
Multics Technical Bulletin MTB-538

To: Distribution

From: Richard J.C. Kissel

Date: 10/20/81

Subject: Design of a General Interface and Implementation
Structure For Use in a Networking Environment

Send comments to:

Kissel.Multics @ MIT
Kissel.Multics @ System M

or

Richard J.C. Kissel
Honeywell Information Systems
575 Tech. Sq.
Cambridge, Ma. 02139

or

Mail stop: MA22

or call:

617-492-9319
HVN 261-9319

Multics Project internal working documentation.
Not to be reproduced or distributed outside the Multics Project.

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 1

MTB-538

INTRODUCTION

This MTB defines and. examines the issues relevant to the
design of a general user and system interface that can be used in
a networking environment. A specific design is also proposed.
This design uses many of the concepts and much of the terminology
developed in a draft MTB by M.R. Jordan in response to the
requirements from CNO for Level 6 attached processor support.
The general problem can be stated as follows: given the fact
that Multics is going to be connected to a variety of different
networks, each providing some common and some unique functions,
and each connected to possibly intersecting sets of remote
systems, how can we provide users with a unified and extensible
interface which will make these diverse capabilities easy to use?

This MTB provides a framework and the necessary terminology
with which to discuss network applications. The framework
divides an application into a part concerned with queueing
network requests and managing the request queues (handled by
system code), and a part which is application specific (handled
by application code). The interface that the application
specific part must have is also specified. This is the Network
Application Support Procedure (NASP) interface.

In the rest of this MTB I will use the terms "local" or
"local system" to refer to the system that a user (or absentee
job) is logged in to. The terms "remote" or "remote system" will
refer to any system which is accessible from the local system
through a network. Examples of networks with which Multics will
be concerned are: ARPANET/INTERNET, DSA, X25, a hyperchannel
connection, local networks, and networks accessed through dialout
capabilities.

FEATURES OF A USER INTERFACE

In a networking environment, a user is generally concerned
about three things.

The first is the function he wishes to perform remotely.
This includes functions such as: file transfer, remote job
submission, mail, etc. The user is always concerned with, and
must specify explicitly, the function he wishes to perform.
Notice that remote login (e.g. as done by the current telnet
command) is just another network function that fits into the
interface defined here.

The second thing a user is concerned about is the remote
system at which the function is to be performed. The user may or

page 2 HONEYWELL CONFIDENTIAL AND PROPRIETARY 10/20/81

MTB-538

may not be concerned with the specific remote system that will
perform the function. For instance, a file transfer will require
that the user specify the remote system, because only the user
knows where the file currently is, or where it should be created.
On the other hand, for a remote job submission, the user may only
need a remote system with certain attributes (e.g. a Level 6
running GCOS6 MOD 400 and FORTRAN release 2) rather than a
specific remote system. In some cases it may be possible to
deduce the remote system attributes required from the function to
be performed. This would relieve the user from any concern for
the remote system.

Finally, the user is concerned about the type of network
through which he reaches a remote system. In many cases there
may only be one type of network connecting the local and rE~ote
systems. In other cases there will be multiple network types
(e.g. ARPANET, DSA, X25, etc.). In general, the user does not
care what network is used to reach a remote system to perform a
specified function. However, in some cases the user may want to
use special knowledge (e.g. relative speeds of various networks,
the fact that the ARPANET is only supposed to be used for ARPA
related traffic, etc.) to determine which network will be used.
Also, some functions may only be available on a specific network.
In this case, however, the system should be able to relieve the
user of worrying about which network to use by picking the

,.. correct one itself.

The foregoing discussion should make it clear that the user
interface in a general networking environment must provide
certain features. The user must explicitly specify the function
he wishes to perform on a remote system, together with any
information necessary to perform that specific function. The
user must be able to specify a particular remote system or
specify the attributes that a remote system must have to perform
the requested function. And, the user must be able to specify a
particular type of network over which the request to perform the
function will be sent.

In addition, one more feature for the user interface is
necessary on Multics. That is, a way to distinguish between a
request that is to happen in the user's process (while he waits)
and a request that is to be queued for later processing by a
daemon, with the results reported. back to the user. If the
request is to be queued, the user must provide information to
allow the queue management software on the local system to hangle
the request. Since there are a number of commands on Multics
which manage queued requests in a consistent manner, the user
interface for network requests should match these other
interfaces as closely as possible (i.e. simila~ control
arguments, and the ability to enter, list, cancel, and move
requests).

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 3

MTB-538

A user command interface which embodies the features ~
discussed above is proposed in Appendix A. A subroutine
interface will be provided for use by commands which currently
perform functions locally but which could be extended to perform
the same function remotely (e.g. send mail).

USER LEVEL IMPLEMENTATION ISSUES

The functions that users might wish to perform are extremely
varied. Some are well known, for instance, file transfer and
mail. Others are very user and system specific, for instance,
"send this FORTRAN program to a Level 6, compile it, execute it,
and return the listing and execution output to me". Also,
functions that a user wishes to perform will depend on the types
of network connections available on his local system, and the
other systems reachable through these networks. Support of these
varied functions requires a design that allows Honeywell to
provide some functions, but also allows users to write their own
functions.

The proposed solution to this design problem is the concept
of a Network Application Support Procedure (NASP). A NASP is a
Honeywell supplied or user supplied piece of code which performs
a desired end user function. A NASP must perform two basic
actions to implement and end user function.

The first action is to take command line arguments specified
by a user and generate an application specific structure
containing the information necessary for the execution of the
function. For instance, a file transfer NASP would parse command
arguments describing the files to be transferred, and include the
local and remote file pathnames, and the hosts on which they
reside, in the application specific structure.

The second action is to take the structure generated by the
first action and perform the requested function. This includes
interfacing with the appropriate network software required to
reach a specific host and possibly interacting with the user or
operator.

The reason for this partitioning of NASP actions is that the
application specific structure may either be used to execute the
function in the user's process, or it may be placed in a queue
for later execution in a daemon process. By placing all of the
application specific knowledge in the NASP, it will be possible
to have a single set of general purpose queue management software
for many different applications.

page 4 HONEYWELL CONFIDENTIAL AND PROPRIETARY 10/20/81

·.J

MTB-538

One NASP will be required for each different user
application function to be performed. The name of the NASP
procedure to call is found by using the Network Information Table
(described below) to map the function name to the NASP name.
This name will then be used with the "network" search list to
find the subroutine which implements the specified function.
Each NASP will have standard set of entries defined to perform
the various NASP actions. A NASP can be written to perform a
function over a number of possible network connections, but this
will usually be done by separate subroutines in the NASP, since
different networks have different interfaces and require
different protocols to perform similar functions. In fact, a
NASP may have a set of internal interfaces for performing network
specific actions similar to the defined external NASP interfaces.
Thus, the NASP entries would just perform a routing function
based on a user supplied (or internally generated) network name.
The internal subroutines would then perform the function on the
specified network. Although not currently defined, these
internal entries might be found by using the Network Information
Table to map a function name and network name to a set of entries
to perform the function on that network.

In the proposed design, a clear distinction is made between
queue management and the processing required to carry out a given
function. All processing related to the queuing command
arguments, putting requests into queues, taking requests out of
queues, and calling the appropriate NASP entries, is handled by
system supplied software. A standard request header is defined
for this purpose (see Appendix D). All processing related to
handling a specific function is done by user or system supplied
NASP entries. Uninterpreted space is provided in a request for
this purpose. The actual names and calling sequences for NASP
entries are detailed in Appendix B.

A standard state for each request in a request queue is
maintained in the standard request header by the queue management
software. If more application specific state information is
needed, it will be kept in the applicaiton specific part of a
request and maintained by the NASP. This standard state has the
following values and meanings.

The "deferred" state is set if the request's starting time
(as specified by the user) has not yet been reached, or if the
request has been deferred indefinitely (awaiting release by an
operator or the user), or if the request is being held pending
the completion of some other request(s). A request in this state
will only be looked at by the queue management software to change
its state or to update other queue specific parameters. It may
also be passed to the NASP_$list or NASP_$modify entries to have
application specific information listed or modified.

