
'~'""'--­
•'

MTB - 506 Multics Technical Bulletin

TO:· Distribution

From: N.S.Davids

Date: April 2, 1981

Subject: Extensions to the create mrds dsm and display_mrds_dsm
commands for MRDS security

Send comments by one of the following means:

By Multics mail (on System M)
Davids.Multics (nsd.m)

By Telephone:
HVN 341-7790 or 602-249-7790

By Continuum (method of choice):
Link to transaction 450 (subject ext_cmdsm_dmdsm) in
the mrds sec meeting.

INTRODUCTION

In order for MRDS to implement attribute level security
a way had to be found to define access privileges and force
opening users to g~ through an access filter. This was done
by defining access. privileges in a MRDS submodel and
requiring that a secure database be opened only through a
submodel which is located under the secure.submodels
directory which is under the database directory

This MTB describes the extensions to the
create mrds dsm (cmdsm) command and the cmdsm source text
syntax-in order to implement the MRDS access filter. The
changes to the display mrds dsm (dmdsm) command are also
described. At the end-of the MTB are copies of the new
cmdsm and dmdsm documentation.

Multics Project internal working documentation.
reproduced outside the M"ltics Project.

04/02/81 1

Not to be

MTB - 506

Multics Technical Bulletin MTS - 506

CHANGES TO THE SUBMODEL CREATION SCENARIO

There are two types of changes to the submodel creation
scenario, changes in the cmdsm command and changes to the
source text which cmdsm processes.

Changes to the cmdsm command:

The control arguments -no list (-nls), -install (-ins),
-no install (-nins), -force (-fc), and -no force (-nfc) have
been added to the command.

The control argument -no list suppress the
production of a listing and is used to undo the
effects of the -list control argument.

The -install control argument causes the
submode! to be created under the secure.submodels
directory which is under the database directory.
This control argument is restricted to the OBA in
order to prevent security violations [l].

The -no install control argument undoes the
effects of the -install control argument.

The -force control argument will cause an
existing submode! with the same name to be
overwritten without querying the user to be sure
that this is wanted.

The control argument -no force will turn off
the effects of a -force, in other words if a
submode! with the same name already exists the
user will be queried before it is overwritten.

In addition to the added control arg.uments cmdsm was
modified to check the security state of the database and the
authorization of the user calling cmdsm. To prevent
security violations only a OBA can run cmdsm against a
secure database. The listing produced by -list now has the
same format as the display produced by dmdsm when run using
the -long control argument. If a OBA runs cmdsm against a
secure database but does not use the -install control
argument, the submode! will be created in his/her working
directory and a warning will be issued stating that the
created submode! is not secure. Finally a bug that forced
users to use the -list control argument in order to have the
submode! validated has been fixed, model relation and
attribute names will always be checked for existance.

04/06/81 2 MTB - 506

MTB - 506 Multics Technical Bulletin

Changes in the cmdsm source text:

The cmdsm source text has been augmented to allow the
submode! creator to specify access privileges at the
relation and/or attribute level. These access privileges
are enforced when the database associated with the submode!
is a secure database.

Access to the submode! is controlled by the OBA setting
Multics ACLs on the submode! entry. Anyone with read ACL on
the submode! and database model can open the associated
database and is subject to the access privileges specified
in that submode!. It is possible for a person to have
access to several submodels each with different access
privileges.

Access is specified by access control statements.
These control statements may appear anywhere in the submode!
source, even before the relations and attributes that they
define access for. Only one default relation access and one
default attribute access statement can appear in a cmdsm
source, however there may be multiple relation access and
attribute access statements as long as each statement
defines access for a different relation or attribute. The
abbreviations rel ace and attr ace may be used in place of
relation access and attribute access. .

Statement Name: default relation access

Examples:
default relation access:

(relation access control list):

or

default relation access:
relation access control list:

Purpose:

04/02/81

Specifies that all relations that do not have an
access set by a relation access statement will have the
access specified in the relation access control list.
For every submode! there is an implicit default
relation access statement specifying null access, this
implicit statement can be overridden by an explicit
statement specifying some other access.

