
02/03/8i Mu~tics Tachnical Bulletin MTB-497

From: W. Olin Sibert

To: MTB distribution

Date: February 1, 1981

Subject: Constructing Programs for Multiple System·Types

INTRODUCTION:

The development of Multics software for the ORION requires that
facilities be available in the language translators and runtime environment
that permit programs to be c9mpiled differently or run differently depending
on the type of system they are being used with. Three forms of selection will
be used: selection at runtjme, by executed code, selection at compile time, by
macro expansion and compiler option, and selection at the time the system is
built, from entirely separate programs •. The actual user interfaces to these
are described in the Implementation section, later, and some of the reasons
for decisions about the implementation are des,cribed in the Other Issues
section at the end.

Of these, all mechanisms except the selection of compile time
optimizations and code generation choices will be used primarily by programs
in the supervisor. User programs will not generally need to make choices based
on system type at runtfroe, and any user source program will run on any type
system as long as it has been compiled for that type of system. This means
that all selection on system type will be transparent to writers of user code,
with few exceptions; a user program will run on the system it was compiled on,
without changes or any explicit specification of system type.

On the other hand, in the supervisor, the choices become more explicit.
Wherever possible, when it will not pose a meaningful cost in execution speed,
all choices will be made on the basis of runtime checks. When this is
inappropriate, macro expansion will be used, as will the creation of entirely
separate programs. The choices made in the supervisor must also be more fine
grained than the choices made for user programs. The supervisor may sometimes
be concerned with the difference between two different types of SCU, whereas
the code generated for user programs need only be selected on the basis of
broad classifications of system architecture.

Multics Project internal working documentation. Not to be distributed outside
the project without permission of the author, or the Director, Multics System
Development.

Sibert - 1 - 02/03/81

02/03/81 Multics Technical Bulletin MTB-497

In fact, the only selections which need to be· performed for most user
code are those which deal with instruction optimization ·and availability. We
have two major classes of these today: the Level 68 and the ORION. Although
the DPS/8 is an entirely new piece of hardware, the differences it presents to
user programs are completely insignificant. We c~n expect this trend to
continue indefinitely; there may be many different models to choose from, of
widely varying performance, but they will fall into just a few broad classes
of instruction sets. For this reason, the transparent selection mechanisms we
provide for user program writers can be very simple; their choices are few,
and the goal of having programs run on the system on which they were compiled
is readily achievable.

In order to accomodate migration, of course, it will be necessary to
provise users a mechanism to say "compile this as if it were being compiled on
the FritzBlatt model 53 11 , but even this will be little used. Almost all user
programs will be used on the same systems where they were compiled, and their
writers need not be concerned with any of these issues.

When writing supervisor code, the same choices must be made for
instruction set usage, but other, more explicit choices must be made as well.
Since we can assume that programmers writing supervisor code are familiar with
the need for this, all other choices must be made explicitly. It is likely,
for instance, that many supervisor programs will not be compiled on the same
system where they are to run.

IMPLEMENTATION OF SYSTEM SPECIFICATIONS:

In order to provide these selection functions, the following facilities
will be available:

1} There will be an include file describing the canonical integer values for
system type. Initially, there will be two such types: L68_SYSTEM, and
ADP_SYSTEM, as well as a value specific to no system at all, ANX,_SYSTEM.
Others may be added in the future as needed. It will be called
systeDLtypes.incl.pl1. The value for the type of the current system will
be available from the external variable sys_info$systeDLtype.

2} There will be a subroutine which translates string specifications of
target machine, appearing as control argument or conditional compilation
operands, into their canonical integer form. It will also supply the type
of the running system for use as a default. This is described in MTB-495.

Sibert - 2 - 02/03/81

.-;·:-"':.

-

02/03/81 Multics Technical Bulletin MTB-497

3) The language compilers (pl1, fortran, cobol) will all be able to generate
code which will work on all types of system. Initially, this can be done
by generating code which will work on all systems, but optimizations for
specific systems can be added later.

