
Multics Technical Bulletin MTB-488

To: Distribution

From: John J. Bongiovanni

Date: 01/20/81

Subject: CPU Time Accounting

1. INTRODUCTION

The intent of this MTB is to describe a method for measuring CPU
time consumed under the aegis of a Multics process and for
attributing this CPU time to appropriate categories. Examples of
the latter include virtual CPU time, system overhead time for
handling interrupts, etc. The motivation for developing this
method is to improve the accuracy of per-process timers.
However, only CPU time measuring and accounting will be discussed
in this MTB. Full support of more accurate per-process timers
will be the subject of a separate MTB. Following some
definitions, the current method of measuring and accounting for
CPU time on Multics will be described, and the limitations of
this method will be discussed. Then the proposed design will be
discussed in some detail.

Send comments by one of the following means:

By Extended Mail Facility, on MIT or System M:
Bongiovanni.Multics

By Telephone:
HVN 261-9314 or (617)-492-9314

Multics Project internal working documentation.
distributed outside the Multics Project.

01/20/81

Not to be

page 1

I
I

MTB-488

2. DEFINITIONS

Total CPU Time - the amount of time during which a process
is executing instructions on any processor (including
DIS instructions). This time includes the following
for a process:

o time executing in user ring

o time executing ring-0 routines called explicitly
by the user process

o time executing ring-0 routines called implicitly
by the user process (e.g., page faults, segment
faults, etc.)

o time executing system overhead
the address space of this
handling interrupts and connect
control processing, etc.)

functions
process

faults,

under
(e.g.,

traffic

Note that during any period of time, the length of that
period multiplied by the number of processors
configured is equal to the sum of total cpu time
accrued by all processes active during the period.
System idle time is a subset of the total CPU time
accrued by the idle processes. Note also that the
total CPU time accrued by a given process accomplishing
a fixed task is dependent on the load of the system and
its configuration (hardware and software).

Virtual CPU Time - the time a process spends executing
instructions satisfying explicit requests of user-ring.
This time includes the following:

o time executing in user ring

o time executing ring-0 routines called explicitly
by the user process

Virtual CPU time is intended to be a repeatable measure
of user CPU demand which is independent of system load
and configuration (other than the speed of the CPU
configured).

Overhead CPU Time - the time any process spends executing
instructions satisfying explicit requests of a specific
system overhead routine or set of routines (e.g., page
fault processing, interrupt processing, etc.). This
time is somewhat analogous to virtual CPU time in that
it does not include the time spent in lower-level

page 2 01/20/81

,.... MTB-488

routines called implicitly or asynchronously. For
example, the overhead CPU time for handling segment
faults does not include any CPU time spent handling
page faults encountered while handling segment faults,
and it does not include any CPU time spent handling
interrupts while the interrupted process was handling a
segment fault.

3. CURRENT CPU TIME ACCOUNTING

A process running on a CPU is accumulating total CPU time at a
rate equal to the speed of the real-time clock in the bootload
SCU. A value is stored in pds$cpu~time which, when subtracted
from the current value of the real-time clock, yields the total
CPU time of the process. When a process is not running on any
CPU, it cannot be accumulating total CPU time (or, for that
matter, any kind of CPU time). In this case, the locally
constant value of total CPU time for the process is stored in the
apte. So far, quite reasonable.

The decomposition of this time in virtual CPU time and various
overhead CPU times is not so clean. When a process is running on
a CPU, it is accumulating virtual CPU time at a rate equal to the
speed of the real-time clock. pds$virtual_delta contains all of
the known non-virtual CPU time accumulated so far. So virtual
CPU time is computed (for a running process) by first subtracting
pds$cpu_time from the current value of the real-time clock
(yielding the total CPU time for the process), and then
subtracting the value of pds$virtual delta. pds$virtual_delta is
updated discretely, at the end of an overhead function (e.g.,
page fault processing stores the total virtual CPU time for the
process when it is invoked, subtracts this value from the total
virtual CPU time for the process when it is finished, and then
updates pds$virtual_delta to reflect the additional overhead).

This has the curious and undesirable effect that virtual cpu time
for a process, when sampled over sufficiently small intervals,
appears to run backwards. An undesirable result of this effect
is that per-process CPU timers can (and do) go off early, and can
be noticed in user-ring as having gone off early. Since no CPU
time spent in user-ring can be overhead time of any sort, time
(fortunately) does not appear to run backwards in user-ring.