3 MTB - 506

Multics Technical Bulletin MTB - 506

Statement Name: default attribute access

Examples:
default attribute access:

(attribute access control list)1

or

default attribute access:
attribute access control list1

Purpose:

04/02/81

Specifies that all attributes that do not have an
access set by an attribute access statement or by the
"with" o~tion iri a relation access statement will have
the ac6ess specified in th~ attribute access control
list. For every submodel there is an implicit default
attribute access statement specifying read access, this
implicit statement can be overridden by an explicit
statement specifying some other access.

4 MTB - 506

MTB - 506 Multics Technical Bulletin

Statement Name: relation access

Examples:
relation access:

relation namel (relation access control listl),
relation-name2 (relation access control list2)

with attribute access
(attribute access control listl),

relation nameN (relation access control listN);

or

relation access:
relation namel (relation access control listl) i

relation access:
relation name2 (relation access control list2)

with attribute access
(attribute access control listl);

relation access:
relation nameN (relation access control listN);

Purpose:

04/02/81

Specifies that the relation indicated by
relation_nameI is to have the access privileges
specified in the relation access control list!. The
"with attribute access (attribute access control list)"
clause can be considered to be a default attribute
access statement which is in effect only over the
asscociated relation. Access specified in the "with"
clause will have precedence over access specified in
the default attribute statement and will be overridden
by access specified in an attribute access statement,
provided an attribute access statement exists.

5 MTS - 506

Multics Techniqal Bulletin MTB - 506

Statement Name: attribute access

Examples:
attribute access:

attribute namel (attribute access control listl),
attribute-name2 in relation namel

(attribute access control-list2),

attribute_nameN (attribute access control list)1

or

attribute access:
attribute namel (attribute access control listl)1

attribute access:
attribute name2 in relation namel

(attribute access control-list2) 1

attribute access:
attribute_nameN (attribute access control listN) 1

Purpose:

04/02/81

Specifies that the attribute in4icated by
attribute nameI is to have the access privileges ~
specified- in the attribute access control listI. If
the "in relation nameI" clause is used then the
attribute will have the specified access privileges
only in the indicated relation, if the "in" clause is
not used then the indicated attribute will have the
specified access privileges in all the relations where
it occurs. There may be several attribute access
statements all referring to the same attribute but
having different relations specified in the "in"
clause.

6 MTB - 506

MTB - 506 Multics Technical Bulletin

The access control lists contain the specifications for
the access privileges. These lists are made up of a series
of keywords separated by commas. The keywords depend on the
access to be specified and whether the list is associated
with a relation or attribute.

Relation access keywords and the operations that they allow
are:

append_tuple, append tuple, or a
Specifies that tuples may be stored (e.g. using
dsl_$store) in the relation.

delete tuple, delete tuple, or d
Specifies that tuples may be deleted (e.g. using
dsl_$delete) from the relation.

null, or n
Specifies that tuples may neither be stored into
or deleted from the relation.

Note that any form of the acces~ keywords may be used
in the access control list. ~lso that a null access cannot
be specified with any other access and that the order of a
combination of append tuple and delete tuple is not
important. Currently there is also the restriction that
append tuple and delete tuple can only be specified if the
submode! relation contains all the attributes that are
defined in the model relation, i.e. the submode! relation
is a "full view" of the model. Append tuple has the further
restriction that all the key attributes must have read_attr
access set.

Attribute access keywords and the operations they allow:

read attr, read attr, or r
Specifies that the attribute value may be read
(e.g. using dsl_$retrieve).

modify attr, modify attr, or m
specifies that the attribute value may be modified
(e.g. using dsl_$modify)

null, or n

04/02/81

Specifies that the attribute value cannot be read
or modified.

7 MTB - 506

Multics Technical Bulletin MTB - 506

Note that any form of the attribute access keywords may
be used in the access control list. ~lso that a null access
cannot be specified with any other access and that the order
of a combination of read attr and modify_attr is not
important.

Relation privileges and attribute privileges {except
for the append tuple/read attr requirement) are independent;
it is possible to have modify attr and/or read attr
privileges on the attributes in a relation to which you do
not either append_tuple or delete_tuple privileges.

