: MTRE-500
Multics Technical Bulletin

From: Eric Bush and Peter Krurp
To: MT3 Distribution

Date: April 3C, 1981

Suhject: Version 3 PL/I

1. INTRODUCTICH

This memo nresents an overview of the propcsed design
of 2 new cocde senerator and 2ssociated optimizers for the Multlics
PL/I compiler.ﬂit is rmrotivated by the fact that sutstantial
changes to our PL/I compiler will be needed to Insure adequate
performance on ORION.

)

s

The present conjunction of ORICN requirements, problems
with +the maintenance of 4%the current code senerabor, the
opnortunity of ~achieving optimizations as good as those of the
Multics FORTRAN comniler, and the availability, in the
literature, of naw code generator techniques make this an

opprortune time to hegin a staged redesign and reimnlementztion of
the Mulfties PL/I compiler.

There are three reasons:

1) The primary impetus for the redesipn effort 1is fhe

advent of QORIOMN. The new hardware will both recuire that the
cocde generator te able to generate ORION-specific instructions,
and present the oppcrtunity for generzting CRION-optimiIzed

instructicns. An example of the former is the necessity to use
the 1lprin instructions instead of eppn instructions. An example
of the latter is the opportunity to rearrange the order of
generated instructions in order to minimize expected pipeline
breaks.

2) Once we open up the code generator for
redevelopment, though, 1t behcoves us to look for opportunities
to generate better code in general, taking advantage of
technigues that have shown up in the literature since the present
ccde generator was written. The effort spent on general
improvement should, of course, be commensurate with the time and
resources available, but since most of Multics is dependent for
its peformance on the ability of this code generator to produce
efficient code, the beneficial effects of better code can be

Multics Project 1internal working documentation. Not to te
reproduced or distributed outside the Multics Project.

Version 3 PL/I : -1- 4/30/81

MT2-500 b/30/01

widelv felt.

2) Perhanps the preatest need for redesipgn is to mzake
the code generator more easily m=intainable. The "conceptual"
furetions o©of the ccde pgenerator a2rs snrezad Acoross many
individual procedures, wmany of whom debend for their proper
functioning upcon intimate knowledrse of the workines of otrer
procedures. Consequently, bug fixes or enhancements which zre

readily understood in the abstract, can bhe overwhelmingly
difficult *+to implement. Pecent work on table driven fechinques
for code generators similar to the LR(k) technolosv for nparsing
suggest wavs to improve this situation substantially. (¥ore cn
this later.) Given that most of the many bugs now ocutstanding c¢n
the PL/T bug list are code genarator bugs, we are obligéd to

[R

spend considerable resources on code generator work anyway.
Better +that these resources be spent on activities that help to
reduce future resource consumption, than on oprojects that

rerpetuate or even increase it.

3. DESIGN PRIMCIPLES

2.1 Dota structure abstraction:

A compiler can be viewed in the atstract as a series
of modules or "phases" that perform successive itransformations on
some representation of the program being compiled. Wwith the
exception c¢cf the modules at the sxtreme ends, those which turn
source into internal representation and those f£hat turn internal
representation into ohbject code, most of these modules are making
tree to tree transformations, the internal representation usually
reing a tree. Other forms of internal representation show up
{e.g.,graphs and "quads"), but trees deminate.

Fuman-readable descriptions of what compiler phases
are ur to (in the literature, in nlm's, in mth's, in blackboard
discusssions, etc.) are naturally couched in terms of tree (or
other structure) transformations. How nice it would be if
compiler phases could bte written and rewritten at this same level
of abstraction. £Since ours wasn't (whose was ?) we are saddled
with two unhappv obstacles ¢to local code changes (bug fixes,
enhancements, etc.): one must know the architecture of the
current internal tree down to the level of pointers and records,
and one cannot change that architecture, even 1in small ways,
without determining and fudging all the procedures that currently
rely on its present structure. And the mcre one patches, the
less readable the original procedures become.

