
MTB 505 Multics Technical Bulletin

To: MTB Distribution

From: Jim Gray

Date: March 26, 1981

Subject: Changes to the MRDS dmd Subroutine Interface.

Send comments by:

Multics mail on System M to JGray.Multics

Telephone to HVN 341-7463 or 602-249-7463

Continuum meeting mrdsdev, link to transaction 330.

1.0 INTRODUCTION

This MTB describes changes that are to be
subroutine interface. The purpose of
provide a means of obtaining information
model. It is currently documented in
Writers Guide portion of [l].

made in the MRDS dmd
this interface is to
about a MRDS database
Section 6, Subsystem

There are two major reasons for the changes being made. The
first is the new ~RDS security work, that is to provide attribute
level access control, as outlined in [2], and [3]. The second
has to do with TR's, such as 7072, and 7163, against the existing
interface. These reasons are detailed in the next two sections.

Multics Project internal working documentation.
reproduced outside the Multics Project.

03/26/81 Page l

Not to be

MTB 505

Multics Technical Bulletin MTB 505

2.0 PROBLEMS RAISED BY SECURITY

The terms used here, are those introduced in [2]. That documertt
addresses the problems of data access security, as enforced
through using submode! views of the data. Little is said about
security for model information, which is not to be known in
general by users of a restricted submode! view.

Currently, any user with "r" access to the model can use the dmd
interface to find out relation and attribute specifications~
regardless of what view his submode! might present. For a
database that has been secured, the non-OBA user must not be
allowed to see things outside his submode! view of the data, and
the model.

Also, the passing of a pointer to the database model segment, as
a means of communication between the various dmd entries, is a
source of possible security breech. The user could avoid calling
the open routine, obtain his own pointer, and access model
information that the open routine might have restricted him from
seeing.

There are cases where the model information must not be
restricted. These include the user being a OBA, or internal MRDS
code acting on behalf of a non-OBA, where the view has already
been restricted.

3.0 PROBLEMS WITH THE EXISTING INTERFACE

The dmd_$get_attributes entry has several problems. The first
being, if a -decode_dcl option was used in the data model source
input to create mrds db, then the descriptor returned by this
interface is not-the users view of the data, as it should be, but
the database view instead.

·Second, the bit offset and bit length information returned
present the internal MRDS tuple structure to the user. Thus
offsets are returned as "substr" indexes rather than true offsets
for fixed length attributes, and for varying attributes, an array
index, not an offset is returned. The user should "see" the
tuple in an expected, and helpful format, not the internal
structure that MRDS uses, which can be confusing.

The dmd_$open_dm entry has an open mode parameter, whose use
became archaic after the last release, as the open routine can
now no longer be used to create databases. That function was
taken over by the self contained dmd_$create_db routine.

None of the structures passed back in the dmd interface have a
version number, making it impossible to extend or modify this
interface, without breaking existing users.

03/26/81 Page 2 MTB 505

. ,

MTB 505 Multics Technical Bulletin

4.0 OVERCOMING SECURITY PROBLEMS

The existing dmd_ interface will be made available to only DBA's,
once the database is secured. If there is need for internal MRDS
to use this interface, this restriction will not apply.

This will be done by having two entries in the module
implementing each current entry. Thus for dmd_$open_dm, which
references the module mrds_dm_open$open_dm, non-DBA's are refused
once the database is secured. Other internal MRDS code will only
call the entry mrds_dm_open$mrds_dm_open, which will have no
restriction, so that commands such as create mrds dm include,
that make use of it, even though a non-OBA is accessing the
database through a submode! view, will still work properly.

The documentation for the dmd subroutine entries will be changed
to show that this interface is only available to a OBA once the
database has been secured.

5.0 EXTENDING THE INTERFACE

To solve existing problems with this non-extensible interface,
the dmd interface documentation will be moved to a new section
of the- MRDS manual for "obsolete interfaces". It will be
replaced by an extensible interface that solves the current
outstanding problems, called mmi_ (MRDS model interface}.

The new mmi interface will not give bit offset information about
the tuple to avoid showing the internal-tuple structure used by
MRDS.

The descriptor returned for attributes will represent the users
data view, in case a -decode_dcl option is present.

