
Multics Technical Bulletin MTB-566

To: Distribution

From: John J. Bongiovanni

Date: 02/ 16/ 82

Subject: Reliable File Storage: Physical Volume Management. Page
Control, and Segment Control

1. ABSTRACT

Reliable File Storage is a significant user-compatible
enhancement to the Multics Storage System. Under this
enhancement. the state of the Storage System on disk ~ould be
consistent at all times. An effect of this is the ability to
boot Multics following even catastrophic system failure (crash
without Emergency Shutdown, or ESD) without special recovery of
all physical volumes which were mounted at the time of the crash.
This document describes the supervisor changes necessary to
implement Reliable File Storage. These changes are focused in
Physical Volume Management, Page Control, and Segment Control.
Each of these areas is discussed separately, following a
statement of objectives and an outline of design strategy. Where
relevant. changes to supervisor data bases are described in
detail (include files). At the end of the MTB, all supervisor
changes required are summarized by module.

With Reliable File Storage, it will not be necessary to salvage
physical volumes which were mounted at the time of a crash
without ESD (with the possible exception of the Root Physical
Volume (RPV)). At worst. some free records of physical volumes
which were mounted at the crash will be lost temporarily to the
system. These records can be recovered by a later volume
salvage. With the exception of this loss of some free disk
space. there is no impact on file system integrity or system
performance· as a result of using the volumes prior to salvaging.
The salvaging of mounted physical volumes. in use by the Storage
System, while the system is running, will be discussed in a
future MTB.

Send comments on this MTB by one of the following means:

-~~~~~~~~~

Multics Project internal working documentation. Not to be
distributed outside the Multics Prdject.

02/16/82 page 1

MTB-566

By Multics Mail, on MIT or System M:
Bongiovanni.Multics

By Telephone:
HVN 261-9314 or (617)-492-9314

2. .MOTIVATION - CURR.EN.LF!LE_SYSTEM

When Multics crashes without an ESD, the state of the Storage
System may be in an inconsistent state. in the following senses:

The volume map of a physical volume describes records
within the paging region which are free (i.e., not
allocated to any segment). This map is arbitrarily out
of date. as it reflects the state of the volume when
the volume was last mounted.

A Volume Table of Contents Entry (VTOCE) may refer to
an address which does not belong to the owning segment.
Such an address may belong to another segment. be free
(hence contain residual data from another segment) •. or
be outside the paging region of the pack. This
situation results from physical media failure which
overwrites the VTOCE with arbitrary data. Although not
usually the result of ESD failure, this situation can
occur when the system crashes because of hardware
failure.

The linked-list of free VTOCEs may be damaged. due to a
crash while an update was in progress or to physical
media failure.

Some of these failure modes are potentially catastrophic, and
others are merely security hazards. To prevent these problems
following a crash without ESD, a physical volume salvage is
required for each volume which was mounted at the time of the
crash. This salvage accomplishes the following:

page 2

Validates each VTOCE for reasonable field .contents
("syntactically") and reconstructs the free VTOCE list.

Validates the file map of each VTOCE for valid
addresses and reused addresses (i.e., two VTOCEs ·
claiming the same record address in the paging region).

Rebuilds the volume map as the difference between the
entire paging region and the set of all addresses
claimed by one and only one VTOCE.

02/ 16/82

MTB-566

A physical volume salvage involves walking the VTOC seque~tial~Y·
and it takes from 3 to 5 minutes to accomplish. Volume salvaging
is invoked automatically when a volume is mounted which had not
been demounted properly. Typically, all volumes which were
mounted at the time of the crash are mounted automatically (and
hence salvaged) when the Initializer process leaves ring-1. The
effect is that all volumes are salvaged. sequentially. before
Answering System initialization. At a large site, this lengthens
the down time seen by users considerably after a crash without
ESD.

3 •. OBJECTIVES

Reliable File Storage will satisfy the following objectives:

Maintain the state of the Storage System on each
physical volume in a copsistent state at all times. so
that the volume can be mpunted and used by the Storage
System without exceptional recovery action following
any type of crash.

Maintain sufficient redundancy in all Storage System
data stored on disk to detect likely media failures.

Allow implementation of the Multics release which
contains Reliable File Storage without the need for a
hierarchy reload or volume reload.

Allow the use of physical volumes initialized or used
on the Multics release which contains Reliable File
Storage to be used on previous Multics releases. This
aids site exposure testing of the new release. since
sites would be able to switch between releases without
a hierarchy or volume reload.

Allow complete recovery of any physical volume from any
suitably privileged process while the volume is mounted
·and in use by the Storage System. That is. allow a
physical volume salvage while the target volume is
being used for paging.

The design described in this document satisfies all except the
last objective.

02/16/82 page 3

MTB-566

4. DESIGN STRA TEG.I'

The following is a general description of the design.

Currently, the Volume Map is copied into a region in an fsmap seg
when the volume is mounted. Record addresses are withdrawn from
and deposited to this region (the image of the Volume Map). When
the volume is demounted. the image in the fsmap_seg is copied
back to the Volume Map. This mechanism is replaced by an
intermediate buffer, or stock, of free record addresses per
volume. These addresses are withdrawn from the Volume Map, but
never used until the updated Volume Map (indicating that they are
in use) is written to disk successfully. Normally, re~ord
addresses are withdrawn from and deposited into this stock.
Associated with each stock is a low threshold and a high
threshold. When the number of free records in the stock falls
below the low threshold, more record addresses are withdrawn from
the Volume Map into the stock. When the number of free records.
in the stock exceeds the high threshold, some record addresses
are deposited from the stock into the Volume Map. When the
volume is demounted, any free record addresses in the stock are
deposited into the Volume Map. If the system crashes without
ESD. all record addresses marked as free in the Volume Map are
indeed free. Some free record addresses may be lost after a
crash without ESD, however. Addresses which are lost include ~
those which were in the record stock at the time of the crash.
and nulled addresses of segments active at the time of the crash.

The Volume Map is divided into sections. each of
redundant information which allows media damage
This redundant information includes a checksum of
the section. The size of a section is chosen
overhead associated with checksum computation.

which contains
to be detected.
the bit map in
to minimize the

The file map in the VTOCE contains a checksum which allows media
damage to be detected.

Currently, all free VTOCEs on a volume are linked in a list. the
index of first entry of which is kept in the PVTE. This is
replaced by a bit map of free VTOCEs on the volume (a VTOC Map).

A small stock of free VTOCEs is also maintained for performance
(to reduce page faults against the VTOC Map). There is no need to
synchronize the VTOCE stock and the VTOC Map, as there is for the
record stock and the Volume Map.

page 4 02/16/82

MTB-566

5. EJ:iYSICAL VOLUME MANAGEMENT

5.1. filsk bck .I.&y.Q.fil

The revised disk pack layout is defined in disk_pack.incl.pl1
(Note: all include files referenced in this MTB are attached).
The salient changes are as follows:

02/16/82

Structurally, the pack layout is compatible with the MR
9 pack layout. This means that the constant record
addresses of the sections of a disk pack are the same
(e.g., the VTOC begins at record 8. the Volume Map
consists of records 1 through 3, etc.).

The format of the Volume Map (defined in
volmap.incl.pl1) has changed incompatibly. The new
format is pictured in Attachment 1. and it has the
following characteristics:

Each page of the Volume Map is divided into
sections which are of equal size. This size
is a multiple of the physical device
addressable unit (64 words). Initially, each
Volume Map section will be 128 words. The
Volume Map is described in the Volume Label
(begin record number, number of records. and
size of a section).

Each Volume Map section contains redundant
information for protection against media and
transmission failures (specifically. the
Physical Volume ~nique identifier, or PVID;
and a checksum). With a section size of 128
words, the checksum can be computed with a
small amount of overhead.

Each map word describes 32 addresses. This
allows a fast record-within-section to
bit-within-map conversion.

In a map word, a bit set ON means that , the
corresponding record address is free. This
affords additional protection. as common
hardware and software errors set bits or
words to zero.

The format of the VTOC header has changed compatibly
(reference vtoc_header.incl.pl1). The dumper bit map
has the same format as in MR 9. The header has been
retained for compatibility. but it is no longer used.

page 5

page 6

It formerly contained a description
the volume label) and a VTOCE index
threaded list of free VTOCEs.
described by the VTOC Map.

