
Multics Technical Bu~letin

Fror.i: Eric Bus~ and Peter Krupp

To: ~TS Distrihution

D?:.te: April 30, 1981

Subject: Version 3 PL/I

1. n;TRODUCTICN

This memo oresents an ovArview of the proposed design
of ? new eerie rren~r8to~ ~nd 2ssociate~ opti~izers for the ~ultics
PL/I compiler.-It is motivated by the fact that substantial
chan~es to our PL/I compiler will be needed to insure adeauRtP
performance on ORIO:l.

The present conjunction of ORION requirements, problems
with the maintenance of the current code renerator, the
opnor~un~ty of 2chieving optimizations as good as those of t~e
Multics FORTRAN co~oiler, and the availab~lity, in the
literature, of new code generator techniques make this an
opportune timP to begin a staged redesign and reiMplementation of
the ~ultics PL/I compiler.

2. REASONS FO? REDESIGN

There Are three re3sons:

1) The primary impetus for the redesign effort is the
a~vent of ORION. The new hardware will both recuire that ~he
code generator be ~ble to generate ORION-specific instructions,
and present the opportunity for generating ORION-optimized
instructions. An example of the former is the necessity to use
the lprin instructions instead of eppn instructions. An example
of the latter is the opportunity to rearrange the order of
generated instructions in order to minimize expected pipelir.e
breaks.

2) Once we open up the code generator for
redevelopment, though, it behooves us to look for opportunities
to generate better code in general, taking advantage of
techniques that have shown up in the literature since the present
code generator was written. The effort spent on general
improvement should, of course, be commensurate with the time and
resources available, but since most of Multics is dependent for
its peformance on the ability of this code generator to produce
efficient code, the bPneficial effects of better code can be

Multics Project internal working documentation. Not to
reproduced or distributed outside the Multics Project.

be

Version 3 PL/I -1- 4/30/81

MTS-500 4/30/t'1

w:.del:v felt.

3) Perhaps the ~reatest need for redesi~n is to m2ke
thi:> code generator !'!lore easily r.i==iintainahle. The "conceptu::il"
function~ of the code generator 2re spread 2ccross Tanv
inrlividual procedures, many of whom depend for their proper
functioning upon intimate knowledre of the worYin~s of other
procedures. Consequently, bug fixes or enhancements which are
re~dily unrlerstood in the ahstr2ct, can be overw~elminglv
difficu:t to i~ple~ent. Pecent work.on table driven techinn~es
for code generators similar to the LR(k) technolop:v for p~rsing
suggest ways to improve this situation substantially. (~ore on
this later.) Given that !'"!Ost of the r.;?.ny bups now outstanding on
the PL/I bup list are cocte generator bugs. we are obli~ed to
spend considerab]e resources on code generator ~ork ~nyway.
Better that these resources be spent on activities that help to
reduce future resource consumption, than on projects that
perpetuate or even increase it.

3. DESIGN PRINCIPLES

3.1 D?ta structure Abstraction:

A CQmpiler can be viewed in the abstract as a series
of rr.odules or "phases" that perform successive transformations on
sane representation of the program being compiled. With the
exception cf the ~odules at the extreme ends, those which turn
source into internal representation and those that turn internal
rPpresentation into object code, most of thPse modules are making
tree to tree transformations, the internal representation usually
beirg a tre~. Other forms of internal representation show up
ri::.g.,graphs and ''quads"), but trees dominate.

Euman-readable descriptions of
are up to (in the literature, in plm's,
discusssions, etc.) are naturally couched
other structure) transformations. How

what compiler phases
in ntb's, in blackboard
in terMs of tree (or
nice it would be if

compiler phases could be written and rewritten at this same level
of abstraction. Since ours wasn't (whose was ?) we are saddled
with two unhappy obstacles to local code changes (bug fixes,
enhancements, etc.): one must know the architecture of the
current internal tree down to the level of pointers and records,
and one cannot change that architecture, even in small ways,
without determining and fudging all the procedures that currently
rely on its present structure. And the more one patches, the
less readable the original procedures become.

We thus set as
tree-transforming modules
them at the level of tree

4/30/81

a design goal, for all of the
that we write or rewrite, to express
transformations, and to keep them

-2- Version 3 PL/I

...