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 5

MTB-538

The "ready" state is entered when the request is no longer
deferred for any reason. A request in this state will be given
to a NASP_$execute entry to be performed whenever it is found by
a daemon process looking for work. While the NASP $execute entry
is executing the request will be locked in the queue, and thus,
unavailable to any other process for execution. The
NASP $execute entry will return with an indication of whether the
request is "complete" or "not complete", and an indication as to
whether any requests being held for the completion of this
request should be released. The reason for having the two
indications is that, normally, a request that is "complete" will
cause the release of any related requests being held, and a
request that is "not complete" will not. However, in the case of
a "complete" request, the NASP may have notified the user of some
exceptional condition, and therefore, not want to release any
held requests. For instance, the request may abort in some way
which makes retrying it impossible. And in the case of a "not
complete" request, the NASP may still want any held request to be
released. For instance, a file transfer NASP might use the "not
complete" state to allow a grace time to expire before deleting
the source file used in the transfer, but since the transfer has
actually completed, any held requests can be released.

If the request is "complete", the queue management software
will delete the request from the queue. If the request is "not ~
complete", the queue management software will update the request
in the request queue, making its state "not complete", and
unlocking it so it may be processed later.

A request in the "not complete" state is
way as one in the "ready" state. But notice
be carefully written to be able to pick up a
request and continue to process it.

handled in the same
that the NASP must

partially completed

The user will be able to identify a queued request (in order
to list, modify, or cancel it) by using a function name and
request id combination. The request id will be a standard
Multics-request id as described int he-MPM Reference Guide. The
function name will determine in which set of priority queues the
request can be found, and the request id will identify the
particular request in those queues. -

Network Information Table

There is a body of generally useful information which must
be kept about the networking environment on a system. This
information will be kept in the Network Information Table (NIT)
on Multics. It contains the following general classes of
information: a mapping from application function name to NASP
name; a mapping from function name and priority to the name of a

page 6 HONEYWELL CONFIDENTIAL AND PROPRIETARY 10/20/81

MTB-538

message segment to be used as a request queue; and a table of
,.... information concerning all the network connections available from

the local host. This table lists: each host by name along with
any additional names it may have; which networks may be used to
access that host; the network address of that host on each
network; the functions supported by each host and network
connection; and the attributes of each host and each network.
This list is not exhaustive and may be extended as we gain more
experience.

Since this table must be updated and accessed in very
general ways, it will be implemented as a MRDS database.
Standard interfaces for entering, updating, and retrieving
information in the database are detailed in Appendix C. A user
who wishes to access the database in some way different from ~hat
provided by the standard interfaces is free to use the database
directly through MRDS interfaces. It is expected that a NASP
will need information from the Network Information Table to do
its work (e.g. host attributes, function specific addresses,
etc.).

DAEMON LEVEL AND QUEUE MANAGEMENT IMPLEMENTATION ISSUES

The following section addresses the issues involved in
managing queued requests and constructing a framework within
which daemon processes which handle queued requests can operate.

Queue Management Implementation Issues

The queues in which requests are put will be implemented
using message segments. There will be one set of priority queues
per defined function. An interface will be provided to enter
requests into a specified queue. This will be used by the
network request commands in the user's process to enter requests
containing the standard header and the application data returned
from a NASP_$parser entry. An interface will also be provided to
extract requests from the queues based on various selection
criteria. This capability will require an additional message
segment primitive to support it, since requests may be pulled
from the queue, examined, and put back unprocessed. This
primitive will perform a "read and lock" operation on a message
in a message segment (see the forthcoming MTB on message segment
enhancements). Given this additional message segment primitive,
no "coordinator" process will be needed to manage the queues.
Instead, each daemon process will be able to get requests to
process directly from the queues, using the interface specified
in Appendix D.

When a call is made to get a request from a queue, the queue
will be searched for a request which matches the specified

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 7

MTB-538

criteria and is in the "ready" or "not complete" state. Requests ~
which are locked will be skipped. Each daemon will have the
option of searching the queue from the beginning or starting from
the last request seen. Normally, a daemon will scan the queue,
with each call starting from the last request seen, until it
finds one it can process. It will process that request, and then
scan the queue, with the first call starting from the beginning
of the queue, for the next request to process.

Daemon Process Implementation Issues

All of the daemon processes which handle requests from the
queues do so in a fairly standard manner. The daemon calls a
queue management interface with some appropriate selection
criteria to get a request to process. The daemon then calls a
NASP $execute entry with the request. The NASP_$execute entry
does the actual work, just as in the interactive case, and
returns with the indications described above. The daemon does
any queue management operations required and then gets another
request to process and the cycle continues. In order to
facilitate administrative and operator control over the daemon
processes, a standard start up.ec which puts the daemon into the
subsystem utilities environment will be used. A standard set of
commands will be defined and controlled with the subsystem
utility subroutines. This will allow the operator to communicate
in a standard way with a daemon process about anything related to
the queues or the selection criteria the daemon uses to get
requests. It is still possible that a NASP will enter into some
sort of question and answer dialogue with the operator if that is
required to process a specific request. The specific features
that will be provided in the daemon process environment are
detailed in Appendix E.

Server Daemon Implementation Issues

In a networking environment there is a need to provide for
"server" processes to handle incoming network requests. For
instance, in DSA a file transfer server is necessary to handle
incoming requests for file transfers to or from the local host.
The primary difficulty in implementing a server is providing for
security on the local system. The ideas that will be used here
are: the "pool" storage specified in MTB 425 and MTR 158 for
incoming data, and an extension of the concept of the "card input
password" to a "network request password" which can be used to
verify remote users.

page 8 HONEYWELL CONFIDENTIAL AND PROPRIETARY 10/20/81

MTB-538

Administrative Issues

In the above design, the basic objects which must be
administered are: the NIT, the request queues, the requestor
daemon processes, the input "pool" storage, and the extended
"network request password". The administrative interfaces to be
used to control each of these objects is detailed with the
specific descriptions of each object in the appendices. Also,
Appendix F provides a preliminary MAM type description of these
interfaces.

IMPLEMENTATION PLANS

In order to gain experience with this design, we need to
have an application in mind for the first implementation. That
application will be a network independent file transfer facility.
We currently have, or plan, file transfer capabilities over three
types of networks: the ARPANET, a direct or dial_up connection
(using bisync or some other line protocol), and DSA. One of
these networks, either the direct connection or DSA, will be
chosen for the initial implementation. The application specific
control arguments that the user may specify are detailed in
Appendix G (i.e. the arguments that may be given after the
-arguments control argument). Even this first implementation
will require implementing all of the framework described above.
That is, the user commands, the NIT (at least some portion of
it), the queue management software, the daemon command
environment, and server processes; as well as the actual NASP
software for the file transfer application.

IMPLEMENATION CONSIDERATIONS

The framework described above will be part of the standard
system. This includes the user commands, the NIT, the queue
management software, the daemon command environment, and the
server processes. The MRDS database for the NIT can be shipped
as an unpopulated database, so the only MRDS facilities needed in
the standard system are the ones which allow database inquiry and
update. Specifically, no MRDS facilities for database creation
will be needed in the standard system. It is hoped that this
restriction will allow the necessary parts of MRDS to be shipped
as part of the standard system. It is also intended that the
entire framework can be shipped separately from any standard
release. Each NASP supplied by Honeywell can be a PSP, in
particular the file transfer NASP described as part of the
initial implementation can be a PSP.

The initial implementation as described above should take
about 6 man·months for the framework and 3 man months for the

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 9

MTB-538

NASP. These two tasks can be done concurrently, so the total """
calendar time should be about 6 months.