MTB-566

of the VTOC (now in
of the first in a
Free VTOCEs are now

The VTOC map occupies what was an unused record. It
has the same format as the Volume Map, except that it
describes VTOCE indices instead of record addresses.
In the initial implementation, the maximum number of
VTOCEs per pack is reduced from 36720 to 31744 (the
constraint is the number of VTOCEs which can ·be
described in one map page). It is ext~emely unlikely
that this reduction will affect existing sites.

The Volume Label has
fs_vol_label.incl.pl1),
characteristics:

changed compatibly (reference
and it has the following

A disk pack is now completely
self-describing. The constants used to find
sections of the pack (e.g., the VTOC origin)
have been replaced by fields in the label.
In the initial release. these fields will
contain the MR 9 constants. This
self-description will allow the layout of the
pack to be changed easily in future releases,
if necessary.

A copy of the Volume Label is kept in a
previously unused record in the Label Region.
This redundancy will allow the pack to be
recovered in the event of damage to the
label. Such redundancy is more important now
that the pack is self-describing, based on
fields in the Volume Label.

A ·volume Map version has been included as a
field which was zero previously. This
version will be used to trigger conversion of
the Volume Map and generation of the VTOC map
when an MR 9 pack is mounted.

The field time unmounted has been moved. In
its previous location, a value will be placed
which will trigger a volume salvage if a pack
with the new layout is mounted on a system
running MR 9. This relatively minor change
to the Volume Label format allows packs with
the new layout to be used in MR 9.

The field vol trouble count is a count of the
number of times damage to any of the control

02/16/82

MTB-566

~ structures on the pack has been detected
since the last physical volume salvage.
Control structures include the Volume Map,
the VTOC Map, and the VTOCE file maps. This
field is used in a heuristic at volume
acceptance which triggers automatic volume
salvage.

5.2. ~ompatibili~onsideratio.D...§.

From the previous section. it should be obvious that a pack can
be moved between an MR 9 system and a later system with the
following costs on each cross-system mount:

When an MR 9 pack is mounted on a later system. a new
Volume Map and VTOC Map must be generated. In order
for VTOCE checksums to be correct. they must be
computed for each in-use VTOCE. This requires a
sequential scan of the entire VTOC. The VTOC Map is
built during this scan, as free VTOCEs are detected
easily. The cost is approximately that of a volume
salvage.

When a pack with the new layout is mounted on an MR 9
system, a full volume salvage is required. This will
rebuild the Volume Map in the proper format from the
VTOCE file maps, and it will rebuild the threaded list
of free VTOCEs by syntactic detection of unused VTOCEs.
A volume salvage requires a sequential scan of the
entire VTOC.

5 .3. System Data_B_a.ses

The following system data bases are changed as indicated:

02/16/82

The File System
eliminated. The
f sdct are moved to
Table (PVT).

Device Control
few remaining
the header of

Table (fsdct) is
useful fields in the

the Physical Volume

The PVT header has been expanded. as has each PVTE.
Reference pvt.incl.pl1.

The segments which contained volume
(fsmap_seg's) have bee~ eliminated.

bit maps

-p~ge 7

MTB-566

A new segment, stock_seg, contains a stock of. free
addresses for each mounted physical volume (reference
stock_seg. incl. pl 1). It al so contains a stock of free
VTOCEs for each mounted physical volume. This is an
unpaged segment, with sufficient space to hold sto~ks
for all disk drives defined in the configuration. Each
record_stock is 64 words long and contains enough room
for 116 record addresses. Each VTOCE stock is 8 words
long and contains enough room for 16 free VTOCE
indices.

A volmap_seg is active and entry-held for each mounted
physical volume. This segment is not in the File
System; it describes the Volume Map and VTOC Map of the
volume. Initially, it is a 4K segment, with the first
3 pages describing the Volume Map and the 4th page
describing the VTOC map. The offset and length of the
Volume Map and of the VTOC Map within this segment are
in the PVTE, along with a Segment Descriptor Word (SDW)
to access the segment. ·

volmap_abs seg is an abs-seg used
volmap_seg.

to access a

5. 4. .,Sy stem .. ln.i.tial i z a ti on

The system data bases referenced above are initialized as
follows:

A PVTE, a record_stock entry, and a vtoce stock entry
is allocated for each disk drive defined in the
configuration.

The record_stock and
initialized as empty.

vtoce stock entries are

The PVTE is initialized to point to the record_stock
and VTOCE stock associated with the drive. The SDW
describing the volmap seg is initialized to invalid
(segment fault).

Other changes are necessary so that Page Control . can withdraw
during record addresses from the Hardcore Partitions

initialization.

page 8

The first page of each Hardcore
initialized as a fake Volume Map.
describes the Partition. and it is

Partition is
This Volume Map
initialized to

02/16/82

MTB-566

indicate that the Partition is free. except for the
first record.

A volmap seg is activated for each volume which is
defined as containing a Hardcore Partition. This
segment describes the fake Volume Map.

There is no need for a fake VTOC map.

When the RPV is accepted. all volmap_seg's are
destroyed and record_stocks are cleared to empty.
Relevant PVTE fields of affected drives are
re-initialized. From this point (RPV ac~eptance),
there is no longer need to withdraw addresses from the
Hardcore Partition.

5.5 • .Y.Qlume Ac_c_ept~

When a Storage System volume is mounted. it is accepted as
follows:

02/16/82

If the Volume Map version is o. the volume is salvaged.
This results in the generation of a Volume Map (in the
new format) and a VTOC Map. Additionally. a checksum
is computed for each VTOCE. By proper sequencing, this
is done in a manner which is safe across crashes. That
is, if a crash occurs during the salvage, the pack is
in a consistent state.

If the volume belongs to the Root Logical Volume (RLV).
a heuristic is used to determine whether the volume
needs to be salvaged. The volume will be salvaged if
there are fewer than 100 free records and the
vol_trouble count in the Volume Label is non-zero. Note
that a crash without ESD adds one to the
vol trouble count. If the volume does not belong to
the RLV. warning messages will be printed on the
console if the number of free records is exceptionally
low, or if the vol_trouble_count is exceptionally high.

A volmap_seg is activated and entry-held.
this segment is placed in the PVTE.

An SDW to

PVTE fields are initialized from information in the
Volume Label. The Volume Map is scanned, and an array
of flags is built in the PVTE indicating which Volume
Map sections contain free record addresses.

No record addresses or free VTOCE indices are withdrawn

page 9

MTB-566

from the respective maps on disk. This will be done on
demand (i.e., when the first page is created on the
device or the first VTOCE is created).

5.6. .YQ.lume ~ounting

When a Storage System volume is demounted. the following occurs:

All VTOCE indices are cleared from the vtoce_stock
entry and updated to the VTOC Map.

All record addresses are cleared from the record~stock
entry and updated to the Volume Map.

The volmap_seg SDW in the PVTE is invalidated.

The volma~_seg is destroyed.

6 • .f__AJiLC. ON.TRQL.

6 • 1 • .Q v e .r_y_i_g_w

The mechanism to implement this design is focused in Page
Control~ in the routine which manages the depositing and
withdrawing of record addresses. When a new page is created. a
record address for that page is withdrawn from the stock of free
addresses. A record address may be deposited (returned to the
pool of free record addresses) for a number of reasons. Deletion
of a segment is a simple example. During deletion. all pages
belonging to the segment are deposited. A more common but more
complex example is the depositing of nulled pages during segment
deactivation. Nulled pages are pages which contain all zeros
(logically), but which have record addresses assigned. They are
pages which have been created recently and never written to disk,
or pages which have recently been cleared to zeros. Nulled pages
are never reflected in the file map in the VTOCE. and they are
deposited during deactivation.

The mechanism for withdrawing and depositing record addresses is
simple. conceptually.

page 10

When a withdrawal is requested. attempt to withdraw a
record from the stock for that volume. If none are
left. initiate the withdrawal of record addresses from

02/16/82

MTB-566

the Volume Map into the stock, and await the completion
of this activity. No addresses which are withdrawn
from the Volume Map can be used until the updated
Volume Map has been ~ritten to disk. So the completion
of this activity corresponds to the completion of the
write I/O to the Volume Map.

When a deposit is requested. attempt to deposit into
the stock for that volume. In the current system, an
address is deposited only after the VTOCE which
previously owned the address has been written to disk.
So such addresses can be reused immediately. If there
is not enough room in the stock for all addresses to be
deposited. deposit the remainder directly to the Volume
Map.