We thus set as a design goal, for all cof th
tree-transforming mcdules that we write or rewrite, to expres
them at the level of tree transformations, and to keep the

3 060

4/730/81 -2- Version 3 PL/I

o

4/20/81 MTR-50C

inenorant of the implerentation detziles of *hose frees. e
nrovose to accomplish this by emploving =2 macro nprocessor te
writs access functions %to the _currenft form of the free. Mew
source ccde will speak directly of tree-munging bv emplevine the
macros. Changes to the implementaftion cof the treae will then
involve conly changes Yto the =accass funections. Cince macrgs
compile intec in-line code, the modularity of pnrocecures calls Is

enforced without the attendant runtime overhead.

—
¢4]

3.2 Modularity:

Another property of the best of all possible ccmpilers,
is the modular independence of the code embodying the knowledge
about how to compile in general and code embodying the knowledge
about how to compile a particular language for a particular
machine. A good example of this comes from the now commonplace
LR(k) technology. Knowledge of how to parse (LR(k) languages) in
general is emhodied in the programing language in which the
parsing =algorithm is written. FKncwledge of the grammar of the
languare that is being parsed is embodied in tables on which the
parsing algorithm operates. The parser can parse a different
lancguage merely by using a different t=able. What's more, the
tables can be automatically produced from highly abstract grammar
descriptions, freeing the maintairer form the details c¢f
implementation and issues of compatibility.

We would like to get our share of this new technology
for code generation too. As an idezl we would like 311 knowledge
about the semantics of PL/I and =ahout our current machine
Aarchitecture to be embodied in table on which a geneneral
purpose code gensrator works. The fables would be generated from
highly abstract specifications of languarge and machine semantics.
It is not clear that we can completely achieve so lofty a gecal in
the time available, but it is a worthy end at wrich to aim. A
code generator th=:t is partially language and machine independent
is better than one that is not sc at all.

3.3 Staged implementation:

Given the very central role that the PL/I compiler
plays 1in the 1life of Multics, a slow, hard to maintain code
generator that produces correct code is preferable to a state of
the art mcdel that doesn't. And given the great complexity of
the PL/I language, constructing a correct code generator for it
out of whole cloth is not a task to be taken lightly. It seems
desirable, then, to try to graft the new back-end ontc the old
front-end one module at a time so that correctness can be checked
in increments. We can't tell at this time what the smallest
retrofitatle unit is, nor what overhead will be involved 1in
trying to malke new modules function in old environments, but we
can identify phased implementation as a desirable goal and
approximate to it as best we can.

Version 3 PL/I -3- 4/20/81

or

L. overvImw oF

2
rn
8l

]
(]
=

2

Ve rronosz to divide the becok-and radevelo
two lcgical pheses: code generation and optimization. 7
=)

P
=3
m
303
—
}oa
3
-

0O 3

¢t (D
~ .
v oo

first to acrieve correct, thouch not necessarily ophi
generation by developing the various phases of the cod
and intecrating them into the current compiler. QOnce correc

o)
O (L e
D w0

ot
]
D
m 3

PONES SN Rt

Ve conceive the new code senerator as itself consistine
of twe logical phases: register allocation and instruction
selecticn. Cther phases of code generation, eg, storage
allocation, listing generation, object segment preparartion, will
be retained from the current compiler. Their interfaces will
probably have to be modified. The design we have in mind for
tatle-driven instruction picking seems to require tre inrtelligent
cooperation of a register allocator to produce food code, i;e.,
one that does its job in light of the knowledrce embodied in the
same tables wused by the instruction selector. We thus expect
that the design o¢f the instruction selector will strongly
influence the design of the register allocator, though they may
be implemented znd tested separately.

Optimization will also ceonsist of two phazses: 2 global
ovtimizer that will perform various improvemnents on the program
tree, in light of globzl data flow =z2nalysis, prior to code

generation, and a peephole optimzer that will effect mcre loczl
improvements on the instruction seguences produced by code
generation. Although the code generator snculd be able to run

initially without the peepholer, our current view of the code
generator indicates that to reduce the size of its tables to a
managable magnitude, we may have to purposely let 1t generate
inelegant sequences of code that only & peepholer can fix. If
this turns out to he true, some form of peepholer may bte a
necessary concommitant of any acceptable code generator.

The next four secticons address themselves to each of
these four phases in more detail.