4/30/81 ~-1TB-500

in~norant of the inple~entation ~et8ils of those trees. We
propose to acco~plish this by eMploying a ~aero processor to
write access functions to thP. _current form of the t:reP. New
source 0o~e will spe~k directly of tree-mun~ing bv Pmnloyins t~a
macros. Chan~es to the implementation of thP tree will then
involve only changes to the access functions. :ince m~cros
co!!lnile into in-line code, the :nodularity of procecures calls is
enf~rced without the attendant runtime overhearl.

3.2 Modularity:

Another property of the best of all possible co~pilers,
is the ~odular independence of the code embodyin~ the knowledre
about how to compile in general and code embodyinf the knowledge
about how to compile a particular languafe for a particular
machine. A good example of this comes from the now commonplace
LR(k) technology. Knowledge of how to parse (LR(k) languages) in
~eneral is embodied in the programing 12nguaee in which the
~arsing 2lgorithrn is written. Knowledge of the grammar of the
languare that is being rarsed is embodied in tables on which the
parsing alrrorithm operates. The parser can parse a different
language merely by using a different table. What's more, the
tables can he automatically produced from highly abstract grammar
descriptions, freeine the maintainer for~ t~e details of
implementation and issues of co~p3tibility.

We would like to get our share of this new technoloyy
for code generation too. As an ideal we would like all knowled[e
about the semantics of PL/I and about our current machine
architecture to be embodied in tables on which a geneneral
purpose code generator works. The tables would be ~enerated from
highly abstract specifications of language and machine semantics.
It is not clear that we can completely achieve so lofty a goal in
the time available, but it is a worthy end at wbich to aim. A
code generator tt~t is partially language and machine independent
is better than one that is not so at all.

3.3 Staged implementation:

Given the very central role that the PL/I compiler
plays in the life of Multics, a slow, hard to maintain code
generator that produces correct code is preferable to a state of
the art model that doesn't. And given the great complexity of
the PL/I language, constructing a correct code generator for it
out of whole cloth is not a task to be taken lightly. It seems
desirable, then, to try to graft the new back-end onto the old
front-end one module at a time so that correctness can be checked
in increments. We can't tell at this time what the smallest
retrofitable unit is, nor what overhead will be involved in
trying to make new modules function in old environments, but we
can identify phased implementation as a desirable goal and
approximate to it as best we can.

Version 3 PL/I -3- 4/30/81

MT9-500 4/30/S1

4. OVERVIE~ OF DESIG~

~e pro~ose to divide t~e b2ck-~nd rede7Plorment in~o
two lcgical ph2ses: code Peneration and optimization. The clan is
first to ac~ieve correct, thoufh not necpssarily orti~al, code
generation by developing the various phases of the code ~enerator
and inteGrrtting them into the current COMDil~r. Once correct ~o1e
can be produced, we will develop the opti~ization phases.

We conceive the new code generator as itself consisting
of two lofical phases: register allocation and instruction
selection. Other phases of code generation, eg, storage
allocation, listing ~eneration, object segment preparartion, will
be retained from the current comoiler. Their interfaces will
probably have to he modified. The d~sian we have in mind for
table-driven instruction picking seems to require the intelli~ent
cooperation of a register allocator to produce pood code, i.e.,
one that does its job in light of the knowledge enbodied in the
same tables used by the instruction selector. We thus expect
that the design of the instruction selector will stron~ly
influence the design of the register allocator, though t~ey may
be implemented and tested sep8rately.

Optimization will also consist of two nhaseR: a global
optimizer that will perform various improvements on the progrem
tree, in light of glohal data flow analysis, prior to code
generation, 2nd a peephole optimzer that will effect more local
improvements on the instruction sequences produced by code
generation. Although the code generator should be able to run
initially without the peepholer, our current view of the code
~enerator indicates that to reduce the size of its tables to a
~anagahle magnitude, we may have to purposely let it generate
inelegant sequences of code that only a peepholer can fix. If
this turns out to be true, some form of peepholer may be a
necessary concommitant of any acceptable code generator.

The next four sections address themselves to each of
these four phases in more detail.

5. GLOBAL OPTIMIZER

5.1 Current compiler:

Code optimization in the current compiler is done both
explicitly in an optional phase (when given ''-optimize"), and
behind your back in disparate locations in various ptases.