Versioned structures will be used, with an input structure number
that specifies which version of the structure the user wishes to
use. This will allow new structure versions to be developed,
without breaking existing applications. The same dmd_ method of
allocation of a structure into an area will be used, even if the
structure is fixed length, in order to provide for extensiblity
of the structure, possibly to a varying length.

The passing of a pointer for interface communication will be
discarded. Instead, a user supplied opening name of arbitrary
length and character make up, will be used to associate an
opening of the model, with the relavent information. The open
name manager supplied for this will also be usable by the new
msmi_ interface, to be documented in [4].

Two new entries will be added to the functionality of mmi that
otherwise duplicates that already available from the dmd
interface. One will be for determining the secured state of the

03/26/81 Page 3 MTB 505

Multics Technical Bulletin MTB 505

database, and the other is for determining if the caller is a
OBA.

The mmi interface will not be
will avoid user problems that
internal MRDS needs.

used internally in MRDS. This
might arise because of changing

Once the database is secured, the mmi model information entries
get model info, ·get model attributes,- get model relations, and
open_model will require the caller to be a OBA. -

03/26/81 Page 4 MTB 505

MTB SOS Multics Technical Bulletin

6.0 MMI DOCUMENTATION

NAME: mmi

This subroutine primarily provides a means of retrieving
information about a database model (Mrds_Model_Interface_).
There is also an entry tQ create a database in the same manner as
the create mrds db command. See the msmi subroutine interface
for submode! information.

ENTRY: mmi_$close_model

This entry closes a given opening of the database model.

USAGE

declare mmi_$close_model entry (char(*), fixed bin (35)) :

call mmi_$close_model (opening_name, error_code) :

WHERE:

1. opening name (Input) (char(*))
is the name given in the call to mmi $open model, for
the opening of the model that is to be-closed.

2. error code (Output) (fixed bin (35))
-is a standard status code. If the name given does not

refer to a current model opening, the code
mrds_error_$open_name_not_known will be returned.

03/26/81 Page 5 MTB 505

Multics Technical Bulletin MTB 505

ENTRY: mmi_$create_db

This entry provides a go/no-go subroutine interface to
create_mrds_db.

USAGE

declare mmi_$create_db entry options (variable);

call mmi $create db ("source path", {"db path",} {"-list",}
c "-secure", T c 11 -temp_dir", "temp_dir_path", l c "-force" l
code);

where the arguments are the same character string arguments as
given at command level to the create mrds db command except that
code must be declared fixed bin(J5). - The same option and
features are available. However, the error code of the first
error encountered is returned since it is a go/no-go interface.

NOTES

Since create mrds db was written for command level, some of
its error codes do not provide much detail, therefore a listing
should be requested to provide full information.

If the -temp_dir {path} is given, path should be a separate
character string argument from "-temp_dir".

If character variables, rather than constants, are used in
the call to mmi $create db, then trailing blanks should be
suppressed (e.g., -with the PL/I bui 1 t-in "rtr im", des er ibed in
the PL/I Language Specification).

03/26/81 Page 6 MTB 505

MTB 505 Multics Technical Bulletin

ENTRY: rnmi_$get_authorization

This entry returns the user class of the caller, for a given
database.

USAGE

declare mmi_Sget_authorization entry
(char(*), ptr, fixed bin, ptr, fixed bin(35)) ;

call mmi_$get_authorization (database_path, area_ptr,
structure version, mrds authorization ptr,
error_code) ; - -

WHERE:

l. database path (Input) (char(*))
is-the relative or absolute pathname of the database,
with or without the ".db" suffix. This path must refer
to a version 4 database.

2. area_ptr (Input) (pointer)

3.

is a pointer to a freeing area supplied by the caller,
in which the mrds authorization structure is to be
allocated.

structure version
is -the desired
have returned.

(Input) (fixed bin)
structure version the user wishes to

4. mrds_authorization_ptr (Output) (pointer)
is a pointer to the allocated structure.
structure is described in the Notes below.

This

s. error_code (Output) (fixed bin (35))
status code. It may be one of the

03/26/81

is a standard
following:

error_table_$badcall if the area_ptr was null

error_table_$area_too_small if the supplied area could
not contain the mrds_authorization structure

mrds error Snot freeing area if the supplied area does
not have the attribute "freeing".

error table $unimplemented version
structure version is unknown

if the given

mrds_error_Sversion_not_supported if the database path
does not refer to a version 4 MRDS database

Page 7 MTB 505

Multics Technical Bulletin MTB 505

mrds error $no database if the given path does not
refer to a-MRDS database.

