
Multics Technical Bulletin MTB-489

To: Distribution

From: John J. Bongiovanni

Date: 01/20/81

Subject: Measuring Response Time on Multics

1 • INTRODUCTION

This document contains a description of a method to measure
response time on Multics in a manner which is independent of
user-ring and which approximates the response seen by a user at
an interactive terminal (excluding delays external to the
mainframe, such as communications delays). In the following
discussion, some definitions critical to understanding the design
will be presented. Following this, the conceptual model of user
interaction will be discussed. Finally, the (rather trivial)
implementation of this model into Multics will be given.

This MTB addresses only the measurement of response time and
accumulation of response time data in ring-0. In order for
data to be of much use, tools to summarize and present this
must be developed. Such tools are not within the scope of
document.

Send comments by one of the following means:

By Extended Mail Facility, on MIT or System M:
Bongiovanni.Multics

By Telephone:
HVN 261-9314 or (617)-492-9314

the
this
data
this

Multics Project internal working documentation.
distributed outside the Multics Project.

Not to be

01/20/81 page 1

MTB-489

2. OBJECTI.Y.E.S.

It is curious that Multics, arguably the earliest commercial
interactive computer system, has no facility to measure end-user
response time, the single most important performance measure for
an interactive system. The traffic controller maintains an
average "response time", but this is merely an eligibility queue
time. The theory here is that highly interactive users tend to
use interactions with arbitrarily small resource demands, and so
the queue time for memory (eligibility) is an adequate
approximation of computer response time (a term which will be
made more precise later). Observation of this "response time"
for any length of time refutes this theory convincingly. There
are two problems. First, many interactive users call relatively
long-running commands. Second, a "rule of thumb" from queueing
theory is that at high but not excessive loads, the average queue
time for a resource approximates the average service time for
that resource. So the service time for interactions cannot be
discarded in measurement of response time, if accurate
measurement is desired.

This MTB describes a design which meets the following objectives:

o measures response time for each interaction which
approximates the response time seen by the user (except
for delays external to the mainframe)

o accumulates response
interaction type
resources consumed
interaction

time by interaction types, where an
is based on the load-independent
during the processing of that

o measures response time in a manner
user-ring

independent of

page 2 01/20/81

MTB-489

3. DEFINITIONS

Interaction - the processing caused by the input of a unit
of data by a user at a remote terminal. The definition
of a unit of data is application dependent. For
command-level and for typical user program interaction,
the unit of data is a line of text. For the Emacs
editor and for similar exotic applications, the unit of
data is less precise. It is the amount of text handed
to user-ring in response to one call to ring-0 tty
modules.

Response Time - for an interaction, the clock time between
the arrival of an interaction at the mainframe and
completion·of processing for that interaction by the
serving process. Specifically excluded from response
time for an interaction is response time being
accumulated for an earlier interaction being served by
the same process (several interactions for the same
process may be in the mainframe at the same time due to
type-ahead).

Queue Time - for an interaction, the clock time between the
arrival of an interaction at the mainframe and the
award of eligibility to the serving process (zero if
the process is eligible), eliminating overlapped time
due to type-ahead as above. This corresponds to the
existing measure "response time".

4. MODEL

The following diagram represents a finite-state automaton which
models the interaction of a single user with Multics:

01/20/81 page 3

page 4

processing for
interaction
completed

+------------------+
Processing

I I
I I

+------------------+

v
I
I
I
I

interaction
received at
mainframe

+------------------+
I
I

l Thinking
I
I

+------------------+

MTB-489

01/20/81

MTB-489

This is a relatively simple, but nonetheless useful model. A
user is either processing (that is, the user's process is
demanding resources in response to a previously entered
interaction) or thinking (idle between interactions). Of course,
all of this is with the perspective of the mainframe, so that
delays external to the mainframe (e.g., communications delays)
are represented as thinking. Although type-ahead does not appear
explicitly, it can be incorporated fairly easily, as hinted
above. Specifically, an interaction which has been "typed ahead"
and is queued at the mainframe is viewed as not having arrived.
When the current interaction is completed, it is immediately
available (i.e., the "think" time between the two interactions is
zero).