5. GLOBAL CPTIMIZER

5.1 Current compiler:
Code optimization in the current compiler is done both

explicitly in an optional phase (when given "-optimize"), and
behind your back in disparate locations iIn various phases.

4/30/81 -4- Version 3 PL/I

b/30/781 MTB-500

The explicit cptimizer phase dces ccmmen subexpression
eliminaticen within basic blocks and pulls loop-invariant
computaticns out of the locps created by the semantic translator.
Since it dces not build a rlobal flow fraph of the program %
cannot recognize loops coded by the profgrammer &nd common
subexpressions occuring across basic bloek boundaries and thus

cannoct do the appropriate code moftiorn and redundant ceode
elimination. It recognizes ifs own locps only because the
semantic translator hangs them from a2 "lcop" operator when 1t

creates them.

The code generaftor has some aoppreciation of dead
variables through the use of reference counts that are set and
reset by various modules in various places. Keeping track of who
does what with these 1is one o0of the more difficult protlems
confronting the maintainer.

)

W]

Quick procedure optimization is dcne by 2 speci
module in the code generator.

5.2 Classical approach:

The classical approach to global ortimization 1is to
build & flow graph from some low level form of the progran,
compute data flow cuantities for each nccde by iterativliy running
around the graph, and then improve the program bv rearranging,
consolidating and elirminating code in 1ligkt o¢f 1invariances
revealed by the data flow analysis. The standard improvements ro
by varicus names but can be put into three classes: redundanrt
code elimination (removal of cecde to compute a value thzt was
computed or made available npreviously), dezad code elimination
(removal of computaticens or storage movements that do not
materially effect the cutput of the program), and strength
reduction (substitution of cheaper (i.e., faster or smaller)
computations and resources for unnecessarily expensive ones).

5.3 Recent work:

The recent 1literature on optimization offers two
sources c¢f improvement. 1) Various new techniques have been
developed to deal with procedure calls and pointer based
variables, two contructs, ubiquitous in PL/I programs, that have
traditionally thwarted data flow analysis. 2)Techniques for
doing data flow analysis on more high level forms of control
graphs have been developed which considerably speed up the time
it takes to compute data flow quantities.

5.4 Our approzach:

Version 3 PL/I -5- 4/30/81

-
<
-3
(6e]
!
o
[}
D

h/20/81

We could significantly dimprove the code generated by
the current compiler just btv doing classical data flow analysis
Tre new #lobal optimizer should do 2t least this much.

fa ")

The internal tree rroduced by the current semantic
“rarslator has nzd rTcst cf ite high-level control structuresg
(lixe "do wnhile") rerovad and thus may not bte suited to the rapid
dzta flow techricues currently founf in the literature, but
since, via our macrc Aaccess function strategy, we may view the
internal tree in whatever form we wish (given that our preferred
form can he corputed frorm the old form), we may be able to view
the ftree 2t 2 higher level for fthe purposes cf rapid datz flow.
It apnears, from our initial study, that macro =zccess functions
cfan reconstruct the oricinal high level constructszs from the

current lcow lavel ones. If this is possible we should take a
shot at it.

Technigques to preserve dzta flow information across
procedure calls and pointer Indireecticn would seen to he
optimizations that could pay big dividenrds for Multicians, given
that we use lots of procedures and pointers, hut there iIs still a
lot of rcom for pioneering here. There is ne wsll- entrenched,
standard wav o¢f handling these things at present Thls will
probably have to be a topic to he taken up i°

[¢2]
(]
H
n
—3
[R9]

R ALL

(@)

CATION

£.1 Current compiler:

Presently register allocation is donre by the
instruction selector itself rather than in a sep arate medule.
Registers are assigned locally as needec. Fixed binary

arithmetic results go into the € or AQ. T[Float binary arithmetic
results go into the EAQ. Some attempt is made to keep user index

and pointer variables in index and ncinter registers
respectively. There is no attempt to keep busy loop variables in
registers during loop execution and 211 live user values are

stored and loaded between bhasic blocks, since the global flow
data for dcing otherwise is not available.

