
r

,r

MULTICS TECHNICAL BULLETIN MTB-536

To: Distribution •
From: Robert S. Coren

Date: 09/21/81

Subject: Use of Extended Memory for FNP Buffers

This MTB describes a proposed mechanism for using extended memory
in the Datanet 66XX FNP (18X) for data buffers. A certain amount
of familiarity with the workings of the Multics FNP is assumed,
although a brief summary of the extended memory feature is
included for those who need it.

STATEMENT OF THE PROBLEM

Limits on the amount of available buffer space pose a
serious problem for the Multics FNP software. The fact that
executable code and buffers used for I/O to and from the various
channels have to share the directly-addressable 32K 18-bit words
of basic memory restricts not only the number of channels that
can be run successfully on a given FNP, but also the number of
different types of channels that can be run, since each
additional line type may require an additional module of control
tables. Thus as channels and channel types are added and
available space drops, throughput for all channels decreases, the
notorious "bell/quit" problem manifests itself, and with some
configurations the FNP will not boot at all, or will crash very
shortly after bootload.

Starting in MRS, we have made very limited use of the
extended memory feature of the FNP (i.e., the ability to use
addresses higher than 32K). The extended memory is currently
used exclusively for data bases that are allocated at
initialization time for the duration of the FNP bootload, as
explained below under "Summary of the FNP Paging Mechanism." The
effect of this is that the available extended memory is largely
wasted. In fact, although additional memory for an FNP is
available in 32K increments up to 256K 18-bit words, Multics
supports no more than 64K, and doesn't make effective use of more
than about 48K. '

Multics Project working documentation. Not to be reproduced or
distributed outside the Multics Project.

-1-

MULTICS TECHNICAL BULLETIN MTB-536

SUMMARY OF PROPOSED SOLUTION

I propose to modify the FNP software to allow I/O buffers to
be allocated anywhere in available memory, with preference given
to high (i.e., extended) memory. This will free a substantial
amount of space in low memory for additional code and control
tables if needed, and greatly reduce the probability that buffer
space itself will become uncomfortably tight. (Space allocated
temporarily for purposes other than I/O buffers will continue to
be allocated in low memory.) This will make it possible to make
effective use of whatever memory is available, and accordingly we
can remove the arbitrary 64K limit, thereby making it feasible to
sell an FNP with as much extended memory as a customer
wants/needs, up to a full complement of 256K.

The proposed implementation will be described in more detail
following a brief description of the FNP paging mechanism.

SUMMARY OF PAGING MECHANISM IN THE FNP

The architecture of the Datanet 66 series of machines allows .
15 bits for an address that can be referenced through a machine
instruction (e.g., as an indirect word, or held in an index
register). This restricts the directly addressable memory to
32K, i.e., the highest referenceable address is 077777 octal.
However, if extended memory is enabled, a "paging" mechanism is
used to reference addresses up to 256K (777777) by dividing the
directly addressable 32K into 256-word "windows" onto arbitrary
256-word blocks.

The way this works is that, if the paging hardware is
enabled, a page table of 128 1-word entries (at a fixed location
in low memory) is used to map 15-bit addresses into 18-bit
addresses. Each page table entry describes a 256-word region of
15-bit addresses, where the region described by each entry is
determined by its position in .the table; such an entry includes,
among other things, an "active" bit and the address of a 256-word
block in extended memory. If an entry's active bit is on, then
all references to addresses within that entry's region are
translated to addresses within the block in extended memory to
which the entry points.

Perhaps this discussion can be clarified by a description of
how the current FNP software makes use of the paging mechanism.
The only page table entry ever made active is the last one, i.e.,
the one describing addresses 77400 through 77777. Suppose the
software needs to reference data at extended address 123463. The
page table entry is set to point to the block starting at 123400,
and its active bit is set. An instruction reference to 77463

-2-

MULTICS TECHNICAL BULLETIN MTB-536

will now in fact access the contents of 123463, and similarly any
reference in the range 77400-77777 will access the corresponding
address in the range 123400-123777.