By default, all translators will produce code appropriate to the system
on which they are running. A "-target_machine" control argument will be
available to specify code generation for other system types. In order to
get code which can be executed on any system, a target machine of "any"
must be specified.

4) The ALM assembler will be able to assemble all the instructions available
on all the systems. This is provided by the multiple decor support,
detailed in MTB-469. By default, ALM will assemble instructions in a
decor which can be executed on all types of systems, but this can be
overridden either by use of the the "decor" pseudo-op, or by explicit
specification with the "-target_machine" control argument. The appearance
of a "decor" pseudo-op in the source will override any default or control
argument specification.

5) The ALM assembler will provide a conditional assembly facility based on
the argument to the "-target_machine" pseudo-op, implemented as
"iftarget STR" and 11ifntarget STR", where STR is a string acceptable to
the canonicalization subroutine described above. If these constructs are
used, the "-target_machine" control argument must also be specified;
there is no default, since this construct will be used primarily in
supervisor programming, and should not have accident-prone defaults. Note
that these pseudo-ops can also be used to cause temporary changes of
decor while assembling system-specific portions of code.

6) The PL/I macro expander will provide a system type predicate function for
use in conditional expansion, of the form "%target (STR)". As with the
ALM feature, if "%target" is used, the "-target_machine" control argument
must also be specified. It will 'be a severity two error to use "%target"
if none was specified, but it will assume a default of the current system
in order to allow the expansion and compilation to continue.

7) These features of the PL/I macro expander will be used to make include
files describe structures appropriate to particular machine·s. For
instance, there will be three include files describing the format of an
SDW: sdw.168.incl.pl1, for the Level 68, sdw.adp.incl.pl1, for the
ORION, and sdw.incl.pl1, which will contain con9itional compilation
directives to expand to either of "%include sdw.168;" or
"%include sdw.adp;", whichever is appropriate for the target system
specified on the command line.

Sibert - 3 - 02/03/81

·-~--.-....•

02/03/81 Multics Technical Bulletin MTB-497

Because the initial implementation of the macro processor will be
standalone, this will require that include files containing that sort of ~
conditional expansion be included with a "%INCLUDE" statement, rather
than with the usual "%.include". This deficiency will disappear when the
macro processor is integrated into the compiler; although it will still
be necessary to specify a target system on the command line in order to
use such include files.

The combination of ·defaults and required specifications in these
mechanisms provides a convenient and error-free way for users to compile their
programs without worrying about the system type distinctions. It also will
make supervisor programming less accident-prone, by requiring that programs
with specific requirements have those requirements answered by explicit
specification, rather than by probably inappropriate default.

OTHER ISSUES:

There will be no specific system type for the DPS/8, because it is so
similar to the Level 68. In fact, in the anticipated mixed and L68 compatible
configurations,
configurations,
differences will

the differences are virtually unnoticeable. In native-mode
utilizing the hardware cache coherency mechanisms, the

be greater, but still confined to small portions of the
supervisor where the choices will be made at runtime.

There is.no provision for specifying multiple models of a system in this
scheme. While. this is not a problem now, there may come a time when the.re are
different models of basically the same architecture, but which could benefit
from compiler optimizations specific to that particular model. These
optimization criteria will not affect existing code, or require any
recompilation, but if it is desired to take advantage of these possible
optimizations, the target specification will be extended to accept strings of
the form "ORION.4X", "ORION.10X", etc. This will be completely compatible with
existing usage. It seems likely th~t this sort of specific optimization will
never be required, since the amount of effort required to implement it could
better be expended implementing effective global optimizations which would
have a higher payoff; still, one never knows.

The de.fault for the language translators is different from that
implemented by ALM for two reasons. One is that programs written in ALM are
likely to require very specific changes based on system type, since they
otherwise would be written in pl1, and the other is one of convenience for
user programs. The entire supervisor will either have to be compiled with a
target of "any" if it is to run on any machine (except where specific
requirements exist, of course), or with a specific target to generate code
which is optimized for that machine.

Sibert - 4 - 02/03/81