€.2 Classical approach:

The approach generally recommended in the literature is
to reserve some registers for special purposes (stack pointers
return addresses) and use the rest to hold the most referenced of
a users variables during inner loop execution. This saves {(on the
average) one load and cone store times the number of times around
the loop for each variable so "registered".

4/30/81 -6- Version 3 PL/I

T S0
4/20/81 MTE =5

6.2 Recent work:

Pecent studies recommend =2 mere gleobal aporosch fo
allocating registers. The register allccator bas 2ccess fo 211 of
the Rlobai data flow analvsis that the global optimizer Get§ (and
cerhéps more). From this tre "lifetimes" cf &ll nrogran vaerizbles
(use's =2nd compiler's) are determined. The variables are
assigned Dreferénce weipghts indicatine the relative desirabilty

5 alsc the typa of

of having each in a register (and nerhars =2 _
register} if there is a chroice). An stternt is then made to
aséiﬁn all veriables to the availatle reristers according %o
"bin;paoking" 2lgoriths, 1in +the order cf preatest weipth.,
Variables whose lifetimes do not overlap can bhe mulfiplexed into
a single register.

€.4 Our approach:

To some extent, our hardware prevents us from keeping
strategic user variables in registers beczuse we don't have mnany
general purpose full-word registers , and tre two that we do have
(the A and ¢the €) can't be wused as operands to the same
instruction. BRoth the recent and standard studies ftend to assune
a "general purpose register" architechture like the IBM 260/270.
Ve can, howaver, exploit our mulfinle irdex ard pcinter registers
if the conditicns are rieght (i.e., for rpcinter values, and
integers whose precision fits in the indexes). Since we don't do
anvthing like this now, and since the FORTRAMN optimizing compiler
has =zpparently achieved good results tv thus playing around with

j=]

the indax registers, we expect that fLre recent approaches to
global allocation would be worth our while. It aprears 1likely
that the elimination of many pointer lo2d instructiors (by =z

register =allocator using information suoppled Gty a Flobal
optimizer) will buy much more performance on CRICN than any
amount of instruction re-ordering.

7. INSTRUCTION SELECTION

7.1 Current compiler:

Code generation in the current compiler 1s done by
simulating the execution of program statements down all possible
control paths and by simulating the evaluation of expressions.
The result of this simulated execution 1s a sequence of
instructions that carry out the intent of the bprogram when
executed by the processor.

The simulation is carried out by a large number of PL/I
procedures which comprise the PL/I compiler code generator. Each
procedure handles a particular subtask of +the simulation. For
examnle, a procedure called arith_op simulates the evaluation of

Version 3 PL/I -7- b/30/81

ATR_C
MTR-500 4/30/381

real binary arithretic expressions, another n»nrcocasdure handles
complex binary e2xpressions. Tre nrceedure, arith op, is larre

?hough not the larcest in the code Fenrator, because of the
immense amcunt of case analysis that must be done avep for
relatively simnle arithmetic evnressions. As A result of its
size and cemplexity, a large number of bugs have been found and
fixed in this nrrocedure. '

mein cause of complexity and bugs in the code

eems tc be the immense 2mount of case aralysis that
must be perforrmed tc select efficient and correct instructicn
sequences. lowevar, even 1if the amount of case analvsis cculd
somehow be reduced, the lack of modularity of this approach to
code fgeneration ~malkes it unaccevntable from an economic point of
view. HKnowledge of the target machine and the PL/I language 1is
embedded in the large number of procedures that comprise the code
generator. Petargeting the code generator for new machines is
impossible ard even the simplest change to the processor can
require global changes tc the code generator. Thus, the usual
approach to retargeting is reimplementation.

h
generator s
f

D

7.2 Classical arnrozch:

The clessical approach tc code generation resembles the
Multies PL/I 2onroach. The intermecdinte representation of the
procgran being compiled is scanned and the code fgenerator

simulates executicn of the program bv constructing =z sequence of
instructions which Implements the orogram or the tarcet machine.
The difference lies neot in the algorithm but the datza structures.
Classically, the intermediate representaticn is linear: quais,
triples, revers2 polish 2re 211 evamrles. Linear representations
were favored in early compilers beczuse of memeorv limitations.
At any one time, cnlyv a small segment cf intermediate text needed
to be ir memory.