NOTES

The user class information for the specified
returned in the following structure (see Appendix
include file mrds_authorization.incl.pll) :

declare 1 mrds authorization aligned
based-(mrds authorization ptr),

WHERE:

2 version fixed bin, -
2 administrator bit (1) unal,
2 normal user bit (1) unal,
2 mbz bit (34) unal ;

1. version
is the version number of this structure

2. administrator
is "l"b, if the caller is a OBA

3. normal user

database is
F for the

Ts "l" if the caller is a non-DBA. Note that a OBA is
always also a normal user.

4. mbz
is reserved for future use

Currently, the only available structure version is 1.

The user must have sufficient access to get the effective
access mode on the database directory.

03/26/81 Page 8 MTB 505

MTB SOS Multics Technical Bulletin

ENTRY: mmi_$get_model_attributes

This entry returns attribute information for a particular
relation in the database model.

USAGE

declare mmi_$get_model_attributes entry
(char·(*), char(*), ptr, fixed bin,
ptr, fixed bin(JS)) ~

call mmi $get model attributes (opening name, relation_name,
area ptr~ structure version, -
mrds:db_model_rel_attrs_ptr, error_code)

WHERE:

1. opening name (Input) (char(*))
is the name used in the call to mmi_$open_model

2. relation name (Input) (char(*}}
is the name of the relation for which the attribute
information is desired

3. area ptr (Input) (pointer)
- is a pointer to a user supplied freeing area in which

the attribute information will be allocated.

4. structure version (Input) (fixed bin)
is -the desired version of the attribute information
structure to be allocated.

S. mrds db model rel attrs ptr (Output} (pointer)
- is a pointer to- the allocated attribute information

structure described in the Notes below.

6. error code (Output) (fixed bin (JS))
status code. It may be one of the

03/26/81

-is the standard
following:

error table_$badcall if the area ptr was null

error_table_$area_too_small if the supplied area could
not hold the attribute information structure

mrds error $not freeing area if the supplied area does
not have the attribute "freeing".

error table $unimplemented version if
version given was unknown -

Page 9

the structure

MTB 505

Multics Technical Bulletin MTB SOS

NOTES

mrds error $bad relation name if the relation name
given is not in-the model definition

mrds error $open name not known if the name given does
not refer to a current model opening

The attribute information is returned in the following structure
(see Appendix F for the include file
mrds_db_model_rel_attrs.incl.pll) :

declare 1 mrds db model rel attrs aligned
based-(mrds db-model rel attrs ptr),

WHERE:

2 version fixed-bin, - - -
2 attribute count fixed bin,
2 mbzl bit (36) unal,
2 attribute (0
refer (mrds db model rel attrs.attribute count)),

3 name char (32), - - -
3 domain char (32),
3 user data type bit (36) ,
3 indexed bit (1) unal,
3 mbz2 bit (3S) unal ~

1. version
is the version number of this structure

2. attribute count
is the number of attributes in this relation

3. mbzl
reserved for future use

4. name
is the name of this attribute

S. domain name
is the name of the underlying domain for this attribute

6. user_data_type
is a standard Multics descriptor for the users view of
the data in this domain. It will differ from the
database data type if the -decode dcl option was used
for this domain. -

7. indexed

03/26/81

is "l"b, if the attribute is the total key, a key head,
or secondary index in the relation

Page 10 MTB SOS

MTB 505 Multics Technical Bulletin

8. mbz2
reserved for future use.

Currently the only structure version available is 1.

If the database is secured, this interface is only usable by
a OBA. If the database is not secured, the user must have "r"
access to the model segment for the relation involved.

03/26/81 Page 11 MTS 505

Multics Technical Bulletin MTB 505

ENTRY: mmi_$get_model_info

This entry returns information about the database model
creation.