The importance of this model in the present context is that it
allows a fairly simple interpretation of response time for an
interaction. It is simply the amount of time the interaction
spends in the "Processing" state of the finite-state automaton.
If this model could be implemented into Multics, and the
instantaneous state of each process tracked according to the
model, then response time could be derived easily.
Unfortunately, the model is a bit too simple to be useful in
terms of the objectives defined above. However, some relatively
minor extensions to the model make it useful in this context.
The revised model is represented as follows:

01/20/81 page 5

+------------------+ I
I

I Processing
I
I I

+------------------+
call ring-0 tty 11 "

MTB-489

for next interaction I I return from ring-0 tty with
V I interaction

award eligibility
+-------------->
I
I

+------------------+
Queued

I
I
I
I
I

I I

+------------------+

+------------------+ I
I
I
I
I

Other
I I

+------------------+ I
I

I block
I
I

v
I
I
I
I

non-tty wakeup

I +------------------+ I I
I I

+----------: Blocked
tty wakeup I

+------------------+

page 6 01/20/81

MTB-489

The "Other" state was introduced to handle interactions which
block themselves for other than terminal input. For such
interactions, it is not appropriate to include the delay time
(i.e., the time spent blocked) in the response time. It is also
likely that such interactions are not very "interactive" in an
intuitive sense (a common reason for blocking is to await
completion of a tape I/O).

There is an added complication because of the implementation of
blocking in the traffic controller. Specifically, a process does
not block itself for anything in particular (at least, not from
the traffic controller's point of view). It merely blocks
itself, which causes it to remain inactive (ineligible) until
some external event occurs (typically a wakeup). There is no
necessary relationship between the reason the process blocked
itself and the event which caused it to be awakened. A further
complication is introduced by the protocols for receiving tty
input. When a user-ring process calls the ring-0 tty routines
for input, protocol is for the process to block itself in user
ring if no input was returned.

Because of all of this, it is not possible to know in ring-0 at
the time a process blocks itself whether it is awaiting terminal
input. This determination can be made when the process is
awakened, as the source of the wakeup request is known. If the
wakeup was sent by ring-0 tty routines because of input
available, it can be assumed safely that the process is awaiting
terminal input. This assumption is safe, since the wakeup will
be sent only if the process had previously called ring-0 tty for
terminal input, and none was available. The point of this
discussion is that the model in the last diagram is not strictly
a finite-state automaton, since state changes do not depend only
on the current state and the transition. Other than for
theoretical tidiness, this concern is not especially important.

The utility of the model pictured above is that all of the
transitions depicted correspond to well-defined events in
ring-0. These events are as follows:

award eligibility - the event of the same name in pxss

call ring-0 tty for next interaction - call tty_read through
hes_

return from ring-0 tty with next interaction - return from
tty~read with a non-zero count of characters returned

block - routine in pxss with the same name

tty wakeup - call to pxss from the ring-0 tty routines upon
receipt of input for a process for which the last call
to ring-0 tty returned no characters of input

01/20/81 page 7

MTB-489

other wakeup - call to pxss to wakeup a process, other than
for a tty wakeup

The basic implementation of the model is quite simple. The state
of each process is maintained in some convenient per-process
location. This state is maintained according to the model by
some central routine. Subroutine calls to this routine are
placed in ring-0 modules at locations corresponding to the above
transitions. Upon change of state, the routine computes the time
spent in the previous state, and meters appropriately. According
to the above definitions, queue time is the time spent in the
"Queued" state. "Think" time is the time spent in the "Blocked"
state, provided that the transition which causes the process to
leave that state is "tty wakeup". "Processing" time is the time
spent in the "Processing" state. Finally, "Response" time is the
sum of "Queue" time and "Processing" time.