4/30/81 -4- Version 3 PL/I

4/30/B1 ~'TB-500

The explicit optimizer phase does common subexaression
elimination within basic blocks and pulls oop-inv~riant
computations out of the loops creC1ted by the serant c trarslator.
Since it does not build a plob~l flow ~rap~ of the rrogra~ it
cannot reco~nize loops coded by the pro~r2rnmer 2nd con~on
subexpressions occurirg across basic bloc~ boundRries and thus
c~nnot do the appropriate code motion and rerlundant code
elinination. It recognizes its own loops only because the
ser.iantic translator hangs them from a "loor" operator when it
creRtes them.

The code generator has some aopreciation of dead
variables through the use of reference counts that are set and
reset by various modules in various places. Keepinf track of who
does what with these is one of the more difficult problems
confronting the maintainer.

Quic~ procedure optimization
module in the code ~enerator.

5.2 Classical approach:

is done by . , a specia ...

The classical approach to FlobaJ oatimizatior. is to
build a flow graph from some low level forr of t~~ progr2~,
conpute data flow auantities for each node by iterativly runninr
around the graph, and then imorove the program by rearr2ngin~,
consolidating and eliminating code in li~ht of invariances
revealed by the data flow analysis. The standard i~prove~ents po
by various names but can be put into three classes: redundant
code elimination (removal of code to compute a v~lue that was
computed or made available previously), dead code elimination
(removal of computations or storaFe movements that do not
materially effect the output of the program), and stren~th
reduction (substitution of cheaper (i.e., faster or smaller)
computations and resources for unnecessarily expensive ones).

5.3 Recent work:

The recent literature on optimization offers two
sources of improvement. 1) Various new techniques have been
developed to deal with procedure calls and pointer based
variables, two contructs, ubiquitous in PL/I programs, that have
traditionally thwarted data flow analysis. 2)Techniques for
doing data flow analysis on more hirh level forms of control
graphs have been developed which considerably speed up the time
it takes to compute data flow quantities.

5.4 Our approach:

Version 3 PL/I -5- 4/30/81

~~TB-500 4/30/81 .

We could sifnificantly improve the code eenerated by
the current compiler just by doing classical dat~ flow ~nalysis.
Tre r.e 1,1 global opti~izer should do at least this rnucl1.

T~e j~ternal tree rroduced by the current semantic
traPsl2tor has ~arl ~est cf its ~ivh-level control structures
(like "do while") rer.oved and thus r.i,qy not be suited to the rarid
data flow technicues currently faun~ in the literature, but
since, via our ~acre 2ccess function strategy, we may view the
internal tree in whatever form we wish (given that our preferrerl
for~ can he co~puted fro~ the olrl form). we nay be able to view
the tree at 2 hi~her level for the purpo~es of rapid ~ata flow.
It apnears, from our initial study, that macro access functions
can reconstruct the orir,in~l hi~h. level constructs fro~ the
current low level ones. If this is possible we should take a
shot at it.

Techniques to preserve data flow information across
procedure calls and pointer indirection would see~ to he
optimizations that could DrtY bi~ dividends for ~ulticians, given
that we use lots of procedures and oointers, but there is still a
lot of room for pioneerinp here. There is no well- entrench~d,
standard wav of handlin~ t~ese thin?s at nresent. This will
prdbably h3v~ to be a topic to b~ taken up if t~ne permits.

6. REGISTER ftLLCCATION

6.1 Current compiler:

Presently register allocation is done by the
instruction selector itself rather than in a separate module.
Registers are assigned locally as neede~. Fixed binary
arithmetic results go into the O or AQ. Float binary arithmetic
results go into the EAQ. Some attempt is made to keep user index
and pointer variables in index and pointer registers
respectively. There is no attempt to keep busy loop variables in
registers during loop execution, and all live user values are
stored and loaded between basic blocks, since the global flow
data for doing otherwise is not available.

6.2 Classical approach:

The approach ~enerally recommended in the literature is
to reserve some registers for special purposes (stack pointers,
return addresses) and use the rest to hold the most referenced of
a users variables during inner loop execution. This saves (on the
average) one load and one store times the number of times around
the loop for each variable so "registered".