When the number of free addresses in the stock falls
below a threshold, initiate the withdrawal of record
addresses from the Volume Map into the stock. No
address withdrawn from the Volume Map can be used until
the updated Volume Map has been written successfu.lly to

. disk.

When the number of free addresses in the stock grows to
higher than a threshold, initiate the depositing of
record addresses from the stock into the Volume Map.

The thresholds referenced above are constants which
will be determined from performance measurements during
the development. The low threshold is likely to be
around 50. This allows a minimum of 100 milliseconds to
withdraw more addresses from the Volume Map before the
stock empties (which is sufficient time for both I/Os
involved). Large systems generate page faults at the
rate of approximately one every 2 milliseconds. and the
page fault rate is an upper bound on the address
withdrawal rate.

The complexity arises from the low level of the system in which
these operations must be accomplished, the interrupt-like flavor
of some of them, concurrency constraints. and the place occupied
by withdrawal and depositing in Multics. These are discussed in
the next section.

02/16/82 page 11

MTB-566

6.2. Constraints

The following considerations constrain the implementation:

Currently, withdrawal is called by Page Control with
the global Page Table Lock held. Depositing, however.
is called by Segment Control, without any canonical
locks. and typically in an unwired environment.

Withdrawing from and depositing to the record stock can
be done with lockless protocols. as each can be
implemented as an atomic operation against one celi in
the stock. This is not possible for withdrawing from
and depositing to the Volume Map, due to checksums.

A Volume Map page (accessed via the volmap_seg). must
not be modified between the time a write I/O is
requested for it until the I/O is complete. This is
necessary to guarantee the consistency of the page on
disk.

6.3 . .YQ.lume ~ .l.U2.date ~trategy

The Volume Map is updated under two different circumstances:

On demand, when a withdrawal is requested and the
record stock contains no free addresses. or when a
deposit is requested and the record stock is full. In
this case. the requesting process must wait for
completion of the Volume Map update (including writing
the updated Volume Map to disk). This is called a
demand update.

When the number of addresses in the record stock falls
outside of the thresholds for the stock. In this case,
an update of the Volume Map is initiated. but there is
no need for the process which notices the condition to
wait for the completion of the update. This is called
an asynchronous update.

Correct synchronization of operations against the Volume Map is
implemented by a per-volume Volume Map lock and a finite-state
model of asynchronous Volume Map updates. Both the Volume Map
lock and the current asynchronous update state are maintained in
the PVTE for the device. The following conventions apply:

The asynchronous update state, or state, of the Map can

page 12 02/16/82

MTB-566

be one of the following:

Idle (I)
progress

no asynchronous activity in

Read-in-Progress (R) - the stock is outside
of threshold and requires a Volume Map
update. A read of a Volume Map page has been
requested but has not been noticed as having
completed.

Write-in-Progress (W) - A Volume Map page has
been modified. A write of the page has been
requested but has not been noticed as having
completed.

The state may be changed from Idle only under the
protection of both the per-volume Volume Map lock and
the Global Page Table lock. The state may be changed
from Read-in-Progress or Write-in-Progress only under
the protection of the Global Page Table lock.

An asynchronous Volume Map update is initiated under
the protection of the per-volume Volume Map lock. After
acquiring the lock, a read is · requested · of an
appropriate page. and the state changed to R. The
completion of the update is done by Page Control, which
polls periodically for pending Volume Map activity.

The Volume Map may be updated from call-side under the
protection of the per-volume Volume Map lock. The
state must be I. After modifying Volume Map pages,
each page modified must be written to disk successfully
before releasing the lock.

6 .4. .L&cking filer_ar._c.hy

The per-volume Volume Map lock occupies a place in the locking
hierarchy between the AST lock and the Global Page Table lock. As
a consequence. a process may take page faults with the per-volume
Volume Map locked. A process may not take a page fault which
requires record address withdrawal with a per-volume Volume Map
locked. A process which holds the Global Page Table lock may
acquire a per-volume Volume Map lock, but it may not Wpit for it.

02/16/82 page 13

MTB-566

6.5. 1ockin~ervic~

The following services implement the protocols outlined above.

lock_wired_nowait

This· routin·e attempts to lock the per-volume Volume Map
lock for a specified volume. It is called with the
global Page Table Lock held. It returns with the lock
held only if the lock can be acquired immediately and
the state is I. Otherwise, it returns with an
indication of failure to acquire the lock.

lock_wired_wait

This routine attempts to lock the per-volume Volume Map
lock for a specified volume. It is called with the
global Page Table Lock held. It returns with the lock·
held only if the lock can be acquired immediately · and
the state is I. Otherwise. it returns with an
appropriate wait event (for the lock or for pendirig I/O
against the Volume Map).

lock_unwired

unlock

This routine attempts to lock the per-volume Volume Map
lock for a specified volume. When it returns, the lock
is held and the state is I. It will wait. if necessary.

This routine unlocks the per-volume Volume Map lock for
a specified volume, notifying any processes which are
waiting for the lock.

grab_volmap_page_unwired

This· routine reads a Volume Map page into memory and
wires it for modification from an unwired environment.
It is called with the lock held and the state I. If
the number of records in the stock exceeds the high
threshold, any excess records are deposited into the
Volume Map.

write volmap_page unwired

page 14

This routine writes a Volume Map page to disk, unwires
it, and waits for completion of the I/O. It is called
with the lock held and the state I.

02/ 16/ 82

MTB-566

6. 6. ~posi tLH.il.hdrawal ~er.vLcu

The following services allow depositing and withdrawal or
records:

withdraw_record_wired

This routine attempts to withdraw a single record
address from the record stock for a specified device in
a lockless manner. If it cannot. it returns either an
error (out-of-physical-volume) or a wait event (for
completion of asynchronous Volume Map update). It is
called with the global Page Table lock held.

deposit record_unwired

This routine attempts to deposit a single record
address into the record stock for a specified device in
a lockless manner. If it cannot. it deposits the
address directly to the Volume Map, waiting if
necessary.

deposit_list_unwired

This routine attempts to deposit a list of record
addresses into the reco~d stock for a specified device
in a lockless manner. If it cannot deposit the enitre
list into the stock, it deposits as many as it can into
the stock. and the remainder into the Volume Map. It
waits if necessary.

6.7. .Error lia.ndling

If a checksum of a section of the Volume Map is found to be in
error when it is read from disk, the section is assumed to be
allocated in its entirety. The affected section of the Volume
Map is changed to indicate this, and a message is prihted on the
console to this effect.

02/ 16/82 page 15

MTB-566

7. SEGMENT CONTROL

7. 1. .Q.yery'iew

Two areas of Segment Control are of interest: allocation and
freeing of VTOCEs, and VTOCE checksums.

7 • 2 • .A 11 o ca ti o_n__amL.Er. e e in g of __J[IQ.c.£ s

VTOCEs are allocated and freed under the protection of the
per-volume VTOC Map lock.

When a VTOCE is allocated. it is allocated from the vtoce _stock
(if the stock contains any free VTOCE indices). Otherwise, it is
allocated from the VTOC Map. and the vtoce stock is replenished
from the VTOC Map at the same time.

When a VTOCE is freed. it is freed into the vtoce stock (if the
stock contains empty slots). Otherwise, it is freed into the VTOC
Map.

7. 3. Y.T.O_G_E ~c_kfililn

The revised VTOCE format is depicted in vtoce.incl.pl1. An
unused field (vtoce.infqcnt) is used for the checksum. This
checksum is a checksum of that portion of the file map which is
in use. That is, it is a checksum of vtoce.csl file map entries
(current segment length). The checksum is validated each time
the segment is activated, and it is recomputed when the file map
is updated.

page 16 02/16/82

MTB-566

7 ~4. .Error li.a.ndling

When a checksum error occurs. the entire file map is assumed to
be invalid. The segment is marked as damaged, and it cannot be
accessed until the next physical volume salvage or until it is
truncated explicitly. At the next physical volume salvage, any
record address in the file map of a damaged segment which is not
claimed by another VTOCE or the Volume Map (as a free record
address) is left in the file map. and the segment is made
accessible. If a segment damaged in this way is truncated
explicitly. no record addresses are deposited.

8. LIMITATIONS AND PARAMETERS

The following limitations exist under the new disk pack layout
described in this document:

02/16/82

The number of Volume Map pages is 3. which provides for
record addresses up to 95231. This can be increased by
increasing the number of Volume Map pages. at the cost
of a larger ASTE for the volmap_seg (when the device is
mounted).