Memory, 1in our case, 1s not as important of an
constraint and so we favor the less restrictive tree intermediate
representation. Multics PL/I uses the tree representation; this
gives 1t more freedom in selecting the order of evaluatiorn of
expressions.

7.3 Recent work:

There has been a decent amount of research recently
aimed at reducing the code generation process to a table-driven
process, much as the '"parsing process" has been so reduced by
LR(k) technology. BRriefly, the apnproach is to write =2 generzal
purpose instructicn selector which attempts match portions of the
program tree agzinst a repertoire of small tree patterns which
represent machine instruction sequences. A successful match
causes the represented instructions to be generated. A
successful covering of the whole tree produces a machine language

b/30/81 -2- Version 3 PL/I

- 1TR-200
1/30/%0 I

o

Tha renertcire o)
ce npairs is supplied to th
e. The aprprocrriate table for

nrogram for -
tros-pattern/instruction-
instruction selector as 2

civen machine/language con
r

bt
n ot

(D -

[3) Mies SRSV O]
D

r

3
W)

oo

ination is produced by a pre-compiler
aciility which talkes abstract descriptions cof both machire and
nnruacm.as input. muach as a parser generator takes 3 RME grammer
Aescription =2s input to produce parsing tables for that languarge
it describes.

o

7.4 2ur approach:

As mentioned =2hcve, we think that tahle-drivine is the
wav to po, narticularly for a language so voluminous as PL/T.
Perhans the greatest gain we can expect from such an apprcach 1s
the relative ease of maintaining such a code generator. Changes
to the language, the machine, or to particular implementations cof
the language can be made at the level of the abstract 1inputs to
the pré—odmpiler facility. This both speeds up mandated fives,
and allows for relatively easy and inexpensive experimentation
with alternate implementation idioms. Differences between
optimized and unoptimized compilation as well as differences in
compilation for different machines (L68 vs ORICHN) can be simply a
difference of tables used.

Our primarv source from the literature has besn the
POCC project (Production Cuality Compiler Compiler) at Carnerie
Mellon headed by Bill Wulf. We were initially concerned that the
design for the ccode generator, from which we have taken mnany
ideas, had not actually been implemented at the time of 1its
putlication (1978), and that the language that it was modeled on
(RLIS3) is not of the same order of complexvity as PL/I, but we've
just heard from Wulf (via his recent lecture at MIT) ¢that the
design has been used to successfully implement an Ada ccde
generator. Thus we now have empirical confirmation of the
soundness of the design for a PL/I-1ike language.

8. PEEPHOLE OPTIMIZER
8.1 Current compiler:
Peephole cptimization is done by the code generator in

the Multies PL/I compiler. The code generator examines every
instruction that it emits and determines if it can be combtined

with some preceding instruction. The code generator alsc
performs strength reduction: it replaces expensive iInstructions
vith more efficient special case instructions where ever

possible. A classic example is the combination of two left shift
instructions 1into one left shift instruction. Another example,
would be the replacement of an instruction which multiplies the A

Version 3 PL/I -0- 4/30/81

MTB-500 hy730/81

by 2 power of 2 ty a2 shift instruction.

Two basic problems exist with tFke oure
ontimizer. Cne rrohlerm 1is safety. The rnsenvro
deletes instructions and deoes so without ex~mi
of tre oprosram and without doing any live/ 2ad

analvsis,. I an instruction which is the Ferret of A dfump is
deleted, a burg is introduced into tre object m
away with these optimizations most of the time because of
intimate know‘edpe of the preceding phases of the compi
changes to those phases are made whick viclats its zssumntion
incorrect chject code is generated.

t LD
D
)9

3
3
O
B
"
oc
3
4
r
1
)]
+
n

{

i
—
D
. - .
0t~

The other problem 1is efficiencv. Every irnstructicn
emitted 1is considered to be a cardidate for every pcossihle
peephole optimization. This brute force apprcach has zacceptable
nerformance only because of the relatively small nunber of
special cases considered, anoroximately 20-40. Imprcvements can
be rade.