4/30/81 -6- Version 3 PL/I

4/30/81 t-lTS-500

6.3 Recent work:

Recent studies recommend a ~ere plob~l aporo;ch to
allocatinp re~isters. The r~gister allocator b2~ 2ccess to all of
the global data flow an~lysis that the plobal optimizer rrets (and
perhaps more). From this the "ljfetimes" cf c.11 p;ogram v2:i:::_bles
(use's and compiler's) are determined. The variahle~ are
assivnP~ oreference weivhts indicatinp tbe relative desirabilty
of h;ving each in a re~ister (and oerhars also the type of
register. if there is a choice). An 2tterot is then ~adP to
as~ign ail v2riables to the available re~istcrs accordinv to
"bin:packing" algoriths, in the order cf freatest weir.tr.
Variables whose lifetimes do not overlar can be multiplexed into
a single register.

6.4 Our approach:

To some extent, our hardware prevents us from keepin~
strategic user variables in registers because we don't hav~ many
general purpose full-word registers , and tre two that we do have
(the A and the Q) can't be used as operands to the same
instruction. Roth the recent and standard studies tend to assume
a "general purpose regist-er" architechture live the IB~1 3601370.
We can, however, exploit our multiple index anrl pointer reeisters
if the conditions are riEht (i.e., for pointer values, and
integers whose precision fits in the indexes). Since we don't do
anything li~e this now, and since the FJRTRAN optimizing compiler
has 3pparently achieved good results by thus playing arou~d with
tb~ in~ex registers, we expect th8t t~Q recent approaches to
global allocation would be wortb our while. It aopears li~elv
that the elimination of rnany pointer loarl inst~~ctions (by ~
register allocator using information sunpled by a plobal
optimizer) will buy much more performance on ORION than any
arr.cunt of instruction re-ordering.

1. INSTRUCTION SELECTION

1. 1 Current compiler:

Code generation in the current compiler
simulating the execution of program statements down
control paths and by simulating the evaluation of
The result of this simulated execution is a
instructions that carry out the intent of the
executed by the processor.

is done by
all possible
expressions.
sequence of

program when

The simulation is carried out by a large number of PL/I
procedures which comprise the PL/I compiler code generator. Each
procedure handles a particular subtask of the simulation. For

,.. example, a procedure called arith_op simulates the evaluation of

Version 3 PL/I -7- 4/30/81

~·'TB-500 4/30/.51

rRal binary arith~etic expres~ions, another nrocedure handlPs
cornolex binary 2xQressions. T~e nrocerlure, arith or, is larpe,
thouvh not tl:e 12.rD"est in the code fl':nrator, bec;:iuse of' the
irimensP amount of' casP. analysis t!"'2t '"'.'ust be rlono evr?r f'cr
relatively siIT'nle arithmetic exoressions. As a result of its
size and ccrr.rlexitv, a large nuribt:r of bu.c::s h.:ive bPen founcl ;-ind
fixed in this oroceciure.

The rain cause of complexity anrl bugs in the code
Fenerator seers to be the im~ense ~mount of case analysis that
must be perforred tc select efficie~t and correct instruction
sequences. l!0':·e?er, even if t.,o. a.rr.ount of c2se analysis could
somehow be rerluced, th"'. lack of r.:ocularitv of this aoproach to
code reneration ~a~es it unacceotable f~om an economi~ point of
view. Knowledge of the target m2chine and the PL/I lanruage is
embedded in the large number of procedures that comprise the code
generator. ?etarveting the code gener~tor for new machines is
impossible a~d PVen the simplest ch2nge to the processor c2n
require glob2l ch2nges to thP code generator. Thus, the usual
approach to retargetinp is reimplementation.

7.2 Classical 2rnro2ch:

7he cl2ssi~al anproach tc code generation rese~bles the
~ultics PL/I annro2ch. The intPrmedinte represent?tion of the
program beinr comniled is scan~ed and the code generator
simu~_ates execut-,ion of the propra!"l bv constructing 2. sequence of
instructions w~ich implements the nrograrn on the tar~et machine.
The difference lies not in the algorithm but the data structures.
Classically, the intermediate representation is linear: qua~s,
triples, revers~ polish are all examrles. Linear representations
were favored in early compilers bec2use of memory limitations.
At any one ti~~, only a small segment cf intermedi8te text needed
to be ir: memory.

Memory, in our case, is not as important of an
constraint 2nd so we favor the less restrictive tree intermediate
representation. ~ultics PL/I uses the tree representation; this
gives it more freedom in selecting the order of evaluation of
expressions.