The number of VTOC Map pages is 1. which provides for
VTOCE indices up to 31743 (that is, a pack may have a
maximum of 31743 VTOCEs. or distinct segments. on it).
This can be increased by increasing the number of VTOC
Map pages. at the cost of a larger ASTE for the
volmap_seg (when the device is mounted).

To put the numbers above in some perspective. the
largest device supported by Multics currently has 67200
records. Further, Multics cannot support devices with
more than 131072 records without restructuring disk
control or page control.

With this design. permanent wired storage increases as
follows:

The PVT header is 20 words (previously 8).

Each PVTE is 22 words (previously 12). One is
required for each disk drive defined in the
configuration.

Each record stock is 64 words. One is

page 17

MTB-566

required fbr each disk drive defined in the
configuration.

Each VTOCE stock is 8 words. One is required
for each disk drive defined in the
configuration.

In addition. a 4K Active Segment Table Entry (ASTE) · is
active and entry-held for each mounted Storage System
volume.

9. METERING

The metering data collected is described in the
stock_seg.incl.pl1, under the structure rsmeters.
data will be useful in tuning the design. and most.
not be of use to sites. Additional metering will
during implementation. as appropriate.

include file
Most of this
likely will
be d~veloped

This design will be implemented in three phases. as follows:

Page Control and Physical Volume Management changes to
use record stocks for disk packs with the current
layout. This involves changing the PVTE format. at
least recompiling all programs which reference the
PVTE. This will allow longer exposure of the most
complex portions of the implementation. It will also
allow more time to meter and tune the implementation.

Segment Control changes
checksums. This phase
implement.

to maintain and
requires volume

use VTOCE
salvages to

Implementation of the new disk pack layout. This phase
requ~res volume conversions to implement.

page 18 02/16/82

,...

MTB-566

11. ~UMMARY OF ..QHANGES

All changes required in this design are indicated below by
module.

accept fs_disk

activate

adopt_seg

boot (BOS)

Eliminate use of fsdct. If an MR 9 volume is mounted.
call convert~volume_map, convert_vtoc_map, and
walk_vtoc_compute checksum to convert the volume to
proper format. Activate and entry-hold the volmap_seg.
When called for the RPV. call make sdw$reset_rpv to
terminate allocation against the Hardcore Partition.

If the VTOCE checksum is invalid, truncate the vtoce
and damage the segment.

Recompile for new include files.

Pick up time unmounted correctly under both new and old
label format.

copy_f dump
Instead of using the fsdct to find the Dump Partition.
find the PART DUMP card in the Config deck and read the
label of that volume.

create_vtoce

dbm_man

dctl

Call checksum to compute vtoce.checksum for new
VTOCE. Eliminate use of the obsolete
vtoce.infqcnt.

Recompile for new include files.

Recompile for new include files.

delete_volume_log
Eliminate use offs vol_label.incl.pl1.

demount_pv

(empty)
field

· Destroy the volmap seg. Null out new fields in PVTE.

device_control
Recompile for new include files.

di·sk_control
Recompile for new include files.

02/16/82 page 19

MTB-566

disk_erriergency
Recompil~ for new include files.

disk_init
Recompile for new include files.

di sk_l ef t_:
Recompile for new include files~

disk_rebuild.
R~work for new disk pack format.

disk_rebuild_caller
Rework for new disk pack format. Detect MR 9 label and
print error message.

display_ast_
Recompile for new include files.

display_label
Display new label fields.

display_pvolog
Eliminate use of f s vol_label.incl.pl1.

display_volume_log
Eliminate use of f s vol_label.incl.pl1.

dmpr_finish_
Eliminate use of f s vol_label.incl.pl1.

dmpr _log_
Eliminate use Of f s vol_label.incl.pl1.

dmpr_output_
Eliminate use of f s vol_label.incl.pl1.

dump_ volume_
Eliminate use of f s vol_label.incl.pl1

dump_vtoce
Recompile for new include files.

find_partition_
Recompile for new include files.

free_store
This module is replaced by
management.

Page

' fs_unload_disk_interrupt

page 20

vtoce.incl.pl1.

vtoce. incl. pl 1 •

Control stock

02/16/82

'

!

MTB-566

f sdct

f sout_vol

Recompile for new include file.

Deleted.

Update all free entries in the stocks to the VTOC Map
and the Volume Map (first the VTOCE stock, then the
record stock). Eliminate use of fsdct.

get_io_segs
Get wired space for record_stock_seg.

get_pvtx
Recompile for new include files.

hc_dmpr_primitives
Build bit map of in-use VTOCEs from VTOC Map. Checksum
the file map in the VTOCE.

hp_delete_vtoce
Recompile for new include files.

init_disk_pack_
Initialize new fields in the Volume Label.

ini t_empty_root

init_lvt

·init_pvt

Initialize new fields in the Volume Label.

Eliminate use of fsdct.

Eliminate use of fsdct. fsmap_seg's. Call
init record stock for each device. Reserve the first
page of each Hardcore Partition as a fake volume map.
and call empty_volume_map to initialize each one.
Activate and entry-hold a volmap segment for each
Hardcore Partition. call make_sdw$init_hcp_thread to
set up allocation of space on Hardcore Parititon.

init_root_dir
Eliminate use of the fsdct.

init_sys_var
Eliminate use of fsdct.

init_vol_header_
Rework for new disk pack format.

initializer
Eliminate use of fsdct. Establish a bad_dir handler

02/16/82 page 21

MTB-566

to salvage the offending directory (eliminating the
need for a depth 2 directory salvage after a crash
without ESD).

list_vols
Recompile for new include files.

1 oad_ vol_map
Delete.

logical_volume_manager
Recompile for new include files.

make_sdw
Maintain thread pointer for Hardcore Parition
allocation in static storage, instead of in the fsdct.

mdx
Recompile for new include files.

merge_volume_log
Eliminate use offs vol_map.incl.pl1.

on_line_salvager

page_error

page_faul t

Eliminate reference to fsdct.

Rework error messages.

Use new address withdrawal mechanism,
recursive page faults on wait conditions.

partition_io
Recompile for new include files.

pc
Rework for new deposit/withdrawal mechanism.

priv_delete_vtoce
Return a cleared VTOCE to the free VTOCE pool.

purge_volume~log
Eliminate use offs vol_label.incl.pl1.

pvname_to_pvtx_
Recompile for new include files.

pvt
Make a CDS.

rcp_disk_

page 22

including

02/16/82.

MTB-566

Recompile for new include files.

rcp_init_disk_sharing
Recompile for new include files.

read_disk
Recompile for new include files.

record_to...:..vtocx
Recompile for new include files.

recover~volume_log
Eliminate use offs vol_map.incl.pl1. vtoce.incl.pl1.

reload_vo1ume_
Eliminate use of vtoc_header.incl.pl1.

reloader
Rework for new disk pack format.

restor (BOS)
Change for new Volume Map.

retrieve_from_volume_
Eliminate use offs vol_label.incl.pl1.

retv_copy
Eliminate use of obsolete vtoce.infqcnt.

retv_vol_ control_
Eliminate use offs vol_label.incl.pl1.

ring_O_peek
Recompile for new include files.

rldr_check_pvol_
Change for new disk pack format.

rldr_input_
Change for new Volume Label (pick up time unmounted
correctly).

rldr_output_
· Change for new disk pack format.

checksum.

rldr_volume_map_
Change for new Volume Map format.

rldr_vtoc_header_
Change for VTOC Map.