USAGE

declare mmi $get model info entry
(char<*>, ptr, fixed bin, ptr, fixed bin(35}} :

call mmi $get model info (opening name, area ptr,
structure version, mrds db model info ptr,
error_code} ~ - - - -

WHERE:

1. opening_name (Input) (char (*))
is the name used in the call to mmi_$open_model

2. area_ptr (Input) (pointer)
is a pointer to a user supplied freeing area in which
the model information will be allocated

3. structure version (Input) (fixed bin)
structure version of the model is - the desired

information

4. mrds db model info ptr (Output) (pointer)
- the pointer to the allocated model information

structure as described in the Notes below.

s. error code (Output) (fixed bin (35))
status code. it may be one of the

NOTES

03/26/81

-is the standard
following:

error_table_$badcall if the area_ptr was null

error table $area too small if the area could not -hold
the model information-structure

mrds error $not freeing area if the supplied area does
not have the attribute "freeing".

error table $unimplemented version
structure version is unknown

if the supplied

mrds error $open name not known if the opening_name
does-not refer to a current model opening

Page 12 MTB 505

MTS 505 Multics Technical Bulletin

The model information is returned in the following structure
{see Appendix F for the include file
mrds_db_model_info.incl.pll):

declare l mrds db model info aligned
based-(mrds db-model info ptr),

WHERE:

1. version

2 version fixed-bin, - -
2 model version fixed bin,
2 creator id char (32),
2 creation time fixed bin (71) ,
2 mbz bit (36) unal 1

is the version number of this structure

2. model_version
is the database version. The latest version is 4.

3. creator id
is in the form person.project.tag as returned from
get_group_id_, for the creator of the database

4. creation time -is the time the database was created, in a form
acceptable to date time -

s. mbz
reserved for future use

Currently, the only structure version available is 1.

If the database is secured, this interface is only usable by
a OBA. If the database is not secured, the user must have "r"
access to the db_model segment under the database directory.

03/26/81 Page 13 MTB 505

Multics Technical Bulletin MTB 505

ENTRY: mmi_$get_model_relations

This entry returns information about all the relations in
the given model opening.

USAGE

declare mmi $get model relations entry
(char·<*> , ptr, fixed bin, ptr, fixed bin (35)) 1

call mmi $get model relations (opening name, area ptr,
structure version, mrds db model relations ptr,
error_code) ~ - - - -

WHERE:

1. opening name (Input) (char(*))
is the name used in the call to mmi_Sopen_model

2. area_ptr (Input) (pointer)
is a pointer to a user supplied freeing area in which
the relation information will be allocated

3. structure version (Input) (fixed bin)
is -the desired structure version of the relation
information

4. mrds db model relations ptr (Output) (pointer)
- is the -pointer to the allocated structure of relation

information in the form described in Notes below.

s. error code (Output) (fixed bin (35))
status code. It may be one of the

NOTES

03/26/81

-is the standard
following:

error table_$badcall if the area_ptr was null

error table $area too small if the area could not hold
the relation information

mrds error $not freeing area if the supplied area does
not have the attribute "freeing".

error_table_$unimplemented_version
structure version is unknow,n

if the given

mrds error $open name not known if the opening_name
does-not refer to a current model opening.

Page 14 MTB 505

MTS 505 Multics Technical Bulletin

The relation information is
structure (see Appendix F
mrds_db_model_relations.incl.pll) :

returned in the following
for the include file

declare 1 mrds db model relations aligned
based-(mrds db-model relations ptr),

2 version, - - - -
2 relation count fixed bin,
2 mbzl bit-(36) unal,
2 relation (0
refer (mrds db model relations.relation count)),

3 name char (J2), - -
3 mbz2 bit (36) unal ;

WHERE:

1. version
is the version number of this structure

2. relation count
is-the number of relations defined in the model

3. mbzl
is reserved for future use

4. name
is the name of this relation

5. mbz2
is reserved for future use

Currently, the only structure version available is 1.

If the database is secured, this interface is usable only by
a OBA. If the database is not secured, the user must have "r"
access to the db model segment under the database directory.

03/26/81 Page 15 MTB 505

Multics Technical Bulletin MTB 505

ENTRY: mmi_$get_secured_state

This entry the secured state of the database for the given
opening.

USAGE

declare mmi $get secured state entry
(char<*>, ptr, fixed bin, ptr, fixed bin(35)) ;

call mmi $get secured state (database path, area_ptr,
structure version, database state ptr,
error_code) ; - -

WHERE:

l. database path
is- the relative or
whose secured state
version 4 database.