7.3 P.ecent work:

There has been a decent amount of research recently
aimed at reducing the code generation process to a table-driven
process, rnuch as the "parsing process" has been so reduced by
LR(k) technolo~y. Briefly, the aoproach is to write a general
purpose instruction selector which atteMpts match portions of the
program tree against a repertoire of small tree patterns which
represent machine instruction seauences. A successful match
causes the represented instructions to be generated. A
successful covering of the whole tree produces a machine language

4/30/81 -8- Version 3 PL/I

tnB-500

pro~ram for it. The repertoire cf
tree-nattern/instruction-seaunce p~irs is supolied to the
instr~ction selector as 2 table. The arpropriate table for a
~iven machine/language combination is pro~uced by a rre-~ompiler
faciility which takes abstract descriptions of both ~ach1ne and
lan~uage as input, muct as a parser generator takes a E~~ ~ra~mer
des~ription 2s input to produce parsing tatles for that lanfua~e
it describes.

7.4 Qur approach:

As mentioned above, we think that t~ble-drivin~ is the
way to fO, particularly for a langua~e so voluminous as PL/1.
Perhans the ~reatest gain we can expect from such an approach is
the relative ease of maintaining such a code generator. Changes
to the langua~e, the machine, or to particular implementations of
the language can be made at the level of the abstract inputs to
the pre-compiler facility. This both soeerls up mandated fixes,
and allows for relatively easy and inexpensive experimentation
with alternate implementation idioms. Differences between
optimized and unoptimized compilation as well as differences in
compilation for different machines (L68 vs ORICN) can be s!~ply a
difference of tables used.

Our primary source from the literature has been the
PQCC project (Production Cuality Compiler Compiler) at Carne~ie
~ellon headed by Bill Wulf. We were initially concerned that the
rlesign for the code generator, from which we have taken many
ideas, had not actually been iMolemented at the time of its
publication (1978), a~d that th~ language that it was modeled o~
(BLISS) is not of the same order of complexity as PL/I, but we've
just heard from Wulf (via his recent lecture at MIT) that the
desig~ has been used to successfully implement an Ada code
generator. Thus we now have emoirical confirmation of the
soundness of the design for a PL/I-like language.

8. PEEPHOLE OPTIMIZER

8.1 Current compiler:

Peephole optimization is done by the code generator in
the Multics PL/I compiler. The code generator examines every
instruction that it emits and determines if it can be combined
with some preceding instruction. The code generator also
performs strength reduction: it replaces expensive instructions
with more efficient special case instructions where ever
possible. A classic example is the combination of two left shift
instructions into one left shift instruction. Another exa~ple,

,-. would be the replacement of an instruction which multiplies the A

Version 3 PL/I -9- ll/30/81

i'TTB-500 1u301s 1

by a rower of 2 by a shift instruction.

THo basic problems eY.ist wit~ the current p.oepbole
ontimiz~r. One orobJem is safety. Tbe nePn~ole optimizer
deletes instructions and does so without ex~ming the control flow
of tbe pro~ra~ and without doinR anv liv~/ dead vari~ble
~nalysis. If an instruction which is-the t2r~et of a ju~o is
delete~, a bug is introrlucerl into the object oro~ra~. It cets
away with these on. timizations most of thP ti- b f -~ _ ~ ,,,., ecause o i .,s
intimate knowled~e of the precedin~ phasPs of the cornoilPr. If
changes to those pb2ses are ~ade which violate its a~sumptions,
incorrect ohject code is generaterl.

The other problem is efficiency. Cvery instruction
emitted is considered to be a candidate for every possible
peephole optimization. This brute force approach has acceptable
perfor~ance only because of the relatively small number of
special cases considerert, approximately 30-40. Improvements can
be r'ade.

8.2 Classical approach:

The Multics PL/I compiler imple~ents the classical
approach. Classical peephole cpti~izers have a catelog cf tric~D
2nd optimizations and examine the otj~ct codA irstruc~ion by
instruction and improve it wherever possible. K~owled~e abcut
the target machir.e is embedded in the coce of the peenhole
optimizer apain implying tr.at retargetinv ent~ils
reimplementation.