BASIC SCENARIOS

In order to illustrate how
used, three scenarios for a file
below.

the defined interfaces will be
transfer application are given

Interactive Scenario

Assume the user types the following command:

nr ft foo.pl1 bar.pl1 -at Mit-Multics

The network_request command does the following basic things:

o Calls nit_$get_nasp_names with the function name
"ft" to get the name of the NASP which implements
the requested function. Assume there is a NASP
named file transfer which does file transfers~
The name "file transfer " is then used with the - -"network" search list to find the actual subroutine
to call.

o Calls file transfer $parser with the rest of the
command lin~ after tKe "ft". This entry returns a
file transfer specific data structure.

o Calls file_transfer_$execute with the data
structure obtained from the parser. During
execution, this entry will have to call various
nit entries to get information to carry out the
transfer, e.g. what networks the host
"MIT-Multics" can be reached through, the address
of "MIT-Multics" on a particular network, and
perhaps, the name of the file transfer server on
"MIT-Multics". This entry will then carry out the
file transfer using some appropriate protocol and
print out any necessary information for the user.
It then returns.

o The network_request command then returns to the
user.

Queued Scenario

Assume the user types the following command:

enr ft foo.pl1 bar.pl1 -at MIT-Multics

page 10 HONEYWELL CONFIDENTIAL AND PROPRIETARY 10/20/81

MTB-538

The enter network request command does the following basic
things: - -

o Calls nit_$get_nasp_name as described above.

o Calls file_transfer_$parser as described above.

o Checks any queueing
are none in this
defaults.

control arguments given (there
example) and sets any queuing

o Builds a network request structure by filling in
the standard header, and putting the data structure
from the parser at the end. It then calls
nrq manager $put with the request structure to put
the-request-in an appropriate queue.

o Prints the request_id returned by nrq_manager_$put,
and returns to the user.

Daemon Scenario

Assume the daemon has been started and the "go" command was
issued. Then the following basic steps occur.

o A call is made to nrq_manager_$get with a function
that the daemon is supposed to handle. It calls
nit $get nasp name to get the NASP to call (as
described above). Assume it is the file transfer
subroutine (as described above). The daemon checks
to see if the host and network specified by the
request are ones that it can handle by calling
file transfer $info. If it cannot handle this
request it puts it back in the queue and gets
another one. If it can handle the request then it
continues as follows.

o The file transfer $execute entry is called with the
application information from the request. This
entry performs the actions for the file transfer as
described in the interactive scenario.

o Assuming the file transfer was successfully
completed, the daemon calls nrq_manager_$delete
with the request and updates any requests being
held for completion of this request. The daemon
then calls nrq manager $get to get another request
and continues the cycle.

10/20/81 HONEYWELL CONFIDENTIAL AND PROPRIETARY page 11

APPENDIX A

This appendix gives MPM style documentation for the user
command interface being proposed for general networking requests.

10/20/81 A-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

enter network request - - enter_network_request

Name: enter_network_request, enr

The enter network request command is used to queue a network
application request for later execution. A request id is printed
by this command for u~e in later enter_network_request,
cancel_network_request, list network request, and
modify network request commands. The request id is a standard
Multics request id as described in the MPM Reference Guide. See
the network_request command for a description of how to execute a
network application interactively.

Usage

enr <function> {<q control args>}
- {[-arguments I -ag] <function_args>}

where:

<function>
is the name of the network function to be performed.
For instance, 11 ft 11 , or "file_transfer 11 • {This name ,..-..,
will be mapped by the Network Information Table to ~
the name of the NASP entry to be called to implement
this function.) The functions supported are site
dependent. The standard functions supported are
documented in a Network User's Manual. Some probable
functions are: file transfer, mail, login
(interactive only), - 16 attached processor,
cray_attached_processor, and hasp=rje. -

<q_control_args> may be any of the following:

-brief, -bf
suppresses any printed output from the command. The
default is to print a line indicating the request id
and how many similar requests are already queued. -

-comment <string>, -com <string>
specifies <string> as a comment to be carried with
the queued request. This could be used to convey
information to the Multics operator for requests that
are deferred. There is no default comment.

-defer indefinitely, -dfi
-specifies that a queued request is to be deferred
until the operator or user determines that it can be
run. The default is not to defer the request. ""

MTB-538 A-2 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

enter_network_request enter_network_request

-hold <function> <request id>
specifies that thTs request should not be processed
until the request for the specified <function> with
the specified <request id> has been processed. This
allows interdependent requests to be entered
separately. The default is not to hold the request.
This control argument may be repeated to hold the
request until a number of other requests have
completed.

-long_id, -lgid
causes the long form of the request id to be printed
for a queued request. The default is to print the
short form of the request id.

-notify, -nt
specifies that the user is to be notified when
processing of a queued request is started and when it
is completed. The default is not to notify the user.
This is incompatible with the -notify_start and
-notify_end control arguments.

-notify_start, -nts
specifies that the user is to be notified when the
request is first given to the NASP $execute entry for
processing. This is incompatible with the -notify
control argument.

-notify_end, -nte
specifies that the user is to be notified
NASP_$execute entry indicates that the
completed. This is incompatible with

when the
request is

the -notify
control argument.

-proxy USER ID
specifies the user for whom this queued request is
being entered. Use of this control argument requires
additional access to the request queue. The default
is the user id of the process entering the request.

-queue N, -q N
specifies the priority queue for this request. The
default is to enter the request in the default
priority queue. The number of queues available and
the default queue are specified in the Network
Information Table.

-time DT, -tm DT
specifies the date-time at which this request should

10/20/81 A-3 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

enter_network_request enter_network_request

be considered for processing. DT must be in a form
acceptable to convert_date_to_binary_. The default
is to allow the request to be considered for
processing immediately.

<function_args> are described as follows:

MTB-538

These are arbitrary command line arguments (which may
look like control arguments) which are passed to, and
understood by, the particular network application
specified by <function>. The functions supported and
the arguments they require are documented in a
separate Network User's Manual.

A-4 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

network_request network_request

Name: network_request, nr

The network_request command performs a network application
interactively in the user's process. See the
enter_network_request command for a description of how to queue a
request for later execution.

Usage

nr <function> {<function_args>}

where:

<function>
is the network application to be performed as
described in the enter_network_request command.

<function_args>

10/20/81

are optional network application specific arguments
as described in the enter_network_request command.

A-5 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

cancel network request - - cancel_network_request

Name: cancel_network_request, cnr

The cancel network request command allows a previously
queued network -request-to be cancelled and deleted from the
request queues. A queued request that is currently running may
or may not be cancelled by this command. This ability depends on
the particular network application being executed. If more than
one request matches the selection criteria given, the matches
will be listed and the user will have to pick the one he meant.

Usage

cnr <function> {<control args>}
{[-arguments -ag} <function_args>]

where:

<function>
is the name of the network function which was to be
performed by the request to be cancelled. See the
description in enter_network_request. (Note: the ~
<function> name is mapped to the set of priority
queues in which the request resides).

<control_args> may be chosen from the following:

-identifier <request_id>, -id <request_id>
specifies that <request id> is the id of the request
to be cancelled. -This is returned by the
enter network request command. See the MPM Reference
Guide-for a description of Request IDs.

-queue N, -q N
specifies
priority
omitted,
checked.

that the request to be cancelled is in
queue N. If this control argument is
only the default priority queue will be

-all, -a
specifies that all priority queues should be checked
for this request. This control argument is
incompatible with the -queue control argument.

-brief, -bf

MTB-538

suppresses messages telling that a particular request
identifier was not found or that requests were
cancelled. The default is to print these messages.

A-6 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

cancel_network_request cancel_network_request

-user <user id>
specifies the name of the submitter of the request to
be cancelled, if not specified, the user id of the
current process is assumed. The <user id> can be of
the form: Person id.Project id, ~erson id, or
.Project id. Both r- and d extended access to. the
queue are required. This control argument is
primarily for operators and administrators.

<function_args> are described as follows:

10/20/81

These are arbitrary command line arguments whict are
passed to, and understood by, the particular network
application specified by <function>. They may be
used as additional selection criteria for the request
to be cancelled as documented in the Network User's
Manual.

A-7 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

,
!

list_network_request list_network_request

Name: list_network_request, lnr

The list network request command allows the listing of the
status of selected- queued network requests. The precise
information returned about a request is dependent on the
particular network application requested. However, any queue
related information will always be in a standard format.

Usage

lnr <function> {<control args>}
{[-arguments -ag] <function_args>}

where:

<function>
is the function name of the network requests about
which information is to be listed. See the
description in enter_network_request.