(Input) (char(*))
absolute pathname of the database
is desired. It must refer to a

The suffix need not be present.

2. area ptr (Input) (pointer)
- is a pointer to a user supplied freeing area in which

the database state information will be allocated

3. structure version
is -the desired version of
database state information

(Input) (fixed bin)
the structure containing

4. database state ptr (Output) (pointer)
the pointer to the allocated database state information
as contained in the structure described in the Notes
below.

s. error code (Output) (fixed bin (35))
status code. It may be one of the

03/26/81

-is the standard
following:

error table_$badcall if the area_ptr was null

error table $area too small if the supplied area could
not hold the database-state information

mrds_error_$not_freeing_area if the supplied area does
not have the attribute "freeing".

error_table_Sunimplemented_version
structure version is unknown

if the supplied

mrds error $version not supported if the path given is
to a-database whose-version is less than 4

Page 16 MTB 505

MTB 505 Multics T~chnical Bulletin

mrds error $no database if the given path does not
refer to a-MRDS database.

mrds error $no model access if the user does not "r"
access to the database db model segment

NOTES

The database state information
structure (see Appendix F

is returned in the following
for the include file

mrds_database_state.incl.pll) :

declare 1 database state aligned
based (database_state_ptr) ,

2 version fixed bin,

WHERE:

1. version

2 unsecured bit (1) unal,
2 secured bit (1) unal,
2 mbz bit (34) unal ;

is the version number of this structure

2. unsecured
""""' is "l"b, if the database is not currently secured

3. secured
is "l"b if the database is currently secured

4. mbz
reserved for future use

Currently, the only structure version available is 1.

The user must have at least "r"
segment under the database directory.

03/26/81 Page 17

access to the db model
~ -

MTS SOS

Multics Technical Bulletin MTS 505

ENTRY: mmi_$open_model

This entry opens the database model for retrieving model
information about relations, attributes, or creation info. There
may be multiple openings of the same database model, or different
database models.

USAGE

declare mmi $open model entry
(char<*>, char(*), fixed bin (35)) :

call mmi $open model (database_path, opening_name,
error_code) :

WHERE:

1. database path (Input) (char(*))
is-the relative or absolute pathname of the database,
whose data model is to be opened. Version 4 databases
need not have the ".db" suffix supplied.

2. opening name (Input)
a-user supplied name, to be used in
referencing this opening when
information.

(char(*))
other mmi calls

obtaining - model

3. error code (Output) (fixed bin (35))
status code. It may be one of the

NOTES

03/26/81

is the standard
following:

mrds_error_$open_name_already_known if the opening_name
supplied was not unique, within PL/I comparison rules,
of other opening names already used in the users
process

mrds error $too many open names if the combined lengths
and number- of opening names used in the users process
exceeded the storage- capability of the open name
manager

mrds error $no database if no database exists at the
given pathname-

mrds error $no model access if the user does not have
"r" access-to the database model segment.

error table $insufficient access if the database has
been secured and the user-is not a OBA

Page 18 MTB 505

....

MTB SOS Multics Technical Bulletin

The opening_name may be any number of ascii characters.
Current capability is for more than 1000 opening_names of
reasonable length. Opening names must be unique within PL/I
comparison rules within the users process. (the entry
unique chars , described in MPM Subroutines, can be -used to
generate unique names)

If the
a DBA. If
least "r"
directory.

03/26/81

database is secured, this interface is only usable by
the·database is not secured, the user must have at
access to the db_model segment under the database

Page 19 MTB SOS

Multics Technical Bulletin

7.0 REFERENCES

[l) Multics Relational Data Store Reference Manual,
Order number AW53-03

The New MRDS Security Approach, MTB-501

MTB 505

[2]

[3)

[4]

Effects of Security on the MRDS Interface, MTB-502

[5]

[6]

Changes
MTB-496

Changes

Changes

in the

to the

to the

MRDS Submode! Interface,

MRDS Command Interface, MTB-503

MRDS dsl_ Subroutine Interface, MTB-504

[7] Extensions to the create mrds dsm and display_mrds_dsm
Commands for MRDS Security, MTB-506

03/26/81 Page 20 MTB 505