02/16/82

Compute VTOCE

page 23

MTB-566

salv __ d ir _checker...:..
Eliminate use of fsdct.

salv_directory
Eliminate use of fsdct.

salvage_pv
Rework for new disk pack format. Validate checksum for
each VTOCE examined.

salvager
Eliminate use of fsdct. Eliminate salvage to depth 2.

save (BOS)
Change for new Volume Map format.

seg_fault
Eliminate use of fsdct.

segment_mover
· Eliminate use of the obsolete field vtoce.infqcnt.

set_disk_table~loc
Eliminate use of fsdct.

set_sons_lvid
Eliminate use of fsdct.

set_volume.:.:_log
Eliminate use of fs vol_map.incl.pl1.

shutdown
Eliminate use of fsdct.

sstn (BOS)
Pick up VTOC origin from Volume Label.

status_
Eliminat~ use of fsdct.

sweep...:_pv
Recompile for new include files.

sy serr.:....log_i nit
Pick up location of LOG Parition from config deck
instead of fsdct.

truncate_vtoce
Compute VTOCE checksum.

update_vtoce
Compute file map checksum.

page 24 02/ 16/ 82

MTB-566

vacate_pv
Recompile for new include files.

verify_dump_volume
Eliminate use offs vol_label.incl.pl1. vtoce.incl.pl1.

verify _label_
Recompile for new include files.

vm_vio
Rework for new disk pack format.

volume __ cross check

vtoc_attributes
Eliminate use of the obsolete field vtoce.infqcnt.
Compute VTOCE checksum.

vtoc~man
Use new VTOCE allocation/freeing scheme.

vtocx_to_record
Recompile for new include files.

wired_shutdown
Eliminate use of fsdct.

02/ 16/ 82 page 25

MTB-566

ATTACHMENT 1

FORMAT OF VOLUME MAP SECTION

+---+ O l Physical Volume Identifier I
+---+

1 I Checksum for this Section I
!-------------------------+-------------------------:

2 I Address of First Record l Number Words in Map l
+-------------------------+-------------------------+ 3 I Number Records in Map I Number Free Records I
+-------------------------+-------------------------+

4 - N l Section Map (Bit Map with 32 Records per Word
I I
I • • • • • I

+---+

I

page 26 02/16/82

MTB-566

ATTACHMENT 2

INCLUDE FILES REFERENCED IN THIS MTB

02/16/82 page 27

/*

/*

*/

dcl

/*

.,
\. ' \

disk_pack.incl.p11 02/23/82 1219.4r w 02/23/82 1202.0 18810

BEGIN INCLUDE FILE ... disk_pack.incl.p11 Last Modified January 1982 for new volume map

All disk packs have the standard layout described below:

Record 0
Record 1 to 3
Record 4 to 5
Record 6
Record 7
Records 8 to n-1
each record contains 5
Records n to N-1

:·contains the label, as declared in fs vol label.incl.p11.
contains the volume map, as declared in vol map.incl.p11
contains the dumper bit map, as declared in-dumper bit map.incl.p11
contains the.vtoc map, as declared tn vtoc map.incl.plT
contains a copy of the label, as declared tn fs vol label.incl.p11
contain the array of vtoc entries; (n ts specified-in the label)

192-word vtoc entries. The last 64 words are unused.
: contain the pages of the Multics segments. (N ts specified in the label)

Sundry partitions may exist within the region n to N-1, withdrawn or not as befits the meaning
of the particular partition.

A conceptual declaration for a disk pack could be:

dcl 1 disk_pack,
2 label record
2 volume_map_record
2 dumper_bit_map_record
2 vtoc_map_record
2 label_record_copy
2 vtoc_array_records
3 vtoc_entry (5)
3 unused
2 Multics_pages_records

(LABEL ADDR
VOLMAP ADDR
VTOC MAP ADDR
VTOC-ORIGIN
SECTORS PER VTOCE
VTOCES PER RECORD
DEFAULT HCPART SIZE
MAX_VTOCE_PER_PACK

(0 0)
(1 3)
(4 5)
(6 : 6)
(7 : 7)
(8 : n-1),

(n : N-1)

init (0),
init (1),
in1t (6),
in1t (8),
init (3),
in1t (5),
init (1000),
init (31774))
fixed bin (17)

b1t(36 * 1024).
b1t(36 * 1024).
bit(36 * 1024),
b1t(36 * 1024).
b1t(36 * 1024).

bit (36 • 192) •
b 1t (36 * 64) •
bit(36 • 1024);

/• Address of Volume label •/
/* Address of first Volume Map record */
/* Address of first VTOC Map Record •/
/• Address of first record of VTOC •/

/• Size of Hardcore Partition */
/• limited by size of VTOC Map •/

int static opttons (constant);

END INCLUDE FILE ... disk_pack.tncl.pl1 •/

'
*/

)

fs_vol_label.1ncl.p11 02/23/82 1219.4r w 02/23/82 1203.5 34245

/• BEGIN INCLUDE FILE ... fs_vol_label. incl .pl 1 .. 1.ast modified January 1982 for new volume map format •/

/• This is the label at fixed location of each physical volume. Length 1 page •/

dcl labelp ptr;

dcl 1 label based (labelp) al fgned,

/•First comes data not used by Multics .. for compatfbflfty wt th GCDS •/

2 gcos (5•64) f fxed bin,

/• Now we have the Multics label •/

2 Multics char (32) init ("Multics Storage System
2 version fixed bin,
2 mfg serial char (32),
2 pv name char (32),
2 lv-name char (32),
2 pvld bit (36),
2 lvid bit (36),

Volume•), /• Identtfter •/
/• Version 1 •/
/• Manufacturer's serial number •/
/• Physical volume name. •/
/* Name of logical volume for pack •/
/• Unique ID of this pack •/
/• untque ID of fts logical vol •/

2 root pvid bit (36),
2 time=registered fixed bin (71),
2 n_pv_in_lv fixed bin,

/• unique ID of the pack containing the root. everybody must agree. •/
/• ttme imported to system •/

2 vol_size fixed bin,
2 vtoc size fixed bin,
2 not used bit (1) unal,
2 private btt (1) unal,
2 flagpad bit (34) unal,
2 max access class bit (72),
2 min-access-class bit (72),
2 password bit (72),
2 pad1 (16) fixed bin,
2 ttme mounted fixed bin (71),
2 time=map_updated fixed bin (71),
2 old time unmounted fixed bfn,
2 volmap version fixed bin,
2 time salvaged fixed bin (71),
2 time-of boot fixed bfn (71),
2 time-unmounted fixed bin (71),
2 pad1a (2) fixed bin,
2 vol trouble count fixed bin,
2 err-hist size fixed bin,
2 time last dmp (3) fixed bin (71),
2 time=last=reloaded fixed bin (71),
2 pad2 (40) fixed bin,
2 root,

3 here bit (1),
3 root_vtocx fixed bin (35),
3 shutdown state fixed bfn,
3 pad7 bit-(1) aligned,
3 dtsk_table_vtocx fixed btn,

')

/• # phys volumes in logical •/
/• total size of volume, in records •/
/• number of recs in ftxed area + vtoc •/
/• used to be multiple class •/
/•TRUE tf was registered as private.•/

/• Maximum access class for stuff on volume •/
/* Minimum access class for stuff on volume •/
I• not yet used •/

/• time mounted •/
/• time vmap known good •/
/• set to cause salvage pre-MR10 •/
/•version of volume map (currently 1) •/
/• time salvaged •/
/• time of last bootload •/
/• time unmounted cleanly •/

/• Number times structure damaged detected since last salvage •/
/• size of pack error history •/
/• time last completed dump pass started •/
/•what ft says'•/

/• TRUE ff the root ts on this pack •/
/• VTDC index of root, ff it ts· here •/
/• Status of hierarchy •/

/• VTDC index of disk table on RPV •/

))

'
(

3 disk_table_uid bit (36) aligned,
3 esd_state fixed bin,

2 volmap_record fixed bin,
2 size_of_volmap fixed bin,
2 vtoc map record fixed bin,
2 size-of vtoc map fixed bin,
2 volmap unit size fixed bin,
2 vtoc_origin=record fixed bin,
2 dumper bit map record fixed bin,
2 pad3 (54) fixed bin,
2 nparts fixed bin,
2 parts (47),

3 part char (4),
3 free fixed bin,
3 nrec fixed bin,
3 pad5 fixed bin,

2 pad4 (5*64) fixed bin;

l

(
/* UID of disk table •/
/* State of esd */
/* Begin record of volume map •/
/* Number of records in volume map •/
/* Begin record of VTOC map •/
/* Number of records in VTOC map •/
/* Number of words per volume map section •/
/* Begin record of VTOC •/
/* Begin record of dumper bit-map •/

/* Number of special partitions on pack •/

/* Name of partition •/
/* First record •/
/* Number of records •/

dcl Multics_ID_String char (32) init ("Multics Storage System Volume") static;

/*END INCLUDE FILE fs_vol_label. fncl.p11 •/

l

) \
I

pvt.incl.alm 02/23/82 1219.4rew 02/23/82 1153.3

"BEGIN INCLUDE FILE pvt. incl.alm

"Created 02/23/82 1151.7 e~t Tue by convert_include_file,
Version of 12/01/81 1540.3 est Tue.