A range of addresses such as 77400-77777 in the example
above is referred to as a "window" or "paging window"; the range
of addresses from 123400 to 123477 is called a "page"; the 15-bit
address used in the instruction (77463 in this case) is called a
"virtual" address; and the 18-bit resultant address (123463) is
called a "real" or "absolute" address.

In the current implementation, the primary use for extended
memory is for terminal information blocks (TIBs) and software
communication regions (SFCMs), of which one of each is allocated
for each communications channel at FNP initialization time. They
are allocated starting at the base of the second 32K (i.e.,
starting at 100000), and in such a way as to ensure that ·the TIB
and SFCM for any channel are in the same page. When work is to
be started on behalf of a channel, either its TIB or its SFCM is
found first, depending on what module is involved; in either
case, the page table word for the paging window is set to point
to the page containing both. Since the TIB and the SFCM each
contains the address of the other in virtual form -- i.e., the
address at the appropriate offset in the window it is
possible, given the address of one, to load a usable address for
the other directly into an index register.

The only other use currently made of extended memory is for
the trace buffer, which is allocated at the upper end of the
second 32K (i.e., so that it ends at 177777, the highest address
available in 64K). The trace routine changes the contents of the
page table entry while updating the trace buffer, and restores it
when finished. If metering is not enabled, two TIB/SFCM pairs
fit in a page, so a maximum of 12K can be occupied by TIBs and
SFCMs. With metering enabled, each TIB/SFCM pair occupies more
than half a page, so up to 24K may be reserved for TIBs and
SFCMs. Thus even on a fully-configured FNP with meters, the
minimum space available for the trace buffer is 8K. This is
enough for most purposes; trace entries vary in length from 2 to
6 words.

High Memory in I/O Operations

If appropriate flags are set, absolute addresses can be
placed in the ICWs used to transfer data to and from HSLA
subchannels, and likewise in the DCWs used by the DIA. This
means that I/O can be done to/from extended memory without
involving the paging mechanism. At present, this feature is only
used for storing status from HSLA subchannels (this status is

-3-

MULTICS TECHNICAL BULLETIN MTB-536

stored in the SFCM), but it will clearly be useful if extended
memory is used for buffers.

Setting the Page Table Entry

The utility routine setptw is used to translate an absolute
address to a virtual one, setting the page table entry to point
to the appropriate page as it does so. In addition, the sections
of code in the dispatcher that save and restore registers also
save and restore the contents of the page table entry.

DETAILS OF THE PROPOSED IMPLEMENTATION

Additional Paging Window

The range of addresses 77000-77377 will become a second
paging window reserved for buffer addresses. This means that one
additional page table entry will be used. The window at 77400
will continue to be used for TIBs and SFCMs. In general, only
one buffer address will be available at a time; to switch between
buffers, it will be necessary to modify the buffer page table
entry. This also implies that a buffer cannot be allowed to span
a page boundary (see below).

Space Management

The space allocation and freeing routines will be extended
to allow for the use of high memory. An additional allocation
entry will be provided that is called when allocation in high
memory is desired. (If the allocation cannot be made in high
memory, low memory will be used if possible.) A separate free
chain will be maintained in high memory. This chain will treat
each page as a separate free block, i.e., free blocks that are
adjacent but in different pages will not be combined.

Since all the buffer sizes used are multiples of 32 words
(with one exception -- see below), and the maximum buffer size. is
256 words, it will be fairly simple to enforce the restriction
that a buffer cannot span a page boundary. Currently, every
buffer is allocated at a 0 mod 32 address; this restriction will
be extended to require buffers to be allocated as follows:

-4-

"'.!'-_____________ ~_ _ .. _,,,.1··-·-·.,..~···· ~-M,_,,_. _ _..._.,._,.,,, .. , ,, _, __ """''"'' ,., .. ''""''"'-··-....... , _________ ~

>,.,...

