken •/
/• device down •/
/• device lost and gone forever •/

/• other device on this spindle or O •/

/• primary device index •/
/• count of requests queued for device •/
/•current cylinder position•/
/• average seek distance •/
/• count of reads •/
/• count of writes •/
/• time drive became inoperative •/

/• disk DIM info in PVT entry •/

/• structure index •/
/•#of usable sectors on disk cylinder•/

/•#of unused sectors at end of cylinder•/

/• lock meters for disk DIM •/
/• total number of attempts •/
/• number of attempts which required waiting •/
/• total time spent waiting •/

/• listx for restore•/
/• llstx for select•/
/• listx for RSR •/

/• listx for RSS •/

\l

) \

vtoc_buffer. incl.alm 02/05/82 2036.9r w 02/05/82 2036.9 17748

"BEGIN INCLUDE FILE vtoc_buffer.incl .alm

"Created 02/05/82 2036.8 est Fri by convert include file,
Version of 12/01/81 1540.3 est Tue. - -

"Made from >udd>Multics>Bongiovanni>hardcore test dir>no salvage dir>vtoc buffer.incl.pl1,
" modified 02/05/82 2036.8 est Fri - - - - -

Structure vtoc buffer

equ vtoc_buffer. lock,O • LEVEL 2

equ vtoc_buffer.processid,O
equ vtoc_buffer.wait_event,1

equ vtoc buffer.notify sw word,2
bool vtoc=buffer.notify=sw~400000 " DU

equ
equ
equ
equ
equ

equ

equ

vtoc_buffer.n_bufs,3
vtoc buffer.n hash buckets,4
vtoc=buffer.hash_mask,5
vtoc buffer.abs addr,6
vtoc=buffer.wait_event_constant,8 " DOUBLE

vtoc_buffer.buf_desc_offset,10" UPPER

vtoc_buffer.buf_offset,11 " UPPER

equ vtoc_buffer.hash_table_offset,12 "UPPER

equ vtoc_buffer.meters,13

equ vtoc_buffer.hash_table,14

equ vtoc_buffer.buf _desc,O

equ vtoc_buffer.buffer,O

Structure vtoc_buf_desc

equ vtoc_buf_desc_size,4

equ
equ

)

vtoc buf desc.pvte rel,0
vtoc=buf=desc.vtocx,O

" LEVEL 2

" UPPER

" LEVEL 2

" LEVEL 2

" UPPER
" LOWER

)

)

)

()

equ
equ
equ
bool
equ
equ
bool
equ.
equ
bool
equ
bool
equ
bool

equ

equ

equ
equ

vtoc buf desc.part desc rel,1 "UPPER
vtoc-buf-desc.parts used word,1
vtoc-buf-desc.parts-used-shlft,15
vtoc-buf-desc.parts-used-mask,000007
vtoc-buf-desc.parts-os word, 1
vtoc-buf-desc.parts-os-sh1ft, 12
vtoc-buf-desc.parts-os-mask,000007
vtoc-buf-desc.parts-err word,1
vtoc-buf-desc.parts-err-shift,9
vtoc-buf-desc.parts-err-mask,000007
vtoc-buf-desc.notlfy sw-word,1
vtoc-buf-desc.notify-sw-:-000400 • DL
vtoc-buf-desc.wrlte sw word,1
vtoc::::buf::::desc.write::::sw-:-000200 " DL

vtoc_buf _desc·. ht_ thread, 2

vtoc_buf_desc.used_thread,3

vtoc_buf_desc.fp,3
vtoc_buf_desc.bp,3

• UPPER

" LEVEL 2

" UPPER
" LOWER

Structure vtoce buffer

equ vtoce buffer slze,192

equ vtoce_buffer.words,O

equ.
equ

N PARTS PER VTOCE,3
VTOCE_BUFFER_SIZE,0192

"END INCLUDE FILE vtoc_buffer.1nc1 .alm

" MANIFEST
" MANIFEST

<l ()

/* START OF:

dcl

dcl
dcl
dcl

dcl

dcl

J

)

vtoc_buffer.incl.p11 02/05/82 2036.9r w 02/05/82 2036.8 25074

· vtoc_buffer. incl .pl 1 Feruary 1982 * * * * * * * * * * * * * * • • •/

vtoc_buffer_seg$

vtoc_buffer_segp
vtoc buf descp
vtoc=:bufp

vtoc_buffer

2 lock,
3 processid
3 wa i t_event
3 notify_sw

ext;

ptr
ptr
ptr

aligned based (vtoc_buffer_segp),

bit (36) aligned,
bit (36) aligned,
bit (1) aligned,

/• Global lock for VTOC buffers •/
/• owner •/
/• For lock •/
/• ON => notify on unlock •/

2 n bufs fixed bin, /•Number of full VTOCE buffers •/
/• Number of hash table buckets */
/• Mask for hash algorithm •/

2 n-hash buckets fixed bin,
2 hash mask bit (36) aligned,
2 abs addr fixed bin (24),
2 wait event constant fixed bin (36) uns,

/• Absolute address of vtoc buffer seg •/
/• Constant to add to part Tndex to form wait event */
/* Offset of buf desc •/ 2 buf desc offset bit (18),

2 buf-offset bit (18), I• Offset of buf-*/
2 hash_table_offset bit (18).
2 meters,

/• Offset of hash_table •/

3 pad fixed bin, /• For now •/

2 hash_table

2 buf_desc

2 buff er

vtoc_buf_desc
2 pvte_rel
2 vtocx
2 part desc rel
2 parts used
2 parts-os
2 parts-err
2 notify sw
2 write sw
2 pad -
2 ht thread
2 pad1
2 used_thread

3 fp
3 bp

(vtoc_buffer_seg.n_hash_buckets) bit (18) aligned,

(vtoc_buffer_seg.n_bufs) aligned like vtoc_buf_desc,

(vtoc_buffer_seg.n_bufs) aligned like vtoce_buffer;

a·l igned based (vtoc_buf_descp).
bit (i8) unal, /•Offset to PVTE within PVT•/
fixed bin (17) unal, /• VTOCE Index•/
bit (18) unal, /•Offset to first part descriptor for this buffer•/
bit (3) unal, /•Mask of parts used or os •/
bit (3) unal, /*Mask of parts out-of-service•/
bit (3) unal, /•Mask of parts with I/O errors (hot)•/
bit (1) unal, /•ON=> notify requied on I/O completion•/
bit (1) unal, /•ON=> write 1/0 */
bi t (7) una 1 ,
bit (18) unal, /•Offset of next entry in hash table•/
b i t (18) una 1 ,
aligned,
b 1t (18) una 1 ,
bit (18) unal;

/•Used list thread•/
/• Forward pointer •/
/• Backward pointer •/

)

)

)

dcl

dcl
dcl

)
(

/• END OF:

vtoce_buffer
2 words

N PARTS PER VTOCE
VTOCE_BUFFER_SIZE

()
aligned based,
(3 • 64) bit (36) aligned;

fixed bin Int static options (constant) inlt (3);
fixed bin 1nt static options (constant) in1t (3 • 64);

vtoc_buffer.1nc1.p11 • • • • • • • • • * • • • • • • •/

()
,,