5. DETAILED IMPLEMENTATION

5.1. New Data.Cells

The following cells will be added to the apte:

current_response_state - a number indicating the current
state of the finite-state machine described above which
represents the process.

last_response_state_time - the value of the real-time clock
the last time the state of the finite-state machine
changed.

number_processing - the number of times the process has
entered the "Processing" state

total_processing_time - the total clock time spent in th~
"Processing" state

The following cells will be added to the wcte:

number_thinks - the number of times any process in this work
class entered the pseudo-state "Thinking"

number_queues - the number of times any process in this work
class entered the "Queued" state

page 8 01/20/81

MTB-489

total_think_time - the total amount of time any process in
this work class spent "Thinking"

total_queue_time - the total amount of time any process in
this work class spent in the "Queued" state

number processing - an array of number of times a process in
this work class entered the "Processing" state. This
array corresponds to the array "vcpu response bounds"
in tc_data (described below).

total processing_time - an array of
processes in this work class in

total time spent by
the "Processing" state.

This array corresponds to the array
"vcpu response_bounds" in tc_data (described below).

total vcpu time - an array of virtual cpu time spent by
processes in this work class in the "Processing" state.
This array corresponds to the array
"vcpu response_bounds" in tc_data (described below).

The following cells will be added to tc_data:

vcpu_response_bounds an array of virtual cpu times,
increasing in value, which define the boundaries of
virtual cpu times for various response classes. By
means of this array and the corresponding arrays in the
wcte, response time will be accumulated for various
response classes. Intuitively, interactions with
virtual cpu times below that in the first element of
the array can be considered "trivial"; interactions
with cirtual cpu times larger than that in the last
element of the array can be considered "heavy".

vcpu response bounds_size - the number of
vcpu response bounds array (needed
which uses this array is in ALM).

elements in the
since the program

meter response time_calls - the total number of calls to the
routine meter_response_time

meter response_time_overhead - the total cpu time spent in
the routine meter_response_time

meter response_time_invalid
meter_response_time with
requests

01/20/81

the number
invalid

of calls to
state/transition

page 9

MTB-489

5.2, meter response~ime

meter~response_time is an ALM program, bound into the same wired
segment as pxss, which maintains the finite-state machine
described above, and accumulates the metering information into
apte's and wcte's. This program is in ALM since it must run
inhibited (so that the clock values it uses make sense), and
since it must be called during critical pxss processing.

meter_response_time is called wfth two arguments at the tim€ of a
state transition. The first argument is a number identifying the
transition (valid transitions will be described in an include
file). The second is the process-id. Using an internal table,
the state of the target process is updated. If appropriate, the
counts and times described above in the apte and wcte are
updated. If the processid is invalid, no action is accomplished,
but no error message is returned (since this is a
highly-non-critical function of no particular interest to the
calling program). A "side-door" is provided for pxss wherein the
arguments are passed in registers, and the normal
"entry/getlp/return" sequence is bypassed. Again, the point in
pxss when meter_response~time is called is in a critical
processing section.

The internal table used by meter~response~time is pictured as
follows:

page 10 01/20/81

MTB-489

TABLE DESCRIBING RESPONSE TIME TRANSITIONS

State

Initial (I)

Blocked (B)

Queued (Q)

Other (O)

Transitions

1 2 3 4 5 6
+---+---+---+---+---+---+
I I I I I P I I I I I Q I
+---+---+---+---+---+---+
IIIIIIIIIOIQI
+---+---+---+---+---+---+
IOIIIIIIIQIII
+---+---+---+---+---+---+
I o I o I P I B I o I o I
+---+---+---+---+---+---+

Processing (P) I P I o I I I B I P I I I
+---+---+---+---+---+---+

Transitions:

1 - Award eligibility

2 - Call ring-0 tty for next interaction

3 - Return from ring-0 tty with next interaction

01/20/81

4 - Block

5 - Non-tty wakeup

6 - Tty wakeup.

page 11

MTB-489

The Initial state is the state of the process at process creation
and after any invalid state/transition request. Any transition
which causes the state of the finite-state machine to change to
Initial from anything other than Initial is metered as an error.

