
Multics Technical Bulletin
Vector Concept Introduction

To: Distribution

From: Lindsey Leroy Spratt

Date: 12/07/81

MTB-541

Subject: Toward a unification of data manipulation on Multics.

ABSTRACT

This document proposes the unification of common data
manipulations. The heart of this unification is a Unified Data
Representation, the vector and vector array. Several subroutines
are proposed which operate on this Unified Data Representation.
There are also commands proposed which apply these subroutines to
data stored in a new kind of database. Some of the services
provided by the subroutines to both "user" and "system''
applications are:

- displaying,
- editing, and

,,,,.. - sorting data.

Some interface extensions are proposed for MRDS and lister
subroutines. Also, it is proposed that metering commands be
extended to place their output in the new-style database. It is
also proposed that the implementation of certain portions of
LINUS may be done (or re-done) to take advantage of these new
interfaces and facilities.

Prototypes of the commands and subroutines exist. The
implementation of the commands and subroutines which constitute
the new facilities should require from three to six
person-months.

Many thanks to Matt Pierret for his extensive aid in the
development of the prototype command and subroutine utilities.

Multics project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

i

MTB-541' Multics Technical Bulletin
Vector Concept Introduction

There is a continuum meeting for discussing the material
presented in this MTB at:

>udd>Multics>Spratt>mtg>vector_util_, short name "vu".

Comments should be sent to the author:

via Multics Mail:
Spratt.Multics on either MIT Multics or System M.

via US Mail:
Lindsey Spratt
Honeywell Information Systems, inc.
575 Tech Square
Cambridge, Massachusetts 02139

via telephone:
(HVN) 261-9321, or
(617) 492-9321

Page ii.

CONTENTS

Page
1 Abstract i
2 Introduction 1
3 Intended System Uses 2
4 Other potential system uses 3
5 The vector 3
6 The vector array 3
7 Implementation issues 4
8 The prototype. 4
9 Overview of the utilities. 4

9. 1 Subroutines for creation . . . 4
9.2 Subroutines for manipulating 5
9.3 Commands for the vector
database 5

DRAFT: MAY BE CHANGED iii 12/07/81

Multics Technical Bulletin
Vector Concept Introduction

'

2 INTRODUCTION

MTB-541

This is a proposal for a broadly applicable technology for
coping with tabular data. This technology is broadly applicable
in two distinct ways: First, many services are proposed for
manipulating tables of data. Second, there are many instances
where these services can be used since tables of data are
ubiquitous on Multics. Many different facilities on Multics
produce output which is, for instance, displayed in some
variation on a table. The proposed technology allows the
centralization of the functions of sorting, displaying, editing
and evaluating any data which can be represented as a table.

The proposal has two components. The most important
component is the concept of a Unified Data Representation. The
Unified Data Representation is the standard "plug" by which
different pieces of software can be joined, much as the RS232
connector helps many different pieces of hardware to communicate.
For the Unified Data Representation to be successful, it must
satisfy a couple of constraints: it must be a sufficiently
general technique that widely varied systems of software can use
it; and, data represented in this fashion must be
self-descriptive, capable of cogent interpretation by a program
without additional descriptibn.

The second component of the proposal is a set of utilities
to work with this Unified Data Representation. These utilities
are commands and subroutines which support the creation, editing,
and display of the Unified Data Representation.

The basic model for the Unified Data Representation is the
table of data. Rather than connect the Unified Data
Representation terminologically with established data management
concepts, none of which has exactly the right connotations, a new
terminology has been adopted; the dimension, vector and vector
array. This nomenclature is used to describe a simple table of
data in Table 1.

In the example table displayed in Table 1, a row is
analogous to a vector, a column is analogous to a dimension, and
the entire table is analogous to a vector array.

Page 1.

MTB-541

heroes region
per capita

.03 Kansas
1 Canada

Multics Technical Bulletin
Vector Concept Introduction

favorite color! <-- Dimension Names

mauve <-- Vector 1
puce <-- Vector 2

-------------------------------------+
I
I

Dim~nsion

1

I
I

Dimension
2

I
I

Dimension
3

Table 1. An example table labeled as a Vector Array.

The subroutine utilities for dealing with vectors are in
vector util . These utilities are for use by portions of the
Multics operating system and by general user applications. The
only major requirement for them to be useable in a particular
application (system or user) is for the application to be
manipulating tabular data. If this is the case, the data can be
cast (if it is not already) in the Unified Data Representation
and it is convenient to communicate this data to the utilities,
and to other applications which use the Unified Data
Representation.

There is a command interface to a simple database manager
which is heavily oriented toward manipulations implemented via
these subroutine utilities. This database manager allows for
insertion of vectors, retrieval and display of vectors, deletion
of vectors, and editing (adding dimensions, changing the values
of dimensions, deleting dimensions) vectors. This database
manager provides a convenient way to store and manipulate data in
the Unified Data Representation format. The subroutine utilities
provided for manipulating data in the Unified Data Representation
are useful/useable even if one does not choose to use the vector
database manager, the vector database manager is an(other)
application of the vector subroutine utilities.

l INTENDED SYSTEM USES

There are (so far) three areas of the system which I propose
be extended to speak in the Unified Data Representation tongue.
1) MRDS - add to dsl operations to: store the data described by
a vector array into- a specified relation and databse; retrieve
data from a database and format the retrieved data as a
vector array; and, delete data described by a vector array from a
specified relation. Each vector can be considered to correspond
to either a portion or all of a tuple.
2) lister - add to the lister subroutine interface operations to:

Page 2.