MULTICS TECHNICAL BULLETIN

size (words)
32
64
96 or 128

>128

Small Input Buffers

boundary
32
64

128
256

MTB-536

Input on asynchronous channels (when not in blk xfer mode)
is currently put in 8-word buffers, of which two are allocated
for every channel in receive mode (which in general means all
dialed-up asynchronous channels all the time). In the new
scheme, these buffers will be increased to 16 words (which will
help to alleviate some problems arising from input bursts) and
allocated permanently in extended memory, rather than being taken
from the buffer pool, as explained below under "buffer
preallocation."

Echo Buffers

Echo buffers will be allocated in extended memory, but some
care will have to be taken, since an echo buffer contains input
and output pointers into itself for use in updating. These
pointers will be virtual for easy manipulation; the output
pointer will be converted to absolute when echoing is_initiated.

Continued Use of Low Memory

Dynamic allocations for uses other than data buffers will
continue to be made in low memory. These include CCTs, TIB
extensions, delay tables, scheduler queues, DIA request queues,
echo negotiation break tables, etc. These represent
comparatively little of our use of allocated memory, and since
one or more of them often has to be used in conjunction with a
data buffer, putting them in extended memory would necessitate
either one or more additional paging windows or the constant
juggling of pages. The CCT, in fact, is referenced by the
hardware through a field that is insufficiently wide to hold an
address above 32K.

-5-

,·-- ., .. _, ,.. __ .~., - - --··•• ~ 0 •""' ' ,,,.., OHM0oo•'•••• .. o '' ''" '"···-.. -~ .. ~-- ~,"'_,._, .,~. •o

'1'··

. ,,...

MULTICS TECHNICAL BULLETIN MTB-536

Address Conversion

The setptw routine mentioned above will have to be extended
to be able to set the buffer paging window entry as well as the
TIB/SFCM entry. Currently there is no subroutine to convert a
virtual address to absolute form; in the few cases where this is
needed, the conversion is done inline. However, with buffer
addresses in high memory it is expected to become a much more
common operation, and a subroutine will be provided to
"absolutize" a virtual address.

Buffer Preallocation

A scheme has been developed by some programmers at FSO, and
is currently under test at CISL, whereby a pool of buffers is
allocated in advance for use by high-speed synchronous channels,
thereby allowing them to switch ICWs at interrupt time without
incurring the expense of buffer allocation (the pool is refreshed
at more leisure later). This greatly alleviates one of MCS's
more severe timing problems, whereby failure to switch ICWs fast
enough could cause data to be lost. This feature will be
incorporated into the use of extended memory, where it will tend
to offset the increased expense of buffer allocation in general
(see below).

A side effect of this mechanism is an increase·in the size
of the SFCM, so that two TIB/SFCM pairs will never fit in the
same page. The amount of unused space left in a TIB/SFCM page
will be 98 words if metering is not enabled; if metering is
enabled, the space will be 52 words for a synchronous channel, or
74 words for an asynchronous channel. For asynchronous channels,
this space will be used for the small input buffers referred to
above, which will be permanently allocated at initialization
time; for synchronous channels, it will be added to the buffer
pool.

Executable Code

There are no plans at present to attempt
code or control tables modules in extended
would introduce some very difficult problems.
order for -bind fnp to do relocation properly,
high memory would have to be restricted
subroutines of no more than 256 words apiece,
callers would have to coded very carefully;
modify extensively the binder and any code
relocate in this fashion. This was done

-6-

to put executable
memory. To do so

In particular, in
code to be put in
to self-contained
and they and their

we would have to
that we wanted to

in GRTS-II, and

,..._ MULTICS TECHNICAL BULLETIN MTB-536

according to one of the implementors, "it's very easy to do it
wrong." It seems unlikely at this time to be worth the time it
would require.