8.3 Recent work:

As in instruction selection, tre trend is towarcs
machine indep~ndent algorithms and ~achine dependent tables. The
table contains pattern/action pairs. The algorithm matches the
pattern against the instructions and takes the corresponrling
action whenever the pattern matches and object code sequence.
The action is usually to replace the instruction sequence with a
more efficient one.

8.4 Our approach:

We are leaning towrds the general pattern matching
approach. But since building a peephole optimizer is relatively
simple compared to the other tasks before us, we may adopt the
special case approach. This will depend on our success with
producing a quality code generator. If that can be done without
making the compiler inefficient, then the peephole optimizer
will have little to do in the classical area of peephole
optimization.

Another task, which is not done by classical peephole

4/30/81 -10- Version 3 PL/I

4/30/81

opti'."lizers, is
quality object
scr:edulinp: to

th"'t of
code it
rnininize

optimizer is tre co~rect
schedulin~ is strictly
infor~2tion 2nrl same
opti!niZ?..tions.

9. IMPLE~SNTATION ORDER

t~Tf-500

instruction schedulin~. To achieve high
may he necessary to do instruction
pip~line breaks on ORION. The peephole
plac~ to do this since instruction
~achine dependent 2nd requires the sa~e
operations as that of ~eephole

In keepin~ wit~ the above goal of incremental
development, we would like to subdivide the total redesign effort
into sraller, indeoendently testable units so that we have some
rr.easure of "correctness so far" as we are proceding. It seems
possible that versions of the four phases just described could be
developed and tested independently, i.e., we cound rraft some
version of any one of tho.r. into the current compiler and test its
correctness without the presence of the other three. It seems
clear, though, t~ :,t the "desirable" version of any one of them
depends on the presence of one or more of the others. We ca~
think, for example, of the ·followinIT dependencies right off:

Global opti~ization: what data flow quantities are computed
depends on who needs what in later phases.

Register allocator: availah~lity of global live-deart ~nalysis
(flohal optimizer) ?.llows better use of
registers; choice between types of registers
will prejudge options for instruction selec­
tion; pipeline scheduline (peephole optimizer)
is affected by cqntigious use of the s2me
rerister.

Instruction selector: can minimize his own size and speed if
peepholer is smart enoufh to cleen up
redundancies, and register allocator
has picked registers with potential
instructions in mind.

Peephole optimizer: needs global live_dead analysis to do code
motion for pipeline scheduling; needs
coordination with re~ister allocator to
minimize contigious register usage; needs
to know what mistakes instruction picker is
most likely to make.

We might classify the interdependencies between modules
as two kinds: those (as with the global optimizer) where the
design details of one module depend on the design details of

Version 3 PL/I -11 - 4/30/81

~/jU/tl

others, and those c~s with the instruction selector) where the
performance or output quality (as opposed to output correctness)
of one module depends on the cooperation of other mcdu1es. It
see~s counterproductive to imDlement st2nd-~lone versions of
rodules afflicterl by the first class of dependency, for they ~ust ~
tben unrlervo rerlesign when tbeir fellows arrive. The second
class of dependency, however, looks more benign. ~e presume, in
such cases, t~at tbe arldition of new surrounding rodules will not
effect the design of the orifin?l module but merely its
performance. For example, it appears that the instruction
selector requires merely some form of register allocation (that ,
for instance, that is already 1one by the current compiler)and no
form of peephole optir.ization to produce correct code. Thus it
see~s ncssible to implement 2r.d te~t the instruction selector
prior to development of the other two modules. Without redesign,
the same instruction selPctor should produce better code when it
is f~d a better configuration of registers and its output is
edited by a peepholer.

The instruction selector indeed seems to he the module
whose design is least influenced by the desipn of other modules
and thus presents itself as a ~atural place to start the
incremental develop~ent. It is also the module whose desi~n is
rncst pioneering relative to t~e literature, and thus the one for
which we would rost like an early confirmation of correctness.

Since both t~~ re~ister allocator 2r.d the peephole
optimizer reauire vlohal ~at8 flow analysis, it looks liYe
development of the global o~timizer should come next.

Which module is next, or whether the last two are done
concurrently is too hard to tell at this early sta~e. The choice
of order way well be made en the basis of release dates or other
external considerations. Evidence from the FOR7RAN compiler
suggests both a higher benefit and a higher cost for the rerister
allocator. In general, our current conceptual horizon begins to
fade at the boundaries of the instruction selector. We will ·have
better and mere detailed opinions about other modules as we
develop the details of this one.