04/02/81 8 MTB - 506

MTB - 506 Multics Technical Bulletin

Example statements:

04/02/81

default relation access: delete tuple, a;

default rel ace: (append_tuple);

default attribute access: (n);

default attr ace: n;

relation access: RELl (n);

rel ace: RELl (null) with attr_acc (r, m);

attribute access: ATTRl (modufy_attr, read attr);

attr ace: ATTRl in RELl (read_attr);

9 MTB - 506

Multics Technical Bulletin MTB - 506

CHANGES TO THE display_mrds_dsm COMMAND

This command has been modified in three ways to provide
for attribute level security and in order to allow for a
more usable command interface.

First, the database security state and authorization of
the caller is checked. If the database is in a secured
state and the caller is not a OBA then information about the
model relation names and model attribute names will not be
displayed.

Second,
include the
attributes.
readable.

the display has been extended to be able to
access privileges specified for relations and
The display has also been reformated to be more

Third, the control arguments -output file (-of),
-cmdsm, -access (-ace) ' -no access c=nacc) ' and
-no_output_file (-nof) have been added to provide for more
flexibility is display formats and display destinations.

04/02/81

The control arguments
-no output file have their
directing -the output to some
terminal.

-output file and
usual meaning of
segment or to the

The control argument -access has an effect
only if used with the control arguments -brief or
-rel_names (control arguments that were
implemented in previous releases) , it causes the
access privilege specifications for relations and
attributes to be displayed. The very short, one
character abbreviations are used in the display.
The control argument -no access turns off the
effects of the -access control argument.

The -cmdsm control argument causes the
display to be in a format that can be accepted by
the create mrds dsm command. This control
argument when used with the -output file and
-relation control arguments makes it very easy to
create a subset of the submodel.

10 MTB - 506

MTB - 506 Multics Technical Bulletin

DOCUMENTATION CHANGES TO create rnrds dsrn AND display_rnrds_dsrn

04/02/81 11 MTB -:- 506

Multics Technical Bulletin MTB - 506

create mrds dsm create mrds dsm - -

Name: create_mrds_dsm, cmdsm

This command creates a MRDS database submodel from a data
submodel source segment. The path of the resulting data submode!
can specified as an argument to the dsl $open subroutine, or the
mrds call open or linus open commands Instead of the path to a
database directory. This command is intended for use by data.
base administrators (DBAs) when defining a view of the data base
for a given application. The submode! created works only against
the data base whose path was given in the command, not similar
data bases with other pathnames.

Usage:

create_mrds_dsm source_path db_path {-control_args}

where:

1. source path
-is the pathname of a data submodel source segment.

2.

If source path does not have a suffix of cmdsm, then
one is assumed. However, the cmdsm suffix must be
the last component of the name of the source segment.

db path
- is the pathname of the

resulting data submodel
data base must exist.

data base with which the
is to be associated. This

3. control_args
may appear anywhere on the command line and may be
chosen from the following:

-force, -fc
specifies that an existing submode! with the same
name will be overwritten without querying the caller
to be sure that the old submodel can be destroyed.

-install, -ins

04/02/81

specifies that the submode! will be created in the
secure.submodels directory which is under the data
base directory rather than in the working dir (see
the section on data base architecture ~nder the
create mrds db command) • The use of this control
argument -will cause a directory named

12 MTB - 506

MTB - 506 Multics Technical Bulletin

create_mrds_dsm create mrds dsm

secure.submodels to be created under the database
directory if it does not already exist. This control
argument is restricted to OBAs (see the appendix on
security).

-list, -ls
specifies that a segment containing a listing of the
submodel source, followed by information about the
submode! to model mapping will be created in the
working directory. The segment will also contain a
list of any errors found while creating the submode!.

-no force, -nfc
- specifies that if a submode! with the same name

already exists a query will be issued before it is
overwritten. This control argument undoes the
effects of a -force. (default)

-no install, -nins
- specifies that the submode! is to be created in the

working_dir (default).

-no~list, -nls
specifies that a listing segment will not be created.
(default)

Notes:

The data submodel is a multisegment file with the same name
as the submodel source but with a dsm (rather than cmdsm) suffix.

Error messages are written to the error output I/0 switch as
they occur. These messages are also included in the listing
segment if one is produced.

Only a DBA can run this command against
If the database is secure and the -install
not used the submode! will be created in
directory and a warning that the submode! is
issued.

04/02/81 13

a secure database.
control argument is

the DBA's working
not secure will be

MTB - 506

Multics Technical Bulletin MTB - 506

create mrds dsm create mrds dsm - -- -

DATA SUBMODEL SOURCE:

The function of a data submodel is two fold, first to map
the user's view of the data base into the actual data base
description (i.e., the data model), second to specify relation
and attribute access privileges.