"Made from >user dir dir>Multics>Bongiovanni>cctm>pvt.incl .pl1,
" modified 02/~3/8~ 1151.6 est Tue

Structure pvt

equ pvt.n_entries,O
equ pvt.max_n_entries,1
equ pvt.n_in_use,2
equ pvt.rwun_pvtx,3
equ pvt.shutdown state,4
equ pvt.esd_state,5
equ pvt.prev shutdown state.6
equ pvt.prev=esd_state.7
equ pvt.root_lvid,8
equ pvt.root_pvtx,9
equ pvt.root vtocx,10
equ pvt.disk-table vtocx,11
equ pvt.disk=table=uid,12

equ
bool

equ
bool

pvt.rpvs_requested_word, 13
pvt.rpvs_requested,400000

pvt.riv needs salv word,14
pvt.rlv-needs-salv~400000 - -

" DU

" DU

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

pvt.volmap lock wait constant,15
pvt.volmap=idle=wait=constant,16
pvt.vtoc_map_lock_wait_constant,17
pvt.n_volmap_locks_held,18
pvt.n_vtoc_map_locks_held,19
pvt. last volmap time,20 " DOUBLE
pvt.last-vtoc map time,22 "DOUBLE
pvt.total volmap lock time,24 " DOUBLE
pvt.total-vtoc map lock time,26 " DOUBLE
pvt.n_volmap_locks~28 -
pvt.v vtoc map locks,29
pvt.array.JO - " LEVEL 2

Structure pvte

~ ~

32553

A

l
(

equ

equ
equ

equ
bool
equ
equ
bool
equ
equ
bool

equ

equ
equ
bool
equ
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ
bool
equ

·bool
equ
bool
equ
bool
equ
bool

equ
equ

pvte-'size,21

pvte.pvid,O
pvte. lvid, 1

pvte.dmpr in use word,2
pvte.dmpr-in-use:4ooooo • DU
pvte.skip-queue count word,2
pvte.skip-queue-count-shift,'9
pvte.skip-queue-count-mask,777777
pvte.brother pvtx word,2
pvte.brother-pvtx-shift,O
pvte.brother::::pvtx::::mask,000777

pvte.devname,3

pvte.device_type_word,4
pvte.device_type_shift,27
pvte.dev1ce type mask,000777
pvte. log1ca1_area_number_word,4
pvte. logical area number shift,18
pvte.logical-area-number-mask,000777
pvte.used word,4 - -
pvte.used,400000 • DL
pvte.storage_system_word,4
pvte.storage_system,200000 • DL
pvte.permanent word,4
pvte.permanent:100000 • DL
pvte.testing_word,4
pvte.testing,040000 • DL
pvte.being_mounted_word,4
pvte.being_mounted,020000 • DL
pvte.being_demounted_word,4
pvte.being_demounted,010000 • DL
pvte.check_read_incomplete_word,4
pvte.check_read_incomplete,004000 • DL
pvte.device inoperative word,4
pvte.device::::1noperative:oo2000 " DL
pvte.rpv_word,4
pvte.rpv,001000 " DL
pvte.salv required word,4
pvte.salv-required:ooo200 • DL
pvte.being demounted2 word,4
pvte.being::::demounted2:000100 " DL
pvte.vol_trouble_word,4
pvte.vol trouble,000040 • DL
pvte.vacat1ng word,4
pvte.v~cat1ng:oooo20 • DL
pvte.hc part used word,4
pvte.hc::::part::::used:oooo10 • DL
pvte.volmap_lock_not1fy_word,4
pvte.volmap_lock_notify,000004 " DL
pvte.volmap_1dle_not1fy_word,4
pvte.volmap_idle_notify,000002 " DL
pvte.vtoc map lock notify word,4
pvte.vtoc::::map::::1ock::::notify:ooooo1 " DL

pvte.n free vtoce,5
pvte.vtoc_sTze,5

" UPPER
" LOWER

\
((

l

)

equ pvte.dbmrp,6 " UPPER

equ pvte.nleft,7 " UPPER

equ pvte.totrec,7 " LOWER

equ pvte.dim_info,8

equ pvte.curn_dmpr_vtocx,9 " UPPER

equ pvte.n_vtoce,10 " LOWER

equ pvte.volmap_seg_sdw,12 " DOUBLE
equ pvte.volmap_astep,14

equ pvte.volmap_offset,15 " UPPER
equ pvte.vtoc_map_offset,15 " LOWER

equ pvte.volmap_lock,16
equ pvte.vtoc_map_lock,17
equ pvte.volmap_stock_ptr,18
equ pvte.vtoce_stock_ptr,19

equ pvte.volmap_async_state,20 " UPPER
equ pvte.volmap_async_page,20 " LOWER

equ VOLMAP_ASYNC_IDLE,O " MANIFEST

equ VOLMAP_ASYNC_READ,1 " MANIFEST

equ VOLMAP_ASYNC_WRITE,2 " MANIFEST

"END INCLUDE FILE pvt. incl.aim

J))

' '
,,

pvt. incl .pl 1 02/23/82 1219.4rew 02/23/8~ 1153.4 57474

I• BEGIN INCLUDE FILE ... pvt. incl.p11 ... last modified January 1982 */

/• The physical volume table (PVT) fs a wired-down table.

*/

It has one entry for -each spindle present, be ft for
Storage System or "I/D" use.

dcl

dcl

dcl

pvt$
pvtp
pvtep

pvt

ext,
ptr,
ptr;

based (pvtp) aligned,

2 n entries fixed bin (17).
2 max n entries fixed bin (17).
2 n_in_use fixed bin (17),
2 rwun_pvtx fixed bin,
2 shutdown state fixed bin.
2 esd state fixed bin,
2 prev shutdown state fixed bin,
2 prev=esd_state fixed bin,

/* number of PVT entries •/
/• max number of PVT entries •/
/• number of PVT entries fn use •/
/• rewind unloading pvtx •/
/• state of previous shutdown •/
/* state of ESD, >O fff in ESD •/
/• shutdown state of previous bootload •/
/• ESD state of previous bootload •/

2 root_lvid bit (36) aligned, /•Logical volume ID of Root Logical Volume (RLV) •/
2 root_pvtx fixed bin, /• Index to PVTE for Root Physical Volume (RPV) •/
2 root vtocx fixed bin, /• VTOCE index for root (>) •/
2 disk-table vtocx fixed bin, /• VTOCE index for dfsk table on RPV •/
2 disk=table=ufd bft (36) aligned, /• Ffle System UID for dfsk_table •/
2 rpvs_requested bit (1) aligned, /• RPVS keyword given on BOOT•/
2 rlv_needs_salv bit (1) a)fgned, /• RLV required (not requested) salvage•/
2 volmap_lock_waft_constant bit (36) aligned,/• For constructing waft event: DR pvte_rel fnto lower•/
2 volmap_idle_wait_constant bit (36) aligned,/• For constructing waft event: OR pvte_rel into lower•/
2 vtoc_map_lock_wait_constant bft (36) aligned, /•For constructing wait event: DR pvte_rel into lower•/
2 n_volmap_locks_held fixed bin (17), /•Current number of volmap locks held•/
2 n_vtoc_map_locks_held fixed bin (17), /•Current number of VTDC Map locks held•/
2 last_volmap_tfme fixed bin (71). /• Time a volmap was last locked/unlocked •/
2 last_vtoc_map_tfme fixed bin (71), /• Time a VTOC Map was last locked/unlocked •/

· 2 total_volmap_lock_tfme fixed bin (71), /•Total. time volmap's were locked (integral) •/
2 total_vtoc_map_lock_tfme fixed bfn (71), /•Total time VTOC Maps were locked (integral) •/
2 n volmap_locks fixed bin (35), /•Number tfmes·a volmap was locked•/
2 v=vtoc_map_locks fixed bfn (35), /• Number times a vtoc_map was locked •/

2 array

pvte

2 pvid

2 lvfd

(0 ref·er (pvt.n_entrfes)) 1 fke pvte;

based (pvtep) aligned,

bf t (36).

.bf t (36).