8.2 Classical approcach:

The Multies PL/I compiler implements the classical
anpproach. Classiczl peephole cptimizers have 3 cata 1oc cf tricks
2nd optimizations znd examine the otj=zct code idinstruction by
instruection and iImprove it wherever prossible. Krowledee zbtcut
the target machine is embedded in the code of the npeenhole
ontimize again implying that reftargeting entails

reimplementzation.

8.3 Recent work:

As in dinstruction selection, &the trend 1is towards
machine independent algorithms and machine dependent tahles. The
table contains pattern/action pairs. The algorithm matches the
pattern against the instructions and takes the corresponding
action whenever the pattern matches and chject code sequence.
The action is usually to replace the instruction sequence with a
mcre efficient one.

8.4 Jur approach:

We are leaning towrds the general pattern matching
approach. But since building a peephole coptimizer is relatively
simple compared to the other tasks before us, we may adopt the
special case apprecach. This will depend on our success with
producing a quality code generator. If that can be done without
making the compiler inefficient, then the peephole optimizer
will have 1little ¢to do in the classical area of peephcole
optimization.

Another task, which is not done by <c¢lassical peephole

4730781 -10- Version 2 PL/I

P

U/30/81 MTE-500

optimizers, 1is that of instruction =cheduling. To a;hievp high
auality cbiect code it mavy bhe necessary *+to dc instructicon
écheduiingh to minimize npipeline breaks on CRION. The peephole
ontimizer is thra correct bléce o Ao this since instruction
scheduling is strictly machine dependent and reaquires the same
informaticn and same cperations as that of neephole
optimizations.

8., IMPLEMENTATIOMN ORDER

n keeping withk *he above goal of incremental
development, we would like to subdivide the total redesign effort
into smaller, independently testable units so that we have some
reasure of '"correctness so far" as we are prcceding. It seems
possible that versions of the four phases just described could be
developed and tested independently, i.e., we cound ¢graft some
version of any ore of them into the current compiler and fest its
correctness without the presence of the other three. If seems
clear, though, tr:t the "desirable" version of any one of them
depends on the presence of one or more of the others. We can
think, for example, ¢f the follcowing dependencies right off:

+

Glcbzal optimization: what

ep

%

flow quantities are comnuted
+

s on who nesds what in later phases.

u

D <

n

e”

Register allocator: availability of global live-dead analy
(Flobal cptimizer) allows better use of
registers; choice between tvoes of regis
will nrejudee options for instruction sel
ticrn; pipeline scheduling (peephole ortim
is affected by contigious use of the same
register.

Instruction selector: can minimize his own size and speed if
peepholer is smart enough to cleen up
redundancies, and register allccator
has picked registers with potential
instructions in mind.

Peephole optimizer: needs global live dead analysis to do code
moticn for pipeline scheduling; needs
coordination with register allccator to
minimize contigious register usage; needs
to know what mistakes instruction picker is
most likely to make.

We might classify the interdependencies between modules

as two kinds: those (as with the global optimizer) where the
design details of one module depend on the design details of

Version 3 PL/I -11- 4/30/81

others, and those (as with the instruction selector) where the
performance or output cuality (as opnosed to cutput correctness)
of cne module iepends on the cooperation of other mcdules. It
seemns counterproductive to implement stand-2lone versions of
rodules afflicted bv the first class of dependencv, for theyv musth
then underco redesign when their fellows zarrive. The second
class of dependency, however, lcoks mere benign. 'Ye presunme, in
such cases, that the addition of new surrounding rodules will rot

?
effect the design of the original mocdule but merely 1its
cerformance. For example, it appears thzat the instruction

selector requires merely some form of register allocation (that
for instance, that is already done by the current compiler)and no
form o©f peephole cptirmization to produce correct code. Thus it
seerms nessible to implement =2rd tecst the instruction selector
prior to development cf the other two modules. Without redesign,
the same instruction selector should produce better code when it
is fad a better configuration c¢f registers and its output is
edited by a peepholer.