Comments appear in the source segment in the same manner
that they appear in a PL/I source program.

The basic format of the create mrds dsm source is:

relation:
relation definition 1,

relation definition N;

attribute access:
attribute access definition 1,

attribute access definition N;

relation access:
relation access definition 1,

relation access definiti?n N;

default rel at ion access: (rel at ion access control 1 ist) ;

default attribute access: (attribute access control list);

Note that all of the access specification statements are
optional, that multiple relation, attribute access, and relation
access statements may occur and that there is no fixed order that
the statements must occur in.

04/02/81 14 MTB - 506

MTB - 506 Multics Technical Bnlletin

create_mrds_dsm create mrds dsm

Relation Statement:

The relation statement(s) specifies a mapping of attributes
from the data model relation to the data submodel relation. This
mapping can be used to change the names of the data model
relations and attributes, to reorder the attributes within a
relation, to omit attributes from a relation and to omit
relations from the database view. Multiple relation statements
can occur as long as they all define different data submode!
relation to data model relation mappings.

;

Examples:
relation:

relation! (attributel .•• attributeN),
relation2 = model_relationI (attributel ••• attributeN),

relation) (attribute!

or

attribute! = model attributeK
••• attributeNT:

relation:
relationl (attribute! ••• attributeN):

relation:
relation2 = model_relationI (attributel ••• attributeN):

relation:
relation) (attributel ••• attribute!= model attributeK

••• attributeNT:

If the data submodel relation name differs from tha~
specified in the data model, the data submode! relation name is
equated to the corresponding name in the data model. If only one
relation name is supplied in the data submodel relation
expression, it is assumed that the data submode! and data model
relation names are the same. A data submodel relation name may
be up to 64 characters long, it may be composed of letters,
numbers, hyphens, and underscores but must begin with a letter.

04/02/81 15 MTB - 506

Multics Technical Bulletin MTS - 506

create mrds dsm create mrds dsm

Similarly, if the data submode! view of an attribute name
differs from that in the data model, the data submode! attribute
name is equated to the corresponding name in the data model. If
only one name for an attribute is supplied, it is assumed that
the data submode! and data model names for the attribute are the
same. A data submode! attribute name may be up to 64 characters
long, it may be composed of letters, numbers, hyphens, and
underscores but must begin with a letter.

04/02/81 16 MTB - 506

MTB - 506 Multics Technical Bulletin

create_mr.ds dsm create mrds dsm

Access Specification Statements:

The cmdsm source text has been augmented
submode! creator to specify access privileges at
and/or attribute level. These access privileges
when the database associated with the submodel
database.

- -

to allow the
the relation
are enforced
is a secure

Access to the submode! is controlled by the OBA setting
Multics ACLs on the submodel entry. Anyone with read ACL on the
submodel and the database model can open the associated database
and is subject to the access privileges specified in that
submodel. It is possible for a person to have access to several
submodels each with different access privileges.

Access is specified by access control statements. These
control statements may appear anywhere in the submodel source,
even before the relations and attributes that they define access
for. Only one default relation access and one default attribute
access statement can appear in a cmdsm source, however there may
be multiple relation access and attribute access statements as
long as each statement defines access for a different relation or
attribute. The abbreviations rel ace and attr ace may be used in
place of relation acces and attribute access. -

Statement Name: default relation access

Examples:
default relation access:

(relation access control list):

or

default relation access:
relation access control list:

Purpose:
Specifies that all relations that do not have an access

set by a relation access statement will have the access
specified in the relation access control list. For every
submode! there is an implicit default relation access
statement specifying null access, this implicit statement
can be overridden by an explicit statement specifying some
other access.

04/02/81 17 MTB - 506

Multics Technical Bulletin MTB - 506

create mrds dsm create mrds dsm - -

Statement Name: default attribute access

Examples:
default attribute access:

(attribute access control list)1

or

default attribute access:
attribute access control list1

Purpose:
Specifies that all attributes that do not have an

access set by an attribute access statement or by the "with"
option in a relation access statement will have the access
specified in the attribute access control list. For every
submodel there is an implicit default attribute access
statement specifying read access, this implicit statement
can be overridden by an explicit statement specifying some
other access.