<control_args> may be chosen from the following:

-identifier <request id>, -id <request id>
specifies that <request id> is -the id of the request
to be listed. This is returned by the
enter network request command. See the MPM Reference
Guide-for a description of Request IDs.

-queue N, -q N
specifies that only requests in priority queue N are
to be listed. If this control argument is omitted,
only requests in the default priority queue will be
listed.

-all, -a
specifies that requests in all priority queues should
be listed. This control argument is incompatible
with the -queue control argument.

-long, -lg

MTB-538

causes all of the queue specific information about
the request to be listed. This includes time,
comment, requests this request is being held for,
etc. No request specific information is listed. The
default is to only print a line containing the short
id, the current state, and the priority of the ,..._.
request.

A-8 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

list_network_request list_network_request

-request info, -rqi
causes any request specific information to be listed.
The actual information listed is dependent on the
type of request. The default is not to list any
request specific information.

-total, -tt
only lists totals for the requests selected by the
other control arguments.

-user <user id>
specifies the name of the submitter of the requests
to be listed. If not specified, the user id of the
current process is assumed. The <user id>-can be of
the form: Person_id.Project_id, Person_id, or
.Project id. Additional access to the queue is
required~ This control argument is primarily for
operators and administrators.

<function_args> are described as follows:

10/20/81

These are arbitrary command line arguments which are
passed to, and understood by, the particular network
application specified by <function>. Any listing
caused by these arguments is application specific and
is documented in a Network User's Manual. Any
listing information based on these arguments will
only be printed if the -request info control argument
is given. However, these arguments will always be
used for selecting requests to list.

A-9 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

modify_network_request modify_network_request

Name: modify_network_request, mnr

The modify_network_request command allows the queuing
parameters of a queued network request to be modified.
Application specific parameters of the request may only be
changed if the application supports this operation. In
particular, it allows requests to be moved between pri~rity
queues, and to have their hold statuses changed. If more than
one request matches the selection criteria given, the matches
will be listed and the user will have to pick the one he meant.

Usage

mnr <function> {<q control.args>}
- {[-arguments I -ag] <function_args>}

where:

<function>
is the name of the function of the request to be
modified. See the enter network_request command for Alllll\
a complete description.

<q_control_args> may be any of the following:

-identifier <request id>, -id <request id>
specifies that <request_id> is -the id of the request
to be modified. This is returned by the
enter network request command. See the MPM Reference
Guide-for a description of Request IDs. ·

-user <user id>
specifies the name of the submitter of the requests
to be modified. If not specified, the user id of the
current process is assumed. The <user id>-can be of
the form: Person id.Project id, ~erson_id, or
.Project id. Additional access to the queue is
required~ This control argument is primarily for
operators and administrators.

-comment <string>, -com <string>
specifies that the comment on the request should be
changed to <string>.

-defer_indefinitely, -dfi
specifies that the request should be deferred until

MTB-538 A-10 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

r

modify_network_request modify_network_request

the operator or the user determines that it can be
run.

-release, -rl
specifies that a request which specified
-defer indefinitely should be released. This can
normally only be done by an operator, administrator,
or the user who entered the request.

-hold <function> <request id>
specifies that the request should be held until the
completion for the specified request. This control
argument may be repeated to hold this request fer a
number of other requests.

-un hold <function> <request id>
- specifies that a -request being

completion of the specified request
to wait. This control argument may
un hold a number of other requests.

held for the
no longer needs

be repeated to

-notify, -nt
specifies that the user wishes to be notified when
the processing of this request starts and when it is
complete.

-no notify, -no nt
- specifies that

notified about
request.

the user no longer wishes to be
the start or completion of the

-notify_start, -nts
specifies that the user wishes to be notified when
this request begins execution.

-no_notify_start, -nnts
specifies that the user does not wish to be notified
when this request begins execution.

-notify end, -nte
specifies that the user wishes to be notified when
this request is completed.

-no_notify_end, -nnte

10/20/81

specifies that the user does not wish to be notified
when this request is completed.

A-11 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

modify_network_request modify_network_request

-queue N, -q N
specifies that the request
priority queue N.

should be moved to

-time DT, -tm DT
specifies that the date-time at which this request
should be considered for processing should be changed
to DT. If DT is O, then the request may be
considered for processing immediately.

<function_args> are described as follows:

MTB-538

These are arbitrary command line arguments which are
passed to, and understood by, the particular network
application specified by <function>. Any
modification caused by these arguments is application
specific and is documented in a Network User's
Manual.

A-12 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

APPENDIX B

This appendix specifies the interfaces that must be provided
by an Network Application Support Procedure (NASP). This
includes an entry for processing command or subroutine arguments
and building a request structure, and an entry for executing a
request, including any code necessary to interface to specific
networks.

The subroutine name used in this appendix (NASP) is for
illustration only. The actual name of the NASP to call is found
by using the function name to NASP mapping in the Network
Information Table. This name is then used with the "network"
search list to find the actual subroutine to call. The entries
which each NASP must implement have standard names as fol~JWS
(where NASP is replaced by the actual NASP name):

NASP $parser
NASP-$execute
NASP-$cancel
NASP-$modify
NASP-$list
NASP=$info

10/20/81 B-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

parser NASP

Name: NASP_$parser

This entry takes command line arguments and parses them to
build a structure of relevant information that can be used by the
NASP_$execute subroutine to carry out the requested function. It
is called by the enr or nr command. If it is necessary for the
execution of the application, the host name, host attributes, and
network name should be kept in the application structure.

Usage

dcl NASP_$parser entry (ptr, ptr, char (*), ptr, fixed bin,
bit (1), ptr, ptr, fixed bin (24),
char (*) varying, fixed bin (35));

call NASP_$parser (in iocbp, out iocbp, caller name, arg list ptr,
first arg, queued flag, area ptr, - -

where:

in_iocbp

out_iocbp

structure ptr, structure len~
error_msg~ code); -

(Input)
is a pointer to an I/0 switch to be used if input
from the user is necessary. It will be open for
stream_input.

(Input)
is a pointer to
the user is
stream_output.

an I/O switch to be used if output to
necessary. It will be open for

caller name (Input)
is the name of the caller which should be used in
reporting errors or querying the user.

arg_list_ptr (Input)

first_arg

MTB-538

is a pointer to the user supplied command arguments
for this function. The cu_$xxx_rel entry points
should be used to access the arguments.

(Input)
is the number of the first argument after the
-arguments control argument on the command line (i.e.
the first function specific argument). If there are
no arguments after the -arguments control argument, ~

B-2 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

NASP parser

or there is no -arguments control argument, then this
will be zero.

queued_flag (Input)
is a flag indicating whether the user command called

in the

area_ptr

for queuing this request or for execution
user's process.

"1"b this request will be queued.
"O"b -- this request will be executed interactively.

(Input)
is a pointer to an area in which to allocate ~he
structure to be returned. If this pointer is null,
then the system free area should be used.

structure_ptr (Output)
is a pointer to the structure which has been built to
hold the request information. This structure is not
interpreted by the caller, but is passed as is to
other NASP entries.

structure len (Output)

error_msg

code

10/20/81

is the length of the returned structure in bits.

(Output)
is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

B-3 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

execute NASP

Name: NASP_$execute

This subroutine takes an application specific request
structure, built by NASP $parser, and performs the requested
action. This subroutine contains any network or host specific
knowledge needed to perform the function. It is called by the nr
command, or by a daemon process when a queued request is.to be
executed.

Usage

dcl NASP_$execute entry (ptr, ptr, char (*), bit (1), ptr,
fixed bin (24), bit (1), bit (1),
char (*) varying, fixed bin (35));

call NASP_$execute (in_iocbp, out_iocbp, caller_name, queued_flag,
structure ptr, structure len, complete,
unhold, error_msg, code);

where:

in_iocbp

out_iocbp

(Input)
is a pointer to an I/O switch to be used if input
from the user is necessary. It will be open for
stream_input.