Multics Technical Bulletin
Vector Concept Introduction

MTB-541

store the data described by a vector array into a lister
database; retrieve data from a lister database formatted as a
vector array; and, delete records described by a vector array
from a-lister database. Each vector is considered to correspond
to a lister record.
3) metering commands - extend selected metering commands to place
their output in vector databases. Extend metering subroutines to
return output as vector arrays. The vectors should have in them,
in addition to the data currently collected, the name of the
"meter" and the sequence number of the invocation of the meter.
This sequence number should be extracted from (and updated in)
the vector database in which the metering information is to be
stored.

4 OTHER POTENTIAL SYSTEM USES

Portions of
use the Unified
utilities.

5 THE VECTOR

the implementation of LINUS can be altered to
Data Representation and some of the attendant

The most basic idea for implementing a set of general data
management subroutine utilities is a general expression for data.
This is the "vector'' structure, which has two forms, the typed
vector and the print vector. In both forms, the vector is an
array of "dimensions". Each dimension has a name and a value.
In the print vector, the values are all varying character
strings, ready to be displayed or edited. In the typed vector,
the values are in any of a wide variety of data type formats,
ready for sorting or insertion into a database.

6 THE VECTOR ARRAY

Vectors don't appear in isolation, however. They are always
part of a vector array. The vector array structure has a
''dimension table" which defines all of the dimensions present in
any of the vectors in the array, and an array of pointers to
vector structures. The definition of a dimension includes the
name of the dimension and its data type description. For the
typed vector array, the data type description consists of a data
type number and a "size", interpreted according to the data type.
For the print vector array, the definition has (in addition) the
maximum length value for all values in that dimension in the
vectors associated with the array. This information is useful
when displaying the vectors.

Page 3.

MTB-541 Multics Technical Bulletin
Vector Concept Introduction

7 IMPLEMENTATION ISSUES

There exists a set of functional proto-types, the primary
limitation of which is the restriction to the print
representation of data (character strings). To implement much of
what is proposed here-in requires "only" the conversion of these
proto-types to whatever form the final design assumes. The
implementation of this proposal's utilities is in the range of 3
to 6 person-months of effort.

8 THE PROTOTYPE.

A prototype version of the command interface outlined below
exists in
>udd>Multics>Spratt>vd.ssd>bound object>bound vector db • There
is a series of info - files in the -directory
>udd>Multics>Spratt>vd.ssd>info.

9 OVERVIEW OF THE UTILITIES.

As noted above there are both subroutine and command
utilities. The subroutine utilities fall into two categories:
creation of the vector array and vectors; and, manipulation of
the vector array.

9.1 Subroutines for creation

init typed array
- Initializes a typed_vector_array (creating an "empty"

array) with a given set of dimension definitions.
general add

add

- adds a typed_vector to a typed_vector_array. The typed
vector is given by a series of dimension names and
values, from which this utility builds a typed_vector
structure.

adds a typed_vector to a typed_vector_array, the
typed vector being specified by providing a value for
each - of the dimensions defined in the
typed vector array to which it is being added. The
values must-be given in the calling sequence in the
same order as they appeared in the init typed array
call that was used to create/initialize the-array~

cv typed to print
- - converts a typed vector array to an equivalent

print_vector_array, -converting all of the associated

Page 4.

. ' .

Multics Technical Bulletin
Vector Concept Introduction

MTB-541

vectors from typed_vector structures
structures.

to print_vector

cv_print_to_typed
converts a print vector array
typed vector array, converting the
from - print_vector structures
structures.

to an equivalent
associated vectors
to typed_vector

9.2 Subroutines for manipulating

sort

display

edit

evaluate

sorts a typed_vector_array according to specifications
provided by the caller.

displays a print_vector_array.

invokes an interactive subsystem for editing a
print_vector_array. It must be provided an
input array, and can optionally be provided with entry
points to invoke to delete the input array from a data
base and to insert the result array -(constructed as a
result of the editing) into a data base. The subsystem
can be invoked non-interactively as well.

evaluates a vector using selected dimensions of the
vector and an expression into which the dimension
values are to be substituted. The substitution is done
using the "do" active function. The result of the
substitution is evaluated by invoking it as an active
string (using cu $af). The result of this invocation
is returned as the evaluation of the vector.

external evaluate
evaluates a set of vectors. A value is extracted from
each vector of the set, then this list of values is
provided· as arguments to be substituted into the
external expression. The substitution is done using
active function "do".· The substituted form of the
expression is evaluated as an active string. The value
extracted from the vector, mentioned above, may be
specified by identifying a single dimension from which
the value is to be extracted; or, it can be specified
by doing an "evaluate" of a provided expression and
list of dimensions to be used as arguments to the
expressions.

Page 5.

MTB-541 Multics Technical Bulletin
Vector Concept Introduction

9.3 Commands for the vector database

vector insert
inserts a vector into a vector database. A vector
database is created the first time there is an attempt
t~ insert a vector in it.

vector delete
deletes a vector from a vector database.

vector display
- displays a selected set of vectors from a vector

database. This command uses both the sort and display
subroutine utilities mentioned above.

vector edit

f

edits one or more vectors in a selected set of vectors
extracted from a vector database. The editing can
include any mixture of: deleting dimensions, adding
dimension, changing the values of dimensions. If
desired by the user, this command invokes an editing
subsystem request loop. This command uses the edit
subroutine utility, which uses the disply, evaluate,
and external evaluate subroutine utilities, all
mentioned above.

Page 6.

