
06/09/81 Multics Technical Bulletin MTB-525

From: W. Olin Sibert

To: MTB Distribution

Date: June 9, 1981

Subject: Generating Unique Bits for the ADP

This MTB discusses the way Multics will deal with the non-unique clock
values returned by the ADP Calendar Clock, detailing the changes and
incompatibilities which result. Please direct any comments or questions to
the author:

By Multics mail at MIT or System-M to:

Sibert.Multics

Or by mail to:

W. Olin Sibert
Cambridge Information Systems Laboratory
HED MA22

HVN 8*261-9353

Multics Project internal working documentation.
distributed outside the project without consent
Multics System Development.

Unique Bits for ADP - 1 -

Not to be reproduced or
of the author or director,

06/09/ 81

MTB-525 06/09/81

Introduction:

On the ADP, the Calendar Clock (in the CIU, the ADP equivalent of the
SCU) is not guaranteed to return a different value each time it is read. This
is a change from the clock behaviour of the Level 68 SCU clocks, which do
return a unique value. This operation of the clock on the Level 68 is
depended on for the generation of unique identifiers in several contexts, and
this capability must be available on the ADP, as well.

The uses of the calendar clock in Multics fall into two major categories:
(1) measurement of real time intervals, and (b) generation of unique values.
The non-unique property of the clock reading on the ADP will have no effect on
its utility for calculating time intervals, since it is supposed to always
monotonically increase, and therefore all intervals will be either positive or
zero.

Since the format of the clock reading (produced by the RCCL instruction)
does not change from its present fixed bin (71) count of microseconds format,
no program changes will be required to reformat the value. The only effect
the different implementation has is in the generation of unique values.

The Situation Today:

Some programs invalidly depend on the PL/I "clock" builtin to return a
unique value. The ADP clock may cause these programs to break, but this is
rather unlikely. In order for any problem to occur, an actual collision of
values must occur, and this is a very improbable event, since it requires that
two such "unique" values have been requested within the same one microsecond
interval. Furthermore, this "feature" of the Level 68 clock is not
documented, and is not widely known in the field. Therefore, this change to
the "clock" builtin should not be a problem.

For generating unique bit strings, there is already a defined interface:
the unique_bits_ subroutine. This subroutine will be modified for the ADP to
detect that it is running on an ADP system, and call a special gate entry
which will get a unique clock reading for it, and return. This will satisfy
the requirement for generating unique values. The unique_bits_ subroutine is
already documented to return a value which corresponds to a clock reading.

To avoid any further problems, the documentation for the PL/I clock
builtin (AG94, AM83), and the clock_ subroutine (AG93) will be updated to say:

"The clock builtin (or clock_ subroutine) is not guaranteed to return
a clock reading which is necessarily different from any other clock
reading taken on this system. To get a truly unique value based on
the clock reading, the unique_bits_ subroutine should be used."

06/09/ 81 - 2 - Unique Bits for ADP

06/09/81 MTB-525

An SRB notice will also be distributed with MR9.0, to warn of this
problem, and suggest that programs be converted:

"The practice of using the return value from the clock builtin
function or the cloclc;_ subroutine for generating a unique value is
not guaranteed to work. Two simultaneous invocations of the
procedure may result in the same value being returned twice. To
avoid any problems resulting from this behaviour, the unique_bits_
subroutine should be used whenever a unique clock reading is
required. Future hardware improvements may make this problem more
serious, so any programs which are affected should be modiified."

Implementation:

The mechanism for generating unique bits will be implemented entirely
within the unique_bits_ subroutine. If it finds that it is being called on a
Level 68 system, it will simply use the clock builtin, and return exactly as
it does today. Otherwise, it will check to see if it is running in ring zero,
and, if not, will call the new gate entry, hcs_$unique_bits, to get its unique
value.

The hcs_$unique_bits gate is just another way to call unique_bits_; when
unique_bits_ discovers it is, in fact, being run in ring zero, it will go
through a little routine which reads the clock (with the clock builtin),
extracts the low order word, checks to see that it is different from the value
in scs$last_unique_value, and, if so, uses the stacq builtin to update
scs$last_unique_value. If the low half of the clock is not already different,
it will loop, reading the clock, until it is. If this event does not occur
within a reasonable number of tries (a few milliseconds), it will assume that
all is lost, and crash the system because the clock is stopped. Similarly, if
the stacq fails, it will try again until it succeeds.

Only the low order word of the clock is saved, because stacq can only be
used to indivisibly update a word at a time. In any case, the absolute value
of the unique clock reading is not interesting; only its uniqueness is. Even
if two successive calls were made exactly 2**36 microseconds apart, so the low
order word would be the same, but the high order word different, it would only
occasion a microseconds delay, since it would appear the same as if two
successive calls resulted in the same clock reading.

An additional modification must be made to init_pvt, which today checks
the clock reading for a variety of malfunctions (running backwards, running
slow, stopped, etc.) and crashes the system when it detects them, to avoid
crashing the system because it appears that the ADP clock is stopped because
it returned the same value twice in a row.

These changes should prove adequate for support of the ADP calendar
clock. Since no data formats have changed (contrary to initial notice), ALM
programs can continue to read the clock and use the value for time
calculations just as they do today.

Unique Bits for ADP - 3 - 06/09/81