/• physical volume ID.•/

/• logical volume ID •/

2 dmpr_in_use (3) bit (1) unaligned, /•physical volume dumper interlock •/
2 pad3 bft (6) unaligned,

l

2 sklp_queue_count
e to saturation •/

fixed bin (18) unsigned unaligned, /•number of times this pv skipped for per-proc allocation du

)

2 brother_pvtx f1xed b1n (8) unaligned,

2 devname char (4),

(2 device type fixed bin (8),
2 logical=area_number fixed bin (8),
2 used bit (1),
2 storage_system bit (1),
2 permanent bit (1),
2 testing bit (1),
2 being_mounted bit (1),
2 being demounted bit (1),
2 check=read_incomplete bit (1),
2 device inoperative bit (1),
2 rpv - bit (1),
2 pad1 bit (1),
2 salv required b1t (1),
2 being demounted2 bit (1),
2 vol trouble bit (1),
2 vacating bit (1),
2 he part used bit (1),
2 volmap lock notify bit (1) unal,
2 volmap-idle-notify bit (1) unal,
2 vtoc_map_lock_notify bit (1) unal,

2 n free vtoce
2 vtoc_size

2 dbmrp

fixed bin (17),
f i xed bin (17) ,

(2) bit (18).

/• next pvte 1n lv cha1n •/

/• device name •/

/• device type •/
I• disk drive number •/
/• TRUE if this entry is used •/
/• TRUE for storage system (vs to disk) •/
/• TRUE if cannot be demounted •/
/• Protocol bit for read disk$test •/
/• TRUE 1f the physical volume is being mounted •/
/• TRUE 1f the pysical volume is being demounted •/
/• page control should check read incomplete •/
/• TRUE if disk control decides dev busted •/
/• TRUE if this-is the root physical volume •/

/• TRUE if accepting this vol required salvaging •/
/• No more vtoc I/O during demount •/
/• Salvage on next accept •/
/• don't put new segs on this vol •/
/• HC part set up by init pvt •/
/• TRUE- if notify required when volmap lock is unlocked •/
/• TRUE 1f notify required when volmap state is idle •/
/• TRUE if notify required when vtoc map lock Is unlocked •/

/• number of free VTOC entries •/
/• size of the VTOC part of the disk - 1n records •/

/• rel ptr to dumber bit maps for this volume •/

2 nleft
2 totrec

fixed bin (17), /• number of records left •/

2 dim_info

2 curn_dmpr_vtocx
2 n_vtoce

2 volmap_seg_sdw

2 volmap_astep

2 volmap offset
2 vtoc_map_of f set

2 volmap_lock

2 vtoc_map_lock

2 volmap_stock_ptr

2 vtoce_stock_ptr

fixed bin (17)) unaligned, /•Total records in this map•/

bl t (36). /•Information peculiar to DIM•/

(3) fixed bin unaligned,/• current vtocx being dumped•/
fixed b1n unaligned, /•number of vtoce on this volume•/

fixed bin (71) ,

ptr unal,

bit (18) unal,
bit (18) unal,

bit (36) aligned,

bit (36) aligned,

ptr unal,

ptr unal,

/• SOW describing volmap_seg •/

/• Packed pointer to ASTE for volmap_seg •/

/• Offset in volmap seg of volume map •/
/• Offset 1n volmap=seg of VTOC map •/

/• Lock on volume map operations •/

/• Lock on VTOC map operations •/

/• Packed pointer to record stock •/

/• Packed pointer to VTOCE stock •/

2 volmap_async_state fixed bin (17) unaligned, /•Asynchronous update state of Volume Map•/

))

dcl

/•

1)

' ((
2 volmap_async_page fixed bin (17) unaligned; /•Page number for asynchronous update•/

(VOLMAP ASYNC IOLE
VOLMAP ASYNC READ
VOLMAP=ASYNC=WRITE

init (O), /* for volmap async state •/
init (1), - -
init (2)) fixed bin int static options (constant);

END INCLUDE FILE ... pvt.lncl.p11 */

)

stock_seg.incl.alm 02/23/82 1219.4r w 02/23/82' 1219.4

"BEGIN INCLUDE FILE stock_seg.incl.alm

"Created 02/23/82 1218.9 est Tue by convert fnclude file,
Version of 12/01/81 1540.3 est Tue. - -

"Made from >user dir dir>Multfcs>Bongiovanni>htd>nsd>stock seg. incl .pl1,
" modified 02/~3/8~ 1218.9 est Tue -

Structure stock_seg

equ stock_seg_size,28

equ stock_seg.meters,O " LEVEL 2

equ stock_seg.free,27 " UPPER

Structure record_stock

equ

equ
equ

equ
equ

equ
equ

equ
equ

equ
equ

equ

equ
equ

equ

record_stock.pvtep,O

record stock.n in stock,1 "UPPER
record=stock.n=volmap_pages,1 " LOWER

record stock.n free in stock,2 • UPPER
record=stock.n=os_in_stock,2 " LOWER

record_stock. low_threshold,3 " UPPER
record_stock.high_threshold,3 • LOWER

record_stock.target,4
record_stock.stock_offset,4

" UPPER
" LOWER

record stock.n words in stock,5 " UPPER
record=stock.search_lndex,5 • LOWER

record_stock.volmap_page,6

record stock.n free,6
record=stock.baseadd,6

record_stock.stock,O

" LEVEL 2

" UPPER
" LOWER

" UPPER

Structure vt.oce_stock

) J

20061

J

l
(

equ

equ
equ

equ

vtoce_stock.pvtep,0

vtoce stock.n in stock,1 "UPPER
vtoce=stock.n=free_in_stock,1 "LOWER

vtoce_stock.stock,2 " UPPER

Structure rsmeters

equ

equ
.equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

rsmeters_size,27

rsmeters. lock_nowait_calls,O
rsmeters. lock nowait fails,1
rsmeters. lock=wait_calls,2
rsmeters.lock_wait_fails,3
rsmeters.read_complete_calls,4
rsmeters.post stock os calls,5
rsmeters.total_cpu_overhead,6 " DOUBLE
rsmeters.low thresh detected,8
rsmeters.high thresh detected,9
rsmeters. low_thresh_fails,10
rsmeters.withdraw_stock_steps, 11
rsmeters.withdraw stock losses,12
rsmeters.n withdraw attempt,13
rsmeters.n=withdraw=range,14
rsmeters.n pages withdraw stock,15
rsmeters.n-pages-withdraw-async,16
rsmeters.n=v_withdraw_attempts,17
rsmeters.withdraw volmap steps,18
rsmeters.deposit stock steps,19
rsmeters.deposit=stock=losses,20
rsmeters.n_deposit_attempt,21
rsmeters.n pages deposit stock,22
rsmeters.n=p~ges=deposit=volmap,23
rsmeters.n v deposit attempts,24
rsmeters.reset os calls,25
rsmeters.reset=os=losses,26

"END INCLUDE FILE stock_seg.incl.alm

" (
l

/• START OF:

dcl
dcl
dcl
dcl

dcl
dcl

dcl

dcl

I

dcl

CE indices •/

stock_seg.incl.pl1 02/23/82 1219.4r w 02/23/82 1218.9 42228

stock_seg.incl.pl1 * * * * * * * * * * * * * * * * •/

stock_segp
record_stockp
vtoce_stockp
stock_seg$

n in record stock
n=in=vtoce_stock

stock_seg

2 meters

2 free

record_stock

2 pvtep

2 n_in_stock
2 n_volmap_pages

2 n free in stock
2 n=os_in_stock

2 low_threshold
2 high_threshold

2 target
2 stock_offset

2 n_words_in_stock
2 search_index

2 volmap page
3 n_free
3 baseadd

2 stock

vtoce stock
2 pvtep
2 n in stock
2 n-free in stock
2 stock - -

ptr;
ptr;
ptr;
ext;

fixed bin;
fixed bin;

aligned based (stock_segp),

aligned like rsmeters,

b tt (18) l,lna 1 ; /* offset of first free word In segment •/

aligned based (record_stockp),

ptr unal, /* PVTE for this stock •/

fixed bin (18) uns unal,/• Max number of addresses In stock•/
fixed bin (18) uns unal,/• Number of pages in Volume Map•/

fixed bin (18) uns unal,/* Number addresses currently free•/
fixed bin (18) uns unal,/* Number addresses currently out-of-service•/

fixed bin (18) uns unal,/* Low threshold for withdrawing from volmap •/
fixed bin (18) uns unal,/• High threshold for depositing to volmap •/

fixed bin (18) uns unal,/* Target for stock•/
bit (18) unal, /*Offset of stock in this structure•/

fixed bin (18) uns unal,/• Number of words= Number of entries I 2 •/
fixed bin (18) uns unal,/* Roving pointer•/ ·