The instruction selasctor indeed seems to be the module
wrose desien 1s least influerced by the design cf other modules
and thus presents 1tself as ratural place to start the

1l1so fthe module whose design is
iterazture, and thus the one for

a
incremental developrment. It 1is
1
v confirmation of correctness.

mest pioneering relative to thre
which we would rmest lilte an

Since both tke rerister alleocator ard the peephole
eptimizer recuire globhal data flcow analysis, it looks 1lilke
development of the glohal ontimizer should come next.

iech module is next, or whether the last two are done
concurrently is too hard to tell at this early stage. The choice
of order mav well be made cn the basis of releazse dates or other
external considerations. Evidence from the FCRTRAN compiler
suggests both a higher benefit z2nd a higher ccst for the register
allccator. In general, our current conceptual horizon begins to
fade at the boundaries of the instructicn selector. We will "have
better and mcre detailed opinions about other modules as we
develop the details of this one.

10. BIRLIOGRAPHY
The following bibliography is intentionally brief. In
most cases, the reference cited contains a rather extensive

bibliography cn its own subject. Readers wishing to persue a
given topic further should find these references to be good

starting points.

Global cptimization:

Classical:

b/30/81 -12- Version 3 PL/I

4/30/81 MTR-500

AMfred V. Ahn & Jeffrey D.
COMPILER DESICGYM (Addiscon “Jesley, 10703

Recent:

Penzld Mintz, Gerry Fisher, Micha Sharir, "The LDesien
of the PDL Optimizer," (unpublished).

David B. Loveman, "Program Improvement by
Source-to-Source Transformations," JCOURNA of the ACM Vol.24,

no.1 (January 1977), pp. 121-145,

Barry X. Rosen, "Monoids for Rapid Data Flow Anzlysis,"
IB¥M Research Report RC 70322 (no.20111), IE¥ Thomzs J. Watson
Pesearch Center, Ycrktown Heights, NY (1978).

gsen, "Data Flow Analvsis for Procedural Languages,”
he ACM Vol.2€, no.2, (April 10970), pp. 322-344,

Register zllocation:
Classical:

Ahc & Ullman, pp. 522-537.

Aho, S.C. Johnson, Ullmran "Code Generation for
Expressions with Common Subexpressions," JOURNAL of the ACM
Vol.24, no.1, (January 1977), op. 146-160.

Recent:
Richard Karl Johnsson, "An Apoproach to Global Register

Alloc=tion," (PhD thesis, Carnegie-Mellon University, LCecember
1975).

Instruction selection:
Classical:

Aho & Ullman, pp. 518-556.

Version 3 PL/I -13- 4,30/81

L/30/81

Recent:

William A. Wulf, "PQCC: LA Machine-Relative Compiler
Technelogy," Technical Repcrt CMU-CS-E0-14L ‘Carnersie-Mellor
University September 1980).

Susan L. Graham, "Table Driven Code Generatiocn," IEFE
COMPUTER Vol.13, ro.8, (fugust 1880), pp. 25-34,

.G.G. Cattell, "Automatic Derivation of Ccde
Generators from Machine Descripticns,” ACM TRANSACTIONS cn
PROCRAMMING LANGUAGES and SYSTEMS Vol.2, no.2, (April 1¢80)
pp.172-10¢0,

Cattell, "Formalization and Automatic Derivation of

> Generators," (PhD thesis, Carnegie-Mellon University, April

Code
1878).

Pobert £. Clanville, "A Machine Independent Algorithm
for Code Generation and 1its Use in Retargetable Cornilers," (PhD
thesis, University of California, Rerkeley, December 1%77).

Joseph ¥, MNewcomer, "Machine-independen* Generation of
Optimal Local Code," (PhD thresis, Carnegie-Mellon University, Mav
1975).

Peephole optimization:
Classical:
Aho & Ullman pp. 548-556.
Recent:

David Alex Lamt, "Construction of a Peephole
Cptimizer," Technical Report CMU-C35-80-141 (Carnegie-Mellon
University February 1980).

J.¥. Davidson and C.W. Fraser, "The Design and
Application of E Retargetable Peephole Cptimizer," ACM
TRANSACTIONS on PROGRAMMING LANGUAGES

4/30/81

~14-

Version 3 PL/I