(Input)
is a pointer to
the user is
stream_output.

an I/O switch to be used if output to
necessary. It will be open for

caller name (Input)
is the name of the caller which should be used in
reporting errors or querying the user.

queued_flag (Input)
is a flag which indicates whether this request came
from a queue or directly from the user's process.

"1"b
"O"b

this request came from a queue.
this request is being done interactively.

structure_ptr (Input/Output)

MTB-538

on input, is a pointer
been built to hold the
structure was presumably
subroutine. On output,

B-4

to the structure which has
request information. This
built by the NASP $parser
the structure holds the

10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

NASP execute

(possibly updated) request information which will be
put back in the request queue.

structure len (Input/Output)

complete

unhold

error_msg

code

10/20/81

is the length of the structure in bits. This must be
the same on input and output.

(Output)
indicates whether all processing for this request is
completed or not completed. If the request is
completed, it will be deleted from the queue. If the
request is not complete, it will remain in the queue
for later processing after being updated (bj the
caller) using the output values of structure_ptr and
structure len.

"1"b
"O"b

the request is complete.
the request is not complete.

(Output)
indicates whether any requests which are being held
for the completion of this request should be updated
to reflect the completion of this request.

'"1"b
"O"b

update held requests.
do not update held requests.

(Output)
is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

B-5 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

cancel NASP

Name: NASP_$cancel

This subroutine is called by the cnr command or an operator
command in a daemon process when the user desires to cancel a
request whose state is "ready" or "not completed". If a zero
error code is returned, indicating sucessful cancellation, the
queue management software will then delete the request from the
queue. If a non-zero error code is returned, indicating that the
request was not cancelled, the error code will be returned to the
user, and the request will be left (updated) in the queue. A
request in the "deferred" state will simply be deleted from the
queue without calling any NASP entry.

Usage

dcl NASP $cancel entry (ptr, fixed bin (24), char (*) varying,
- fixed bin (35));

call NASP_$cancel entry (structure ptr, structure_len, error_msg,
code);' -

where:

structure_ptr (Input/Output)
on input, is a pointer
been built to hold the
structure was presumably
subroutine. On output,
(possibly updated) request
put back in the request
failed.

to the structure which has
request information. This
built by the NASP_$parser
the struture holds the
information which will be

queue if the cancellation

structure len (Input/Output)

error_msg

code

MTB-538

is the length of the structure in bits. This must be
the same on input and output.

(Output)
is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

B-6 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

NASP modify

Name: NASP_$modify

This subroutine takes command line arguments and an existing
request structure and makes modifications to the request based on
the arguments. It is called by the mnr command which will then
update the request in the queue by using the output from this
entry.

Usage

dcl NASP_$modify entry (ptr, ptr, char(*), ptr, fixed bin,
ptr, fixed bin (24), char (*) varyir.6,
fixed bin (35));

call NASP_$modify (in iocbp, out iocbp, caller name, arg list ptr,
fTrst arg, structure_ptr, structure Ten, -
error=msg, code);

where:

in_iocbp

out_iocbp

(Input)
is a pointer to an I/0 switch to be used if input
from the user is necessary. It will be open for
stream_input.

(Input)
is a pointer to an I/O switch to be used if output to
the user is necessary. It will be open for
stream_output.

caller name (Input)
is the name of the caller which should be used in
reporting errors or querying the user.

arg_list_ptr (Input)
is a pointer to the user supplied command arguments
for this function. The cu_$xxx_rel entry points
should be used to access the arguments.

first_arg (Input)

10/20/81

is the number of the first argument after the
-arguments control argument on the command line (i.e.
the first function specific argument). If there are
no arguments after the -arguments control argument,
or there is no -arguments control argument, then this
will be zero.

B-7 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

modify NASP

structure_ptr (Input/Output)
on input, is a pointer to the structure which has
been built to hold the request information. This
structure was presumably built by the NASP $parser
subroutine. On output, the struture hoTds the
modified request information which will be put back
in the request queue.

structure len (Input/Output)

error_msg

code

MTB-538

is the length of the structure in bits. This must be
the same on input and output.

(Output)
is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

B-8 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

NASP list

Name: NASP $list

This subroutine takes command iine arguments and an existing
request structure and lists information about the request based
on the arguments. It is called by the lnr command or by an
operator command in a daemon process. It will be called once for
each request which matches the user specified selection criteria.
If the user has also specified application specific selection
criteria, this entry interprets them and indicates whether this
request should be listed or not.

Usage

dcl NASP_$list entry (ptr, fixed bin, ptr, fixed bin (24),
bit (1) char(*) varying,
char (*) varying, fixed bin (35));

call NASP_$list (arg list ptr, first arg, structure ptr,
structure len, list, output lines~
error_msg~ code);

,... where:

arg_list_ptr (Input)
is a pointer to the user supplied command arguments
for this function. The cu $xxx rel entry points
should be used to access the arguments.

first_arg (Input)
is the number of the first argument after the
-arguments control argument on the command line (i.e.
the first function specific argument). If there are
no arguments after the -arguments control argument,
or there is no -arguments control argument, then this
will be zero.

structure_ptr (Input)
is a pointer to the structure which holds the request
to be listed.

structure len (Input)

list

10/20/81

is the length of the structure in bits.

(Output)
indicates whether or not this request should be
listed (based on the application specific arguments).

B-9 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

list

"1"b
"0 "b

NASP

list this request.
do not list this request.

output lines (Output)
is a character string containing the information to
be listed. It may contain newline characters and
will be output to the user, possibly indented, with
an ioa ""a" control string.

error_msg (Output)

code

MTB-538

is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

B-10 10/20/81

HONEYWELL CONFIDENTI~L AND PROPRIETARY

NASP info

Name: NASP_$info

This entry takes an application specific request structure
and returns information about the request. Currently, the only
information returned is the host name and the network name for
the request.

Usage

dcl NASP $info entry (ptr, fixed bin (24), ptr, char (*) varying,
- fixed bin (35));

call NASP_$list (structure ptr, structure len, nasp_info_ptr,
error_msg, code); -

where:

structure_ptr (Input)
is a pointer to the structure which holds the request
for which information is desired.

structure len (Input)
is the length of the structure in bits.

nasp info ptr (Input/Output)
- - is a pointer to a structure in which the information

error_msg

code

Notes

is returned. The structure is described in Notes
below. The version field must be set on input, all
other fields will be set on output.

(Output)
is an error message text that more fully explains an
error. It will only be used by the caller if code is
non-zero. The minimum length of the string on input
will be 256 characters.

(Output)
is a standard system status code. The specific codes
returned are NASP dependent.

The following declaration describes the nasp_info structure
(declared in nasp_info.incl.pl1):

10/20/81 B-11 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

info NASP

dcl 1 nasp info aligned based,
2 version fixed bin (35),
2 host name char (32) unaligned,
2 net name char (32) unaligned;

where:

version
is the version number of this structure. It should
be set to nasp_info_v1 on input.

host name
is the host name associated with this request. If it
is all blanks, then there is no host name for this
request.

net name

MTB-538

is the network name associated with this request. If
it is all blanks, then there is no network name for
this request.

B-12 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

APPENDIX C

This appendix specifies the interface being proposed for
entering and retrieving information from the Multics Network
Information Table. The NIT will be implemented using a MRDS
database. The following entries are defined to allow easy access
to the database. Notice that the MRDS accessing subroutines may
be used directly by the user to retrieve information in ways not
provided by these entries. The ACLs on the nit entries will
probably give "e" access to everyone, the ACLs for the nit admin
entries will probably restrict "e" access to administrators.

nit $get function address
nit-$get-host address
nit-$get-host-attributes
nit=$get=nasp=name
nit $get net attributes
nit=$get=q_pathname

nit admin $set function address
nit-admin-$set-host address
nit-admin-$set-host-attribute
nit-admin-$set-nasp-name
nit=admin=$set=net_attribute
nit_admin_$set_q_pathname

10/20/81 C-1

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MTB-538

The source for generating the MRDS database is given below:

domain:

I* The primary names and any secondary names for various
I* entities.

host name
net name
function name

char (32) unaligned,
char (32) unaligned,
char (32) unaligned,

I* Id's so that each entity has a unique name.
I* These will be generated using unique_bits_.

host id
net Id
function id

bit (70)'
bit (70)'
bit (70),

I* Attributes and host address values.

host attribute
net attribute
net-address

char (32) unaligned,
char (32) unaligned,
char (200) varying aligned,

*I
*I

*I
*I

*I

I* This is mostly to give the mailbox name of a function in DSA.*/

function address char (32) unaligned,

I* Information to find the queues. There is one queue per */
I* function and priority. A priority of zero will give the */
I* default queue. *I

queue pathname
queue_priority

char (168) varying aligned,
fixed bin (17) unaligned,

I* Name of the NASP function.

nasp_name char (32) unaligned;

relation:

I* Name to identifier mapping relations

host names (host name* host id),
net names (net name* net id),
function names-(function-name* function_id),

I* Information retrieval relations

net attributes (net id* net_attribute*),

MTB-538 C-2

HONEYWELL CONFIDENTIAL AND PROPRIETARY

*I

*I

*!