(record stock.n volmap pages) aligned,
fixed bln (18) uns unal,/* Number free records in this volmap page*/
fixed bin (18) uns unal,/• First record address described by this page•/

(n_in_record_stock refer (record_stock.n_1n_stock)) bit (18) unal; /*Stock ·array of addresses *

/• bit O ON => out-of-service •/

aligned based (vtoce_stockp),
ptr unal, /• PVTE for this stock•/
fixed bin (18) uns unal,/* Max number.addresses In stock•/
fixed bin (18) uns unal,/* Number addresses currently free•/
(n_in_vtoce_stock refer (vtoce_stock.n_ln_stock)) fixed bin (18) uns unal; /• Stock array of VTO

dcl ·1 rsmeters aligned based,

)) J

.,
(

/• END OF:

2 lock nowait calls fixed bin (35),
2 lock-nowait-fails fixed bin (35),
2 lock~watt calls fixed bin (35),
2 lock-watt-fails fixed bin (35),
2 read-complete calls fixed bin (35),
2 post~stock os-calls fixed bin (35),
2 total cpu overhead fixed bin (71),
2 low thresh detected fix·ed bin (35),
2 high thresh detected.fixed bin (35),
2 low thresh fat ls fixed bin (35),
2 withdraw stock steps fixed bin (35),
2 withdraw-stock-losses fixed bin (35),
2 n_withdraw_attempt fixed bin (35),
2 n_withdraw_range fixed bin (35),
2 n pages withdraw stock fixed bin (35),
2 n=pages=withdraw=async fixed bin (35),
2 n v withdraw attempts fixed bin (35),
2 withdraw vol map steps f.ixed bin (35),
2 deposit_stock_steps fixed bin (35),
2 deposit stock losses fixed bin (35),
2 n_deposit_attempt fixed bin (35),
2 n pages deposit stock fixed bin (35),
2 n-pages-deposit-volmap fixed bin (35),
2 n=v_deposit_attempts fixed bin (35),
2 reset os calls fixed bin (35),
2 reset=os=losses fixed bin (35);

' (
/•Number calls to lock wired nowait •/
/*Number calls· which dld not-acquire lock•/
/•Number calls to lock wired wait•/
/•Number calls'which waited *I
/• Number times read complete (async) detected •/
/• Number times write complete (async) detected •/
/•Total overhead in all routines•/
/• Number of times stock below low threshold •/
/• Number of times stock above high threshold •/
I* Number o·f t i mes no records in vo 1 map *I
/• Number steps thru stock in withdraw.•/
/• Number lockless losses •/
/• Number attempts to withdraw a page •/
/• Number attempts to withdraw within range •/
/• Number pages withdrawn from stock •/
/• Number pages withdrawn from volmap •/
/• Number attempts to withdraw from volmap •/
/• Number steps thru volmap in withdraw •/
/• Number steps thru stock in deposit •/
/• Number lockless losses •/
/• Number attempts to deposit a page •/
/• Number pages deposited to stock •/
/• Number pages deposited to volmap •/
/• Number attempts to deposit to volmap •/
/•Number calls to reset os •/
/• Number lockless losses •/

stock_seg.incl.pl1 * • • • • • • • • * * * * * * • •I

l

)

/* START OF:

dcl
dcl

dcl

dcl

dcl

/* END OF:

J

)

vol map. incl .pl 1 02/12/82 1511.2rew 02/11/82 1536.4 9261

vol map. Incl .pl 1

volmapp
volmap_sectionp

ptr;
ptr;

* * * * * * * * * • * * * * * * •/

volmap_sectlon_map_size fixed bin; /* Size of one volmap section map In words •/

vol map
2 section

volmap_sectlon
2 pvid
2 checksum
2 baseadd
2 map n words
2 map=:n=:records
2 map_n_f ree
2 map

volmap.incl.p11

aligned based (volmapp),
(0: 1) al igl')ed 1 ike volmap_sect·ion;

aligned based (volmap_sectionp),
bit (36), /• PVID to catch errors •/
bit (36),
fixed bin (17) ~nal, /*First record number in map*/
fixed bin (17) unal, /*Number of words In this section's map•/
fixed bin (17) unal, /•Number of records in map•/
fixed bin (17) unal, /•Number of records currently free*/
(volmap_sectlon_size refer (volmap_sectlon.map_n_words)) bit (36) aligned;

* * * * • • • * • • • • * • • • •/

)

)

1)

' t .. ' \

vtoce. incl .pl 1 02/23/82 1219.4r w 02/23/82 1146.3 30132

/* BEGIN INCLUDE FILE ... vtoce.incl.p11 ... last modified Feb 1979 to increase quota/used•/

/* Template for a VTDC entry. Length = 192 words. (3 * 64). •/

dcl vtocep ptr;

dcl i vtoce based (vtocep) aligned,

(2 pad1 bit (36).

2 uid bit (36),

2 msl bit (9).
2 csl bit (9).
2 records bit (9),
2 pad2 bit (9),

2 dtu bit (36).

2 dtm bit (36),

2 nqsw bit (1),
2 deciduous bit (1),
2 nid bit (1),
2 dnzp bit (1),
2 gtpd bit (1).
2 per process bit (1),
2 damaged bit (1),
2 fm damaged bit (1),
2 pad3 bit (10),
2 dirsw bit (1),
2 master dir bit (1),
2 pad4 blt (16),

2 fm_checksum bit (36),

2 quota (0:1) fixed bin (18) unsigned,

2 used (0:1) fixed bin (18) unsigned,

2 received (0:1) fixed bin (18) unsigned,

2 trp (0:1) fixed bin (71),

2 trp_time (0:1) bit (36),

2 fm (0:255) bit (18),

/* segment's uid - zero if vtoce is free •/

/* maximum segment length in 1024 word units •/
/* current segment length - in 1024 word units */
/* number of records used by the seg in second storage •/

/* date and time segment was last used •/

/* date and time segment was last modified •/

/* no quota switch - no checking for pages of this seg •/
/* true if he sdw */
/• no incremental dump switch •/
/• Dont null zero pages •/
/* Global transparent paging device •/
/• Per process segment (deleted every bootload) */
/* TRUE if contents damaged •/
/• TRUE if file map damaged •/

/• directory switch •/
/* master directory - a root for the logical volume */
/• not ·used •/

/• Checksum of used portion of file map */

/* sec storage quota - (0) for non dir pages •/

/• sec storage used - (0) for non dir pages •/

/* total amount of storage this dir has received •/

/• time record product - (0) for non dir pages •/

/* time time_record_product was last calculated·•/

/• file map - 256 entries - 18 bits per entry •/

l

)

2 pad6 (10) bit (36),

2 ncd blt (1),
2 pad7 b 1 t (17) ,
2 pads blt (18),

2 dtd bit (36) '

2 VO 1 i d (3) b i t (36) ,

2 master_dir_uid bit (36),

2 uid_path (0:15) bit (36),

2 primary_name char (32),

2 time_created bit (36),

2 par_pvid bit (36).

2 par_vtocx fixed bin (17),
2 branch_rp bit (18)) unaligned,

2 cn_salv_time bit (36),

2 access class bit (72),
2 pad9 bit (36),
2 owner bit (36);

dcl vtoce_parts (3) bit (36 * 64) aligned based (vtocep);

dcl 1 seg vtoce based (vtocep)-aligned,
2 pad1 bit (7•36),

/•

2 usage fixed bin (35),
2 pad2 bit (184•36);

END INCLUDE FILE vtoce.incl.pl1 •/

)

")

/• not used •/

/* no complete dump switch •/

/• date-time-dumped •/

/*volume lds of last incremental, consolidated, and complete dumps•/.

/• superior master directory uid •/

/* uid pathname of all parents starting after the root •/

/* primary name of the segment •/

/• time the segment was created •/

/• physical volume id of the parent •/

/• vtoc entry index of the parent •/
/* rel pointer of the branch of this segment •/

/• time branch - vtoce connection checked •/

/* access class tn branch •/

/• pvid of this volume •/

/• Overlay for vtoce of segments, which don't have quota •/

/• page fault count: overlays quota •/

))
' •·