04/02/81 18 MTS - 506

MTB. - 506 Multics Technical Bulletin
·---------------
create_mrds_dsm create mrds dsm

Statement Name: relation access

Examples:
relation access:

relation namel (relation access control listl),
relation-name2 (relation access control list2)

with attribute access (attribute access control listl),

relation nameN (relation access control listN):

or

relation access:
relation namel (relation access control list!);

relation access:
relation name2 (relation access control list2)

with attribute access (attribute access control listl);

relation access:
relation nameN (relation access control listN):

Purpose:
Specifies that the relation indicated by relation nameI

is to have the access privileges specified in the relation
access control listI. The "with attribute access (attribute
access control list)" clause can be considered to be a
default attribute access statement which is in effect only
over the asscociated relation. Access specified in the
"with" clause will have precedence over access specified in
the default attribute statement and will be overridden by
access specified in an attribute access statement, provided
an attribute access statement exists.

04/02/81 19 MTB - 506

Multics Technical Bulletin MTB - 506

create_mrds_dsm create mrds dsm - -

Statement Name: attribute access

Examples:
attribute access:

attribute namel (attribute access control listl),
attribute-name2 in relation namel

(attribute access control-list2),

•
attribute_nameN (attribute access control list);

or

attribute access:
attribute namel (attribute access control listl);

attribute access:
attribute name2 in relation namel

(attribute access control-list2);

attribute access:
attribute_nameN (attribute access control listN);

Purpose:
Specifies that the attribute indicated by

attribute nameI is to have the access privileges specified
in the -attribute access control list!. If the "in
relation name!" clause is used then the attribute will have
the specified access privileges only in the indicated
relation, if the "in" clause is not used then the indicated
attribute will have the specifie"d access privileges in all
the relations where it occurs. There may be several
attribute access statements all referring to the same
attribute but having different relations specified in the
"in" clause.

04/02/81 20 MTB - 506

.MTB.- 506 Multics Technical Bulletin

create mrds dsm create mrds dsm

The access control lists contain the specifications for the
access privileges. These lists are made up of a series of
keywords separated by commas. The keywords depend on the access
to be specified and whether the list is associated with a
relation or attribute.

Relation access keywords and the operations that they allow are:

append tuple, append tuple, or a
Specifies that tuples may be stored (e.g. using
dsl_$store) in the relation.

delete tuple, delete tuple, or d
Specifies that tuples may be deleted (e.g. using
ds1_$delete) from the relation.

null, or n
Specifies that tuples may neither be stored into or
deleted from the relation.

Note that any form of the access keywords may be used in the
access control list. Also that a null access cannot be specified
with any other access and that the order of a combination of
append tuple and delete tuple is not important. Currently there
is also the restriction that append_tuple and delete_tuple can
only be specified if the submode! relation contains all the
attributes that are defined in the model relation, i.e. the
submode! relation is a "full view" of the model. Append_tuple
has the further restriction that all the key attributes must have
read attr access set.

Attribute access keywords and the operations they allow:

read attr, read attr, or r
Specifies that the attribute value may be read (e.g.
using dsl_$retrieve).

modify_attr, modify attr, or m
Specifies that the attribute value may be modified
(e.g. using dsl $modify).

null, or n
Specifies that the attribute value cannot be read or
modified.

04/02/81 21 MTB - 506

Multics Technical Bulletin MTB - 506

create mrds dsm create mrds dsm

Note that any form of the attribute access keywords may be
used in the access control list. Also that a null access cannot
be specified with any other access and that the order of a
combination of read attr and modify attr is not important

Relation privileges and attribute privileges (except for the
append_tuple/read_attr requirement) are independent; it is
possible to have modify attr and/or read attr privileges on the
attributes in a relation-to which you do-not either append tuple
or delete_tuple privileges. -

04/02/81 22 MTB - 506

MTB - 506 Multics Technical Bulletin

create_mrds_dsm create mrds dsm --------·--------

EXAMPLES:

The following examples show different submodels which are
all defined over the the states database which is described in
the examples of the create mrds db command. The first submode!
is a view full submodel, i.e. all the relations in the model are
present and each relation has all the attributes that were
defined in the model.