10/20/81

index:

10/20/81

host attributes (host id* host attribute*),
host-address (host id* net_id*-net_address),

sub address (host id* net id* function id*
function_address),

queue (function id* queue priority*
queue_pathname), -

nasp_names (function id* nasp_name);

host names (host id),
net names (net id),
function names-(function_id),

net attributes (net attribute),
host attributes (host attribute),
host-address (net id net address),
sub address <net Id function id),
nasp_names (nasp=name); -

C-3

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MTB-538

get function_address nit

Name: nit_$get_function_address

This entry takes a function name, host name, and network
name, and returns any function specific addressing information
needed to access that function.

Usage

dcl nit_$get function_address entry (char (*), char (*), char (*),
char(*), fixed bin (35));

call nit_$get function address (function, host, net, address, code);

where:

function

host

net

address

code

MTB-538

(Input)
is the function name of the function whose address is
desired.

(Input)
is the name of the host on which the function is to ~
be performed.

(Input)
is the name of the network over which the request for
function execution will be sent.

(Output)
is the addressing information needed to address the
particular function on the specified host over the
specified network.

(Output)
is a standard system status code.

C-4 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit get_host_address

Name: nit_$get_host_address

This entry takes a host name and network name and returns
the address of that host on that network.

Usage

dcl nit $get host address entry (char (*), char (*), char(*),
- - - fixed bin (35));

call nit_$get_host_address (host, net, address, code);

where:

host

net

address

code

10/20/81

(Input)
is a character string name of a host.

(Input)
is the name of the network for which the host address
is desired.

(Output)
is the address of the host on the network.

(Output)
is a standard system status code.

C-5 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

get_host_attributes nit

Name: nit_$get_host_attributes

This entry takes a host name and returns the attributes of
that host. The attributes are returned in an attribute string
which can be manipulated by the mode string subroutine entries.
This will require this entry to make multiple database accesses
to retrieve all of the host attributes.

Usage

dcl nit $get host attributes entry (char (*), char (*),
- - - fixed bin (35));

call nit_$get_host_attributes (host, attributes, code);

where:

host (Input)
is a character string name of a host.

attributes (Output) ~
are the attributes of the specified host in a
character string suitable for manipulation by the
mode_string_ subroutine entries. If the output
character string is not long enough to contain all of
the attributes, then those that fit will be returned
and an error code will also be returned.

code (Output)
is a standard system status code.

MTB-538 C-6 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit get_nasp_name

Name: nit_$get_nasp_name

This entry takes a user specified function name and returns
the name of the NASP entry which implements that function. This
name should then be used with the "network" search list to find
the subroutine to call. This subroutine must have the standard
entries as defined in the Network User's Guide. This mapping is
site specifiable (see the description for Network Information
Table administration in the MAM).

Usage

dcl nit_$get_nasp_name entry (char (*), char (*), fixed bin (35));

call nit_$get_nasp_name (function, nasp_name, code);

where:

function

nasp_name

code

10/20/81

(Input)
is a character string name of a function to be
performed.

(Output)
is the name of the NASP which implements the
specified function.

(Output)
is a standard system status code.

C-7 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

get net_attributes nit

Name: nit_$get_net_attributes

This entry takes a network name and returns the attributes
of that network. The attributes are returned in an attribute
string which can be manipulated by the mode_string_ subroutine
entries. This will require this entry to make multiple database
accesses to retrieve all of the network attributes.

Usage

dcl nit $get net attributes entry (char (*), char (*),
- - - fixed bin (35));

call nit_$get_net_attributes (net, attributes, code);

where:

net (Input)
is a character string name of a network.

attributes (Output) ~
are the attributes of the specified network in a
character string suitable for manipulation by the
mode_string_ subroutine entries. If the output
character string is not long enough to contain all of
the attributes, then those that fit will be returned
and an error code will also be returned.

code (Output)
is a standard system status code.

MTB-538 C-8 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit get_q_pathname

Name: nit_$get_q_pathname

This entry takes a user specified function name and
priority, and returns the pathname of the request queue which
holds these types of requests. This mapping is site specifiable
(see the description for Network Information Table administration
in the MAM).

Usage

dcl nit $get q pathname entry (char (*), fixed bin, char (168),
- - - char (32), fixed bin(35));

call nit_$get_q_pathname (function, priority, q dirname,
q_entryname, code); -

where:

function

priority

q_dirname

(Input)
is a character string name of a function to be
performed.

(Input)
is the priority number of the queue
is zero then the pathname of the
queue will be returned.

(Output)

desired. If this
default priority

is the directory name portion
queue in which requests for
and priority reside.

of the pathname of the
the specified function

q_entryname (Output)

code

10/20/81

is the entryname portion of the pathname of the queue
in which requests for the specified function and
priority reside.

(Output)
is a standard system status code.

C-9 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

set_function address nit admin

Name: nit_admin_$set function address

This entry takes a function name, host name, and network
name, and sets the function specific addressing information
needed to access that function.

Usage

dcl nit_admin_$set_function_address entry (char (*)i char(*), char (*),
char (*), fixed bin (j5));

call nit_admin_$set function_address (function, host, net, address,
code);

where:

function

host

net

address

code

MTB-538

(Input)
is the function name of the function whose address is
to be set.

(Input) ~
is the name of the host on which the function is to
be performed.

(Input)
is the name of the network over which the request for
function execution will be sent.

(Input)
is the addressing information needed
particular function on the specified
specified network.

(Output)
is a standard system status code.

C-10

to address the
host over the

10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit admin set host address

Name: nit_admin_$set_host_address

This entry takes a host name and network name and sets the
address of that host on that network.

Usage

dcl nit admin $set host address entry (char (*), char (*), char (*),
- - - - fixed bin (35));

call nit_admin_$set_host_address (host, net, address, code);

where:

host

net

address

code

10/20/81

(Input)
is a character string name of a host whose address is
to be set.

(Input)
is the name of the network for which the host address
is to be set.

(Input)
is the address to be set of the host on the network.

(Output)
is a standard system status code.

C-11 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

set host attribute nit admin

Name: nit admin $set host attribute - - - -

This entry takes a host name and sets one attribute for that
host. The attribute should have a syntax like the syntax for a
mode in a standard system mode string. Multiple calls to this
entry are necessary to set multiple attributes for a host.

Usage

dcl nit admin $set host attribute entry (char (*), char (*),
- - - - fixed bin (35));

call nit_admin_$set_host_attribute (host, attribute, code);

where:

host

attribute

code

MTB-538

(Input)
is a character string name of a host.

(Input)
is an attribute for the host (with a syntax like that
of a mode in a standard system mode string).

(Output)
is a standard system status code.

C-12 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit admin set_nasp_name

Name: nit_admin_$set_nasp_name

This entry takes a user specified function name and sets the
name of the NASP entry which implements that function. This name
will be used with the "network" search list to find the
subroutine implementing this function.

Usage

dcl nit_admin_$set_nasp_name entry (char (*), char (*),
fixed· bin (35));

call nit admin $set nasp name (function, nasp name, code); - - - - -

where:

function

nasp_name

code

10/20/81

(Input)
is a character string name of a function to be
performed.