10. BIBLIOGRAPHY

The following bibliography is intentionally brief. In
most cases, the reference cited contains a rather extensive
bibliography on its own subject. Readers wishing to persue a
given topic further should find these references to be good
starting points.

Global optimization:

Classical:

4/30/81 -12- Version 3 PL/I

4/30/81 '-'Tr:;. -5 0 0

Alfred V. Aho
D E S I G ~1 (f, C. d i s o n.

~' J1~ffrev !'. U11.:n.:n, Pr:\I':r:-;:?L::S
'-I e s l e v , 1 0 7 n) • n r . t r1 c: - "; 1 ..., •

Recent:

Rnnald tv'intz, Gerry Fisher, t!icr:::i Sh2rir, ''The DesJr-r
of the PDL OptimizPr," (u:lpublisr.ec).

David 8. Loveman, "Prof"r2m
JQU:9NAL

Improvement by
Source-to-Source Transformations,"
no.1 (January 1977), pp. 121-145.

of the ACV Vol.24,

8 arr y K • Rosen , "Mono id s f o r Ra pi rl D 2 t 2. Flow An a l y s j_ s , ''
IBM Researcb Report RC 7032 (no.30111), IBM 7homas J. ~atson
Besearch Center, Yorktown Heights, NY (1978).

Rosen, "Data Flow Analysis for Procedural Languages,"
JOURNAL of the AO': Vol.26, no.2, 0.pril 1979), pp. 322-3ll4.

Re~ister alloc~tion:

Classical:

Aho & Ullman, pp. 533-537.

Aho, S.C. Johnson, Ullrian "Code GF>neration for
Expressions with Common Subexpressions," JOURUAL of the ACM
Vol.24, no.1, (January 1977), pp. 146-160.

Recent:

Richard Karl Johnsson, "An Approach to Global
Alloc2.tion," (PhD thesis, C3rnegie-Mellon University,
1975).

Instruction selection:

Classical:

Aho & Ullman, pp. 518-556.

Version 3 PL/I -13-

Register
December

4/30/81

ll/30/81

Pe cent:

:.1 i 11 i a. m A . Hu l f , 11 Pc; C C : P. ~l ::i c r in;:: - ? e 1 at iv e co r.' pi l e r
Tech'.'"' c lo f' y , 11 Te ch n i ca 1 ? e pc rt C/ U - CS - f 0 - 1 4 ll (C 2 r n e r i e - ~~ e 11 c r.
University Septe~ber 1980).

Susa.n L. Graham. 11 T?tble Driven Code Generation," IEEE
C01'1PU!E~ Vol.13, no.8, (;.~gust 1980), pp. 25-34.

R.G.G. Cattell, "Automatic Derivation of Cc·de
Genern.tors from Machine Descriptions," AO! TRA!!Sf,CTIO::s en
PROG?PiYFI:JG LMlGUAGES ·and SYS'I'E~1 S Vol. 2, no. 2, (April 1980)
pp.i73-190.

Cattell, "Formalization ;:,nd f\utomatic Der:iv?.tion of
Code Generators," (PhD thesis, Carnegie-~ellon University, April
1972).

'Robert ;:;. CJ2nville, "f, ~!achine Independent 1qgorithm
for Code Generation 8nd its Use in Retargetable Compilers," (PhD
thesis, University of Californis, 8erkeley, December 1977).

Jo s e n r ~A • \) e wt: o rn e r , " P"' c h i n e - i n d e n e n rl. e n ~ G c n e r 2 t i o r o f
Op t i ma l Lo ca l Co d c . " (P h D t r e s i s , Ca r n e r: i e - Me 11 on '.Jn iv e rs i t y , r~ a v
1975).

Peephole optimization:

Classical;

Aho & Ullman pp. 548-556.

Recent:

David Alex Lamb, "Construction
Optiriizer," Technical Report CMU-CS-80-141

of ~ Peephole
(Carne@"ie-Mellon

University February 1980).

J.W. Davidson and C.W. Fraser, "The Design and
AC~·K Application of a Retarcetable Peephole Optimizer,"

TRANSACTIONS on PROGRAMMING LANGUAGES

4/30/81 -14- Version 3 PL/I