/*

*/

cmdsm_source_example_l

This submodel is a simple view corresponding to the
entire database with no name changes. Since no access is
specified the default relation access of null and the
the default attribute access of read is used.

relation:

/*

*/

person (last name first name salary expenses),
state history (key state name date time text),
person state (last name first name-key),
state location (key vector): -

cmdsm_source_example_2

This submodel renames the last name and first name
attributes to ln and fn and omits the salary attribute
from the person relation. The attribute key has been
moved to the first position in the person_state relation
which has also been renamed to ps. The relation
state_location has been omitted from this submode!.

relation:

04/02/81

person (ln = last name fn = first name expenses),
state history (key same name date-time text),
ps =person state (key Tast name first name): - - -

23 MTB - 506

Multics Technical Bulletin MTB - 506

create mrds dsm create mrds dsm

/*

*I

cmdsm_source_example_3

This submode! specifies a default relation access of
append tuple and delete tuple and a default attribute
access- of read attr and modify attr. Notice that
comments can be placed between- both relations and
attributes.

default relation access: (append_tuple, delete tuple);

default attribute access: (modify attr, read attr);

relation:
person

(ln = last name
fn = first name
expenses

) '
person state

(last name
first name
key

) ;

/* person relation */
/* last name of person */
/* first name of person */
/* expenses of person to date

/* location of person */
/* same as ln in person */
/* same as fn in person */
/* state key */

*/

04/02/81 24 MTB - 506

MTB - 506 Multics Technical Bulletin
---------------create_mrds_dsm create mrds dsm - ----------------

cmdsm_source_example_4

I*
This submode! specifies a default relation access of
append tuple and delete tuple and a default attribute
access of read attr and modify attr. Access for the
person relation is set to append with a default
attribute access of read attr. Note that all access key
words and the statement keywords are in their short form
and the multiple use of the relation, relation access
and attribute access statements.

*I

A display of the submode! with
attribute access may be found in the
display_mrds_dsm command.

default rel_acc: a, d:

default attr_acc: r, m:

attr_acc:

rel_acc:

relation:

salary (r),
last name (r) ,
first_name (r):

state history (a),
person_state (d) ,

the relation
examples for

rel_acc:
person (last_name first_name salary expenses),

person (a) with attr_acc (r)1
attr ace:

relation:

relation:

attr ace:

04/02/81

salary in person (n)1

person_state (last_name first name key):

state_history (key state_name date time text)J

key in state_history (r)1

25

and
the

MTB - 506

Multics Technical Bulletin MTB - 506

create mrds dsm - - create mrds dsm - -

The following examples show command usage:

An invocation of the command using no control arguments, this is
the same as invoking the command with control arguments of
-no_list, -no_force, and -no_install.

create_mrds_dsm cmdsm_source_example_l.cmdsm states.db

This invocation will create the submode! in the secure.submodels
directory under the states.db directory. Only a OBA can use this
control argument. The command line has been split into two lines
only to make it fit onto the page.

create mrds dsm
states°7db

-install crndsm_source_example_2.cmdsm

The following invocation will both install the submodel in the
secure.submodels directory and write over any existing
crndsm_source_exarnple_3 without querying the invoker. The command
line has been split into two lines only to make it fit onto the
page.

create mrds dsm -force cmdsm source example 2.crndsm -install
states°7db - - -

04/02/81 26 MTB - 506

..
MTB -.506 Multics Technical Bulletin

create_mrds dsm create mrds dsm - -

This last example installs the submodel in the secure.submodels
directory, forces the overwritting of an existing submodel with
the same name, and produces a listing called
cmdsm_source_example_2.list in the working directory. Notice
that the short form of the control arguments and the command name
are used.

cmdsm -fc cmdsm_source_example_2 states -ls -install

04/02/81 27 MTB - 506

Multics Technical Bulletin MTB - 506

display mrds dsm - - display_mrds_dsm

Name: display mrds dsm, dmdsm - -
This command displays information about the specified MRDS

data submode!.