Space Saving

It is difficult to determine accurately how much memory
space is used for I/O buffers, and thus how much low-memory space
is gained by putting buffers in extended memory; it varies not
only according to the number, type, and speed of the channels
configured, but also depending on how active the channels
actually are. Using the rules of thumb given in MAM
Communications for estimating required buffer space, an FNP with
96 asynchronous channels at speeds up to 1200 baud, of which half
require an echo buffer, uses about 12K for I/O buffers. If 12
such channels are configured, along with 12 9600-baud synchronous
channels, about BK would be used.

IMPLICATIONS

The above proposal has several (possibly negative) implications,
which are summarized below.

Efficiency

The FNP software is going to have to do more work. In
particular, the space allocation and freeing subroutines will
have to manage upper as well as lower memory, and modules all
over the system are going to have to go to the extra expense of
converting buffer addresses between virtual and absolute. Since
FNP CPUs are generally not overburdened, and FNP performance (in
terms of instructions executed) is rarely, if ever, a bottleneck
in the system as a whole, this may not be a major concern.
Whether this increased work will have a measurable effect on FNP

·throughput (in terms of characters per second) is unclear;
further study will be necessary to determine this. The
preallocation of buffers mentioned above will tend to avoid
problems that might otherwise arise from local inefficiencies
threatening to make critical functions (like the switching of
ICWs) too slow.

The extra code involved will, of course, take up more space
as well; however, the space penalty is unlikely to be significant
compared to the space saved by putting the buffers in extended
memory in the first place.

-7-

MULTICS TECHNICAL BULLETIN MTB-536

Continued Use of DN355

It is already true that Multics does not support the use of
extended memory on the Datanet 355, mostly because the 355 does
not support the direct addressing of high memory in ICWs. This
is managed at present by having the binder recognize certain
symbols and replacing transfer instructions with no-ops depending
on the amount of memory specified in the bindfile. One result of
this mechanism is that a 355 makes frequent calls to setptw,
which returns without doing anything. The ·implementation
proposed here will result in a great proliferation of such calls,
along with other code that would have to be transferred around
under control of the binder. In addition, the space penalty
referred to above would be significant in a 32K FNP, where every
word counts. It seems preferable to freeze 355 support at its
present level, and add the feature described herein to the DN66XX
only; furthermore, any other features to be added to FNP software
would not be added to the 355, · so as to avoid having to maintain
and update two parallel versions of the system. Honeywell no
longer offers the 355 in any case. We might have to make an
exception if we make a change in ring 0 that requires a
correpsonding change in the FNP, in case any of our customers
still have 355s.

Trace Buffer

Sites with 64K FNPs may have become accustomed to the idea
that the size of the trace buffer is virtually unlimited, and are
therefore using trace buffers on the order of 20K. (This is
reasonable at present, since the space thus used would otherwise
be wasted.) Under the present proposal, the trace buffer would
once again be competing with I/O buffers for memory. This is not
a serious problem, but will require a notice in the SRB to warn
sites with large trace buffers of the implications.

-8-

MULTICS TECHNICAL BULLETIN MTB-536

TASKS AND TIME ESTIMATES

The individual tasks required to implement this proposal are
summarized below, along with very rough time estimates for each
task.

Modify buffer allocation and free routines, add
new entry points

Page table management: add entry to setptw for
buffer window, add subroutine to "absolutize" an
address

Initialization: set up extended memory free chain
and buffer paging window

Find all places where buffer addresses are loaded
or stored, to make sure address conversion is
done if necessary

Find all places where buffers are allocated, so
as to call the subroutine that allocates in
extended memory

Miscellaneous front-end modifications: scheduler
to save/restore both page table entries; metering
changes; !CW and DCW setup

Host changes:
metering
cv emf and bind fnp to accept sizes above 64K
Ability to dump-more than 64K

Testing of entire package

Documentation (mostly AN85)

Total

INCLUSION IN THE RELEASE

Weeks

3

1

1

3

1

2

1
.5
.5

1

18

This proposal is intended for MR 10.0. If it is done, it
will be inextricably intertwined with anything else that is done
to the FNP code, so there would be no sensible way to remove it
from the release if for some reason that appeared desirable.

-9-

