Multics Technical Bulletin MTB-517

To: Distribution

>)
From: Steve Herbst *
Subject: V2 exec_com extensions

Date: 04/02/81

Here are five extensions proposed for Version 2 exec_com as it
was documented in MCR 4857. The first two have already appeared
in an MTB several years ago (MTB-324, 01/09/77).

The five extensions are:

1. Do groups (&do, &end)

2. Condition handling (&on, &begin, &condition_name,
&continue_to_signal, &restart, &revert, &signal)

3. Directing output
(&output, &discard, &variable)

y, Direéting &print statements (&print_switch)

5. Command escape (&execute)

W

1. Do groups
The exec_com &do and &end statements provide syntactie

closure for a group of statements so that the group can be
executed conditionally. They do not imply any scoping of

. variable names or values.

For the initial implementation, &goto's into a &do-%end block are
not allowed (abort execution). Outward &goto's are allowed. The
forthcoming command convert_ec, which among other things indents
the text of &do-&end blocks, will also check for invalid &goto's.
If no other problems are encountered with &goto's into blocks,
they can be added later without affecting users.

There is no restriction on transfers within &do-%end blocks, or

on the nesting of &do-%end blocks, as demonstrated in the
example:

Multics Project 1internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-517

&if &[equal &1 tapel] &then -
&if &[equal &2 test] &then &do
&if &[not [mount_tape &31] &then &do
&print DX: Cannot mount tape &3.
&return false
&end
&return &[test_tape &f3)
&end
&else &do
&set result true
&set arg_index 4
&label arg_loop
&if &[ngreater &(arg_index) &n] &then
: &return &(result)
&if &[not [read_tape &2 &3 &(&(arg_index))]]
&then &set result false
&set arg_index &[plus &(arg_index) 1]
&goto arg_loop
&end
&else &if &[equal &2 special] &then &goto special
&else &do

‘Note that since Version 2 strips leading white space from lines,
blocks can be indented as desired for readability.

N

v

2. Condition handling

Condition handling is done with an any other handler in the
exec*com’ or absentee listener. Data as to which conditions are
handled and which blocks of exec_com text are executed is
modified by the statements: &

&on(LIST OF CONDITIONS) STATEMENT ' s
&revert LIST OF CONDITIONS :

where LIST OF CONDITIONS is a list of condition names separated
by white space. The &on statement can be followed by a.single
exec_com statement on the same line or by &begin, a block of
statements, and &end:

&on(command_error active function_error) &begin
ec restore access (Tdirs **.Tib])
dl CP>temp_map
&print MAP ABORTED

&end

The new &begin statement is only allowed in condition handlers.

The contents of the condition handler, either one statement or a“
&begin-&end block, 1is related to the containing exec_com in the

MTB-517 Page 3

same way as a &do-&end block. It references the same variable
names and values #as the containing ec. Any &goto's into a
handler are not allowed. Handlers can be nested as in PL/I.

The effects of &attach and &detach statements inside a handler
are local to the handler.

Three more statements are proposed:
&signal CONDITION
causes the named condition to be signalled when it is executed.

&restart
'&continue_to_signal

inside the text of a handler exit the handler; &restart restarts
execution at the point where the condition was signalled, and
&continue to signal propagates the condition. The end of the
handler 1s “an implicit &restart. A &goto statement inside the
handler returns to the stack frame of the exec com in which the
handler was established. Both &quit and &return inside a handler
quit out of the containing exec_com, as in: '

&on command_error &quit

The new expandable construct &condition_name expands inside a
handler to the name of the condition being handled.

3. Directing output

The &output statement with various keywords is wused to

control where output is directed during exec_com execution. The
available usages are:

&output &discard {&osw SWITCHNAME}
&output &var VARNAME {&osw SWITCHNAME}

&output &revert {&all} {&osw SWITCHNAME}

The 1long names for &osw and &var are &output switch and
&variable. Multiple occurrences of "&osw SWITCHNAME" are allowed
to direct the output of more than one switch.

The first two statements direct output on the specified switches
or on the default switch user_output. The &revert usage reverts
the last occurrence of either of the first two, or reverts all
previous occurrences if "&all" is specified.

Two of these statements are vaguely similar to ti:2 discard_output
and revert_output commands, but in no way interact with the

Page 4 : MTB-517

commands. Since they are implemented within the exec com
language, they can appear at any stage of execution, for example,
while inside a command's input loop. Whereas the discard output
command can only be used to execute a single command line,
"&output &discard” discards output globally . until the
corresponding "&output &revert" statement.

The "&output &var" usage feeds all output until the corresponding
"&output &revert" onto the end of a variable's value. The value
does not change until the "&output &revert" statement is
executed. Expansion of the variable can then be used to 1insert
the output anywhere in the text, or return it as the value of the
exec_com active function. Note that the translate active
function may be needed to replace newlines in the value with
spaces, as in the example:

&set line_numbers &""
&attach

&trace &command &input off
&output &var line_numbers
qx

r &1

g=/&f2/

q
&output &revert
&return &[translate &r(line_numbers) "&SP" "&NL"]

4, Directing &print statements
*Theé new statements:

&print_switch SWITCHNAME +
&print_switch &revert {&all}

affect which output switch the &print and &print_nnl statements
print on. The "&print switch SWITCHNAME"™ wusage directs the
output of all subsequent &print and &print_nnl statements (only
in the current exec_com and. independently of other types of
output) to the specified single SWITCHNAME until the
corresponding "&print switch &revert". An example 1is using
&print to print on the terminal while command output is directed
to a file. The "&print_switch &revert &all” usage pops all
previous &print switech statements and redirects &print and
&print nnl output to user_output.

MTB-517 Page 5

5. Command escape

The new &execute statement with short name &exec is used ¢to
execute a command 1line at any point within an exec com. For
example, it allows the user to invoke fiTe_ output,
terminal_output, syn output, and revert_output commands while
inside input loops, and makes it unnecessary to duplicate the
functions of these commands within exec_com.

Also, &exec statements are traced by "&trace control”

independently of "&trace &command”, and do not print ready
messages regardless of the state .of &ready or &ready proc.

Summary list of new keywords:

&begin &on
&condition_name &output
&continue to_signal &print_switch
&discard ' &restart

&do &revert

&kend &signal

&execute, &exec &variable, &var