(Input)
is the name of the NASP which implements the
specified function.

(Output)
is a standard system status code.

C-13 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

set net attribute nit admin

Name: nit_admin_$set_net_attribute

This entry takes a network name and sets one attribute for
that network. The attribute should have a syntax like the syntax
for a mode in a standard system mode string. Multiple calls to
this entry are necessary to set multiple attributes for a
network.

Usage

dcl nit admin $set net attribute entry (char (*), char (*),
- - - - fixed bin (35));

call nit_admin_$set_net_attribute (net, attribute, code);

where:

net

attribute

code

MTB-538

(Input)
is a character string name of a network.

(Input)
is an attribute for the network (with a syntax like
that of a mode in a standard system mode string).

(Output)
is a standard system status code.

C-14 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

nit admin set_q_pathname

Name: nit_admin_$set_q_pathname

This entry takes a user specified function name and
priority, and sets the pathname of the request queue which holds
these types of requests.

Usage

dcl nit admin $set q pathname entry (char (*), fixed bin,
- - - - char (*J, fixed bin(35));

call nit_admin_$set_q_pathname (function, priority,
q_pathname, code);

where:

function

priority

q_pathname

code

10/20/81

(Input)
is a character string name of a function to be
performed.

(Input)
is the priority number of the queue desired. If this
is zero then this will be the pathname of the default
priority queue.

(Input)
is the pathname
requests for the
should be put.

(Output)

of the request queue in which
specified function and priority

is a standard system status code.

C-15 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

APPENDIX D

This appendix specifies the interface being proposed for
entering and retrieving requests from request queues. The
implementation details of the request queues are also specified.
The following entries are described:

nrq manager $put
nrq-manager-$get
nrq-manager-$update
nrq=manager=$delete

Queue Implementation Details

The queues are implemented using the standard message
segment primitives. However, a new primitive will be necessary
to allow a request to be read and locked in a single "atomic"
operation. This will allow multiple processes to use a single
queue for requests without having to use a ''coordinator" process.

10/20/81 D-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

put nrq_manager_

Name: nrq_manager_$put

This entry takes a request, verifies that the request header
is in the proper format and puts it in the proper network request
queue.

Usage

dcl nrq_manager_$put entry (ptr, fixed bin(35));

call nrq_manager_$put (request_ptr, code);

where:

request_ptr (Input/Output)

code

Notes

is a pointer to the request to be queued. The first
part of the request is expected to be a request
header in a standard format (see Notes below). The
time_entered, request_id, q dirname, and q entryname
fields will be filled in on-return. If thi priority
field is O, then the default priority queue will be ~
used, and its number will be filled in. All other
fields will be left alone. Note: the state of the
request must be "deferred" or "ready" to be
sucessfully put into the queue.

(Output)
is a standard system status code.

The following pl1 declaration (in network_request.incl.pl1)
specifies the structure of a network request. Included in a
request is a standard request header which contains information
which is interpreted by queue management routines, and
application specific request information which is interpreted by
NASPs.

dcl 1 network request
2 standard header

3 version
3 time entered
3 request id
3 entered=by
3 entered for

MTB-538

aligned based,
aligned,
fixed bin (35),
fixed bin (71),
fixed bin (71),
char (32) unaligned,
char (32) unaligned,

D-2

HONEYWELL CONFIDENTIAL AND PROPRIETARY

10/20/81

nrq_manager_ put

3 function id
3 priority-
3 q_dirname
3 q entryname
3 state
3 comment
3 defer until
3 grace=time_expires
3 hold array len
3 hold-array-(ha len

4 hola function-id
4 hold-request id
4 flags -

5 request_complete
5 pad

3 flags
4 defer indefinitely
4 notify start
4 notify-end
4 pad -

bit (70) aligned,
fixed bin (17) unaligned,
char (168) unaligned,
char (32) unaligned,
fixed bin (18) unsigned unaligned,
char (128) varying unaligned,
fixed bin (71),
fixed bin (71),
fixed bin (17) aligned,

refer (network request.hold array len)),
bit (70) alTgned, - -
fixed bin (71) aligned,
aligned,
bit (1) unaligned,
bit (35) unaligned,
aligned,
bit (1) unaligned,
bit (1) unaligned,
bit (1) unaligned,

3 application info len
2 application_info -

bit (33) unaligned,
fixed bin (24),
bit (nra len refer
network_request.application_info len);

where:

version
is the version of this structure, it should be set to
network_request_v1.

time entered
is the time the request was entered in the queue.

request id
is the identifier for this request, as returned by
the queue management software.

entered_by
is the user id of the user who entered the request.

entered for
is the user id of the user for whom
entered. This will be the same as
field for non-priviledged users.

the request was
the entered_by

function

10/20/81

is the unique identifier of the function performed by
this request.

D-3 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

put nrq_manager_

priority
is the priority number of the queue in which this
request resides.

q_dirname
is the directory part of the pathname of the queue in
which this request resides.

q_entryname

state

is the entryname part of the pathname of the queue in
which this request resides.

is the current state of this request, encoded as
follows:

1 - unprocessed (means that the request has not
been looked at since it was entered in the
queue.)

2 - deferred (means the request is waiting for a
certain time, or for operator or user action.)

3 - ready (means the request is ready to be run.)
4 running (means the request is currently being Al\

executed. It will still be locked in the
queue in this state.)

5 - not complete (means the request has been
partially executed, but is not yet finished.)

6 - aborted (means that the system crashed while
the request was being executed, or while it
was locked, and that it may be in an
inconsistent state.)

(Note: a request may have an application specific
state which is kept as part of the application
information.)

comment
is the comment associated with this request.

defer until
is the time until which this request was deferred by
the user. It can be executed after this time. This
may be 0 if no time was specified by the user.

grace time expires
- is the time after which

from the queue. It is
the "finished" state.

the request may be deleted
only valid for a request in

MTB-538 D-4 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

...

nrq_manager_ put

hold array len
- is the number of entries in the hold array.

hold function id
is the- unique identifier of the function which will
be performed by the request for which this request is
being held.

hold request id
- is the request id of the request for which this

request is being-held.

request complete
Ts a flag which is set to "1"b

entry
if the request

is complete. described by this array
Otherwise, it is "O"b.

defer indefinitely
- indicates, if "1"b, that this request is deferred by

the user until the operator releases it.

notify start
-indicates, if "1"b, that
notified when the request
enters the "running" state).

the user wishes to be
starts execution (i.e.

notify end
-indicates, if "1"b,

notified when the
enters the "finished"

that the user wishes
request ends execution
state).

to be
(i.e.

application_info_len
is the length of the application specific information
in bits.

application_info

10/20/81

is a bit string which holds the application specific
information. This information is not looked at by
the queue management software, but is passed as is to
the various NASP entries.

D-5 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

get nrq_manager_

Name: nrq_manager_$get

This entry gets a copy of a request from a queue which
matches the selection criteria. The request is left locked (by
the calling process) in the queue. It is normally unlocked by
the nrq manager $update entry, however, all the entries will
handle invalid locks. (Note: the standard network request queue
header contains the pathname of the queue from which the request
was taken).

Usage

dcl nrq_manager_$get entry (char (*), fixed bin (17), bit (1),
fixed bin (71), char (*),
ptr, ptr, fixed bin (35));

call nrq_manager_$get (function, priority, from beginning,
request id, user, area ptr, request ptr,
code); - - -

where:

function

priority

(Input)
is a character string name of a function to be
performed.

(Input)
is the priority number of the queue from which to get
the request.

from_beginning (Input)
is a flag indicating whether the specified queue
should be scanned from the beginning ro from the last
request seen by this process.

"1"b start the scan at the beginning of the queue.
"0"b -- start the scan from the last request in the

queue seen by this process.

request_id (Input)

user

MTB-538

is the id of the desired request. The id may be 0 if
no request id is to be specified.

(Input)
is the user id of the user for which the desired
request was entered. This may be of the form:
Person_id.Project_id, Person_id, or .Project_id. If

D-6 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

..