Usage:

display_mrds_dsm dsm_path {-control_args}

where:

1. dsm path
- is the pathname of the data submode!

displayed. If dsm_path does not have a
dsm, then one is assumed. However the
must be the last component of the name
submode! file.

file to be
suffix of

dsm suffix
of the data

2. control args
may be chosen from the following:

-access, -ace
specifies that access information (both relation and
attribute) is to be displayed. This control argument
has effect only with the -rel names and -brief
control arguments. (default)

-brief, -bf

-cmdsm

04/02/81

specifies that only the submode! relation names and
at~ribute names are to be displayed. This control
argument may be superseded by any of -cmdsm,
-rel names, or -long which follow it in the command
line: (default)

specifies that the display is to have a format that
may be processed by the create mrds dsm command to
produce another submode!. This control argument is
limited to OBAs if the submode! is associated with a
secure database. This control argument may be
superseded by any of -long, -rel names, or -brief
which follow it in the command line:

28 MTB - 506

-·

MTB. - 506 Multics Technical Bulletin

display_mrds_dsm display_mrds_dsm

-long, -lg
specifies that the display is to contain all the
information that is in the submodel. This includes
the database path, submode! version, submode!
creation date and creator, submode! relation names
and associated model relation names, submode!
attribute names and associated model attribute names,
relation and attribute access, and the attribute data
types. If the person running this command is not a
OBA and the submode! is associated with a secure
database then the model relation names and model
attribute names will not be displayed. This control
argument may be superseded by any of -cmdsm,
-rel names, or -brief which follow it in the command
line-:-

-no access, -nacc
- specifies that access information is not to be

displayed. This control argument has effect only
with the -rel names and -brief control arguments.

-no output file, -nof
- causes the output display to be written to the

terminal. This control argument will undo the
effects of the -output_f ile control argument
(default).

-output file path, -of path
-causes the output display to be written to the

specified path instead of to the terminal. ~nything
already stored in the segment at path will be
overwritten.

-rel names, -rn
- specifies that only submodel relation names are to be

04/02/81

displayed. This control argument may be superseded
by any of -cmdsm, -brief, or -long which follow it in
the command line.

29 MTB - 506

Multics Technical Bulletin MTB - 506

display_mrds_dsm display_mrds_dsm

-relation REL 1 REL 2 ••• REL N

04/02/81

specifies that information about REL 1 through REL N
is to be displayed. The information about each
relation is displayed in the order they are
specified. If some specified relation REL I does not
exist in the submode! an error is reported and the
display proceeds with the next relation. If the
display is going to an output file the error is
reported both to the terminal and the output file.
This control argument may be used with the control
arguments -cmdsm, -long, -rel names and -brief to
produce a display of part -of the submodel (default is
to display all relations) •

30 MTB - 506

,..

MTB - 506 Multics Technical Bulletin

display_mrds_dsm display_mrds_dsm

EXAMPLES:

The following examples all use the submode! example_4 which
was generated from the create mrds dsm example
cmdsm source example 4. The submode! secure example 4 is the
same submode! defined for a secure database. - -

display mrds dsm example 4 - - -
person a

last name r
first name r
salary n
expenses r

person_ state d
last. name r
first name r
key rm

state_history a
key r
state name rm
date time rm
text- rm

04/02/81 31 MTS - 506

Multics Technical Bulletin MTB - 506
--~------------- ----------------
display_mrds_dsm display_mrds_dsm

! display_mrds_dsm example_4 -long

Submode! path:
Version:

>udd>Multics>examples>example_4
5

Created by: Davids.Multics.a
Created on: 03/10/81 1059.6

Database path:
Version:

>udd>Multics>examples>states.db
4

Created by: Davids.Multics.a
Created on: 03/10/81 1130.3

Submode! Relation Name: person
person
append_tuple

Model Name:
Access:

Submodel Attribute Name: last name -Model Name: last name
Access: read-at tr

Data Type: char (32)
Indexed

Submode! Attribute Name: first name
Model Name: first-name

·Access: read attr
Data Type: char (32)

Submode! Attribute Name: salary
Model Name: salary

Access: null
Data Type: fixed dee

Submode! Attribute Name: expenses
Model Name: expenses

Access: read at tr
Data Type: fixed dee

Submode! Relation Name: person_state
person state
delete:tuple

Model Name:
Access:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

04/02/81 32

last name
last-name
read-at tr
char-(32)
Indexed

(59,

(59,

2) unal

2) unal

MTB - 506

.MTB-506 Multics Technical Bulletin

display_mrds_dsm display_mrds_dsm

Submode! Attribute Name:
Model Name:

Access:
Data Type:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

first name
first-name
read attr
char-(32)

key
key
read attr modify_attr
bit (70)

Submode! Relation Name: state history
state-history
append_tuple

Model Name:
Access:

Submode! Attribute Name: key
Model Name: key

Access: read attr
data Type: bit (70)

Indexed

Submodel Attribute Name: state name -Model Name: state name
Access: read attr modify_attr -Data Type: char (30)

Indexed

Submode! Attribute Name: date time -Model Name: date time
read - modify_attr Access: attr

Data Type: fixed bin (71)

Submode! Attribute Name: text
Model Name: text

Access: read attr modify_attr -Data Type: char (4096) var

04/02/81 33 MTB - 506

Multics Technical Bulletin MTB - 506

display_mrds_dsm display_mrds_dsm

! display mrds dsm example 4 -cmdsm - - -
I*
created from:

for:
by:

*I

>udd>Multics>examples>example 4.dsm
>udd>Multics>examples>states:db

display_mrds_dsm -cmdsm

relation access:

relation:

attribute access:

person {append_tuple);

person = person
(last name = last name
first name = first name
salary = salary
expenses= expenses);

last name in person (read attr),
first name in person (read attr),
salary in person (null), -
expenses in person {read_attr);

I* ** */

relation access:

relation:

attribute access:

person_state {delete_tuple);

person state = person state
- {last name ~ last name

first name = first name
key =-key) ; -

last name in person state (read attr),
first name in person state (read attr),
key in person_state Treaa_attr modify_attr>;

/* ** */

relation access:

relation:

attribute access:

04/02/81

state_history (append_tuple) ;

state history = state history
- (key = key -

state name = state name
date time = date time
text-= text);

key in state history (read attr),
state_name in state_history {read_attr modify_attr),
date time in state history (read attr modify attr),
text-in state_history (read_attr-modify_attr);

34 MTB - 506

MTB - 506 Multics Technical Bulletin

display_mrds_dsm display_mrds_dsm

display_mrds_dsm example_4 -relation names

04/02/81

person
person state
state_history

35 MTB - 506

Multics Technical Bulletin MTB - 506

display_mrds_dsm display_mrds_dsm

! display_mrds_dsm example_4 -relation person_state -long

Submodel path:
Version:

Created by:
Created on:

Database path:
Version:

Created by:
Created on:

>udd>Multics>examples>example 4
5 -
Davids.Multics.a
03/10/81 1059.6

>udd>Multics>examples>states.db
4
Davids.Multics.a
03/10/81 1130.3

Submode! Relation Name: person_state
person state
append: tuple

Model Name:
Access:

Submode! Attribute Name: last name
Model Name: last - name -Access: read attr -Data Type: char (32)

Indexed

Submodel Attribute Name: first name
Model Name: first - name

Access: read attr
Data Type: char - (32)

Submode! Attribute Name: key
Model Name: key

Access: read attr modify_attr
(70) Data Type: bit

04/02/81 36 MTB - 506

display_mrds_dsm display_mrds_dsm

1 display_mrds_dsm example_4 -relation state_history person -no access

state_history

person

04/02/81

key
state name
date time
text

last name
first name
salary
expenses

37 MTB - 506

Multics Technical Bulletin MTB - 506

display_mrds_dsm display_mrds_dsm

! display_mrds_dsm secure_example_4 -relation person_state -long

Submode! path:
Version:

Created by:
Created on:

Database path:
Version:

Created by:
Created on:

>udd>Multics>examples>secure example 4
5 - -
Davids.Multics.a
03/10/81 1059.6

>udd>Multics>examples>states.db
4
Davids.Multics.a
03/10/81 1130.3

Submodel Relation Name: person state
append:tuple A.ccess:

Submodel Attribute Name: last name
A.ccess: read attr -Data Type: char (32)

Indexed

Submode! Attribute Name: first name
Access: read attr -Data Type: char (32)

Submode! Attribute Name: key
Access: read at tr modify_attr

Data Type: bit (70)

04/02/81 38 MTB - 506

MTB - 506 Multics T~chnical Bulletin

display_mrds_dsm display_mrds_dsrn

REFERENCES

[l} The New MRDS Security Approach, MTB-501

04/02/81 39 MTB - 506