An obvious adjustment to reduce the effect of virtual CPU time
running backwards is to update pds$virtual_delta more frequently
(at a minimum, immediately before the traffic controller decides

01/20/81 page 3

MTB-488

whether to set off a CPU timer). This will not work because of
an interesting aspect of fault processing. This is illustrated
by segment fault processing, which is usually considered as
load-dependent overhead and not charged as virtual CPU time to
the faulting process. However, if there was an error encountered
in processing a segment fault (say, access to the segment has
been revoked to the faulting process), the CPU time spent
handling the segment fault is not considered as overhead, and it
is charged as virtual CPU time to the process. This is an
exceptionally reasonable practice, and it applies to some other
types of faults as well (e.g., boundfaults). However, this
practice has the effect that it is not known how to charge
segment fault processing time until that processing is completed.

A minor problem with the present method of CPU time accounting is
related to the exceptionally limited implementation of overhead
time accounting in the fault processor, in which recursive
overhead is restricted severely. As a result, the time spent
processing a timer runout or connect fault (for example) will be
accounted for differently, depending on whether the fault occured
during the processing of a page fault. This anomaly probably has
no measurable effect in practice.

4. PROPOSED.CPU.TIME ACCOUNT1ll.G.

The model embodied in the design is as follows. A process in
ring-0 is running (at any time) a nested set of overhead routines
(e.g., from top to bottom, connect fauit,· pige fault, segment
fault, initiate). Only the overhead routine currently running
(the lowest-level routine) is accumulating CPU time; the CPU time
accumulated by higher-level routines is frozen at the value when
the lower-level routine was invoked. At· the completion of an
overhead routine, the time accumulated by it may or may not be
propagated to the next higher level. The highest level
corresponds to virtual CPU time.

The implementation is as follows. pds$cpu_time_stack is an array
(O:N, where N is sufficiently large to handle recursion--7 should
be enough) which implements a stack of CPU times.
pds$cpu_time_frame contains the index of the current frame, with
0 the index of the frame corresponding to virtual CPU time. When
a process is running on a CPU, the CPU time accumulated by the
routines owning the current stack frame is defined as the current
value of the real-time clock minus the value of
pds$running_clock_base. The CPU time accumulated by routines
owning other stack frames is defined as the value of

page 4 01/20/81

MTB-488

'
pds$cpu~time_stack (level), where level is the index of the stack
frame owned by the subject routines. In particular, virtual CPU
time is defined as

clock - pds$running~clock_base if the process is running
and if pds$cpu~time_frame = 0.

'
pds$cpu~time~stack (O)' if the process is running

and if pds$cpu_time~frame " o. =

All cells in the pds defined above must reside in the wired
portion of the pds.

The following ring-0 wired subroutines will be provided to
manipulate the stack. . By· convention, only these routines wil 1
manipulate the stack.

cpu_time~manager$push - pushes another frame onto the stack,
clears the cell represented by this frame to zero, and
adjusts pds$running_clock_base.

cpu~time_manager$pop - pops a frame from the stack, adjusts
pds$running_clock~base, and returns to the caller the
CPU time accumulated while running on the popped frame.

cpu~time_manager$pop_and_propagate - pops a frame from the
stack, adjusts pds$running_clock_base, adds the CPU
time accumulated while running on the popped frame to
that accumulated while running on the (now) current
frame, and returns to the caller the CPU time
accumulated while running on the popped frame.

cpu_time~manager$usage - returns to the caller the CPU time
accumulated while running on the current frame.

T~e cpu_time_manager will perform all operations using inhibited
code, to ·ensure the integrity of those operations. It is the
responsibility of the caller to update any cells reflecting
overhead time, as appropriate (e.g., the segment fault processing
routines will upd~te ss.t$cpu_sf_time, as they do presently).

A number or error conditions can occur, all of which indicate
programming errors in ring-0. Correspondingly, all of these
errors, when encountered, will result in a system crash. These
errors include stack overflow and underflow. Additionally, the
stack level should always be zero when running in other than
ring-0. The ring alarm register will be used to trap violations
of this principle.

The following is a summary of the benefits of the proposed method
of CPU time accounting, compared to the present method:·

01/20/81 page 5

o Metering of overhead time is more precise.

o All measured times are monotonic with
they run forwards). Unfortunately,
subject to quantum jumps.

real time
times are

MTB-488

(i.e.'
still

o CPU time measurement and attribution is centralized in a
single routine. This will greatly assist in improving the
accuracy of per-process timers. For example, when quantum
jumps in virtual CPU time occur, the traffic controller
can be called to check for expired timers.

o Accounting for CPU time by fault processing is much
cleaner and more understandable.

5. OBSOLETE CELLS

The following cells in the pds will become obsolete with
implementation of this design:

o cpu_time

o virtual.._delta

o virtual.._time.._at.._eligibility

o temp.._ 1

o temp.._2

o time..._1

o time_v.._temp

o fim.._v.._temp

o fim..._v.._del ta