··" -

-

nrq_manager_

area_ptr

get

this argument is all blanks, then the user id of the
current process is assumed. This will be checked
against the "entered_for" field in the request.

(Input)
is a pointer to an area
returned request should
pointer is null then the
used.

in which space for the
be allocated. If this
system free area will be

request_ptr (Output)

code

10/20/81

is a pointer to the
nrq manager $put entry
request structure.

(Output)

returned request. See the
for a description of the

is a standard system status code.

D-7 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

update nrq_manager_

Name: nrq manager_$update

This entry takes a request, verifies that the request header
is consistent with the request in the queue, and then replaces
the request in the queue with the given request, unlocking it in
the process. The standard request header contains the
information necessary to locate the request to update.

Usage

dcl nrq_manager_$update entry (ptr, fixed bin (35));

call nrq_manager_$update (request_ptr, code);

where:

request_ptr

code

MTB-538

(Input)
is a pointer to the updated copy of the request. See
the nrq manager $put entry for a description of the
request-structure.

(Output)
is a standard system status code.

D-8 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

.....

nrq_manager_ delete

Name: nrq_manager_$delete

This entry takes a request, verifies that the request header
is consistent with the queued request, and deletes the request
from the queue. The standard request header contains the
information necessary to locate the request to update.

Usage

dcl nrq_manager_$delete entry (ptr, fixed bin (35));

call nrq_manager_$delete (request_ptr, code);

where:

request_ptr (Input)
is a pointer to the copy of the request to be
deleted. See the nrq_manager_$put entry for a
description of the request structure.

code (Output)
is a standard system status code.

10/20/81 D-9 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

APPENDIX E

This appendix specifies the commands which may be used to
control the request selection criteria and other aspects of the
daemon operation. The command environment will be implemented
using the subsystem utilities. The start up.ec will just set
things up so that the subsystem can operate as a closed
subsystem.

10/20/81 E-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

handle~requests_for handle_requests_for

Name: handle_requests_for, hrf

This command allows an operator to add to the types of
requests that this daemon should handle.

Usage

hrf <function> <host> <network>

where:

<function>

<host>

<network>

MTB-538

is the name of an application function that this
daemon should handle. It may be specified as "*", in
which case any function may be handled.

is the name of a host which
handle. It may be specified as
any host may be handled.

th1s da. emon should
•••

1

, in which case

is the name of a network which t~is daemon should
bandle. It may be specified as "*'1, in which case
any network may be handled.

E-2 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

•

dent handle dent handle

Name: dont_handle, dh

This command specifies a function, host, and network
combination that will not be handled by this daemon.

Usage

dh <function> <host> <network>

where:

<function>

<host>

<network>

10/20/81

is the name of a function which should not be
handled. It may not be "*" since this would make any
processing impossible.

is the name of a host which should not be handled.
It may not be "*" since this would make any
processing impossible.

is the name of a network which should not be handled.
It may not be "*" since this would make any
processing impossible.

E-3 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

list list

Name: list, ls

This command lists all the function, host, and network
combinations that this daemon currently handles. It also can be
used to list requests that this daemon can handle.

Usage

ls {<control_args>}

where:

<control~args> may be chosen from the following: (if no
control args are specified, then all the function,
host, and network combination handled by this daemon
are listed.)

-user USER ID
lists the request for the specified user that exist
in the queues handled by this daemon.

-defer indefinitely, -dfi
-only lists request which were entered with the

-defer_indefinitely control argument and therefore,
require operator action to start.

MTB-538 E-4 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

go go

Name: go

This command causes the daemon to start processing requests
according to the current function, host, and network
combinations.

Usage

go

10/20/81 E-5 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

release release

Name: release

This command releases a request
the user entered it with the
argument.

which is being held because
-defer_indefinitely control

Usage

release request_id user id

where:

request id

user id

MTB-538

is the request id of the request to be released. It
can be found by using the list command.

is the user id of the user who entered the request to
be released. This is used as a check.

E-6 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

cancel cancel

Name: cancel

This command cancels a request and deletes it from the
request queue. A request whose state is "running" may be left in
an inconsistent state depending on the particular application.

Usage

cancel request_id user id

where:

request_id

user id

10/20/81

is the request id of the request to be cancelled. It
can be found by using the list command.

is the user id of the user who entered the request to
be cancelled. This is used as a check.

E-7 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

.. .

APPENDIX F

This appendix gives MAM style documentation describing the
administrative operations which can be performed to control the
operation of the networking facility described in this M!B.

10/20/81 F-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

APPENDIX G

This appendix describes the arguments accepted by the
file transfer (ft) function to allow file transfers over the
ARPANET, a direct or dial_up connection, and a DSA network.

10/20/81 G-1 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

. ..

file transfer file transfer

Name: file_transfer, ft

This network function allows user's }o
any network connection to or from a host on
function must be used in conjunction with
commands: enr, nr, lnr, cnr, and mnr.
described in the MPM commands manual.

transfer files over
that network. This
the network_request
These commands are

Usage

enr ft <q_control_args> {[-arguments

nr ft <function_args>

-ag] <function_args>}

where:

<q_control_args>
are queuing control arguments described for the enr
command.

<function_args> have the following structure:

<source file> <destination file> {<control_args>}

where:

<source file> ::= {-name l -nm} <file name> {-at <host>} - -specifies the source file to be used for the
transfer. <file name> must be preceded by -name or
-nm if it begins-with a "-". It must be enclosed in
quotes if it contains spaces or special characters.
It must be followed by "-at <host>" if the file does
not reside on the local host. The <file name> is
specified in a syntax acceptable to the host-on which
the file resides. If the <host> is a Multics system,
then the <file_name> may be a "star" name, and all of
the files which match the "star" name will be
transferred.

<destination file> ::= {-name l -nm} <file_name> {-at <host}
specifies the destination file to be used for the
transfer. It has the same syntax and restrictions as
<source_file>. If the <host> is a Multics system,
then the <file name> may be an "equal" name, and the
actual file names will be generated using the equals
convention.

MTB-538 G-2 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

file transfer file transfer

<control_args> may be chosen from the following:

-network NAME, -net NAME
specifies the particular network to use for the
transfer. If no network is specified then any
appropriate and available network will be used.

-user STR
STR specifies the user on whose behalf the file
transfer is to be done. This may be used by the
remote host for authentication of the file transfer.
The default is the Multics user id of the us~r who
submitted the request.

-password STR, -pw STR
STR is a password that may be used by the remote host
to authenticate the file transfer. There is no
default. If the remote host requires a password, and
none is given, then the user will be prompted for one
with a mask.

-compression, -cmpr
specifies that the file should be compressed for the
transfer to allow more efficient use of the line.
This is the default. See "Notes" below.

-no_compression, -no_cmpr
specifies that the file should not be compressed for
the transfer.

-checkpoint interval N, -ci N
specTfies that checkpoint marks
N records during the transfer.
use checkpointing. See "Notes"

should be used every
The default is not to
below.

-delete, -dl
mark the source file for deletion after the transfer
has been completed. The file will actually be
deleted only if the transfer was successful and a
grace period has elapsed. The default is not to
delete the source file.

-data type [ascii I binary I ebcdic]
- specifies the data type to be used for the transfer.

The default is "binary".

-append
specifies that the source file should be appended to

10/20/81 G-3 MTB-538

HONEYWELL CONFIDENTIAL AND PROPRIETARY

.. . ..

file transfer file transfer

the destination file, rather that replacing it. See
"Notes" below.

-force, -fc

Notes

specifies that the destination file is to be written
even if it already exists. The default is not to
overwrite an existing file. If the destination host
is a Multics system, then standard namedup handling
will be used as the default.

All networks may not support all the control arguments
listed above. If the user specifies the network using -network
or -net, then any control arguments not supported will cause the
rejection of the request. If the network is not specified, then
any control arguments not supported will be ignored.

In the first implementation, there is a restriction that
either the source file or the destination file must be on the
local host (i.e. both must not use the -at argument). Thus,
third-party transfers are not allowed.

MTB-538 G-4 10/20/81

HONEYWELL CONFIDENTIAL AND PROPRIETARY

