
~ultics Technical Bulletin

From: Eric Bush

To: MTB Distribution

Date: November q, 1980

MTl3-LH>9
Revision 1

Subject:
assembler

Multiple instruction sets (decors) for the ALM

This MTB describes a new feature of the ALM assembler that
will enable it to ~enerate code for any of several incompatible
machines, and to verify that a user's program is compatible with
the machine and mode(e~., non-privile~ed, privileged, hyper)for
which it is intended. In particular, it describes the operation
and assumptions of·a1m table tool, a program that allows the ALM
maintainer to automatic~lly iiplement additions, delet~ons, or
chanRes to the universe of instruction sets currently recognizd
by ALM. .

DECORS:

The problem of roultiple instruction sets is not simply one
of multiple machines. Among the instructions valid on a siven
machine are certain subsets that can only be executed when
special conditions obtain. For example; on the Orion processor,
programs runnine in rings > 0 cannot execute priviieged
instructions, and pro~rams not in hyper mode cannot execute hyper
instructions. The smallest unit of program/machine
compatibility, however, is not "machine X in mode Y" either,
because programs that choose their instructions carefully can run
on any machine·in any' mode.

Thus we choose as the basic unit of program/machine
compatibility the "decor'', which we de~ine as a subset of the set
of all i~structions available on any machine that we support. A
single decor mqy thus contain instructions spanning several
machines. Decors may be defined simply by enumerating
instructions from this superset. Presumably, though, the useful
decors will be those specifyin~ the valid instructions for a
given machine and mode. A proRram is comnatibile with a decor if
all of the instructions that it uses are members of that decor.

l·;ultics P .. roject internril ,,,orking docurr.er:tation. Not to
reproduced or distributed outside the Multics Project.

be

Hultiple Instruction Sets -1- 11/04/oO

~'.TB-469 Revision 1 11/04/80

At this writing the assembler has been coded to recognize
six decors:

1) The set of non-nrivilegcd instruction available
L68, 6180, and DPS8 machines.

2) The privileged and non-privileged instructions
L6B and 6180.

3) The privile~ed and non-privileged instructions
DPS8.

4) The non-privile~ed instrµctions on ORION.
5) The privileRed and non-privileged ORIONs.
6) The instructions available' in ORION hyber-u:ode.

on

on

on

The asse~bler can be autometically recoded to accept any
desired partitioninp; of the total instruption set into decors by
the use of alm table tool, a special utility program to be
described below. -Future p,enerations can cut up the universe
differently, as new processors and mode~ co~e along, or as they
realize this not to be the best partitionin~, by usin~ this tool.

USER VISIBLE FEATURES:

Each ALM progra~ will be considered to be written for a
p~rticular decor. The user will co~municate his/her intended
decor to the asserr.bler by the use of the "decor" pseudo op. It
will take one operand: the name of the decor. The current-operand
names are:

1) L68,6180,DPS8
2) L68p,6180p
3) DPS8pn
4) ORION
5) ORIONp
6) ORIONh

The assembler can be automatically recoded to accept different
naMes by using alm table tool (see below). This is particularly
important for the lTQRION-problern" (see below).

Since, unlike a compiler, the assembler must ~enerate exactly
the machine instructions specified by the user, its rnana~ement of
multiple decors is limited to ~etermining that the instructions
written oy the user are compatible with the soecified decor. Any
incomoatibility sustains a 11 8 11 error. Since the user can force
transiation simply by changin~ the operand, the assembler
~uaratees only that the decor of the program is oroperly
documented (via the operand), not that it will run.

If no decor pseudo op is specified, then the assembler will
assume the first decor:-Lb8/61~0/DPS8 non_privile~ed.

11/04/80 -2~ ~ultiple Jnstruction Sets l

11/04/~0

IMPLE~ENTATION STHATEGY:

MTB-4b9
Revision 1

The predecessor of decors, the distinction between GE b45
and b180 instruction sets, was coded in the last 4 bits of
instruction description words in a table in oplook .alm. The.
present implementation uses these 4 bits to represent the unique
intersections of available decors. We call these decor classes.
Decor class ~' for instance, currently designates the
intersection of ORION, ORIONp, and ORIONh decors. Thus all the
instructions that are unique to an Orion processor have decor
class 2. (In general, one should expect that N decors will yield
at least N unique intersections. Thus if future maintainers find
themselves approachin~ 16 decors they should consider expanding
this field).

~hen the assembler is first invoked, it initializes a decor
variable to zero~ If the decor nseudo op is specified by the
user, it is picked up in pass 1 and the decor variable is set to
a value greater than zero corresoondinf to the operand ~iven. In
pass 2, as each instruction is processed, its decor class is used
as a row index, and the current value of the decor variable as a
column index, into a bit table which tells which classes are
compatible with which decors.

ALM TABLE TOOL:

This section describes the operation and current assumptions
of plm_table_tool, a utility pro~ram bound into bound alm •

Alm table tool takes as input two include files~ a table of
instruc~ions X decors (DECOR TABLE.incl.pll) and a list of opcode
defining ALM macro~ (defo~s.incl.alm) from oplook .alrn, and
produces as output a new version of defops.incl.alm and two
external static data ,tructures: one of the bit table referred to
above, and the other of an operand name table used to assiP,n
numeric code~ to the operands. The bit table is referenced by
pass2 .pl1 and the name table by pass1 .pll. AlM table tool
determines the unique intersections of decors from the table of
instructions X decors, assiRns them numbers, codes these numbers
into the ALM macros for each instruction, determines the numeric
code for each operand to the decor pseudo op, and determines the
dimensions and bit pattern of the resul~ant decor class X decor
table.

'Multiple Instruction Sets ~3- 11/04/80

LTb-4b9 Revision 1 11/04/(50

Alrn_table_tool is currently irnplernented as a corr.raand.

Usage: alm table tool PATHl PATH2

where PATH1 is DECOR TABLE.incl.pll
and

PAT!!2 is defops.incl.alm

The table of instructions X d~cors and the list of defop
macros must conform to certain standards to be accepted by
alm table tool. Since there are already current vetsions of
both, one-simple way to avoid r11nninf{ afoul of these standards is
t~ make changes to the existing versions consistent with their
current form. At this wri'tinP:, the instruc.tions X decors table
is a huge PL1 comment in alm tabl~ tool itself. The defop macros
are part of oplook .alm's soiirce c~d~ (via include file).

Assumptions about instructions/decor table:

A piece of the table appears in appendix A.
Alm table tool assumes that the table consists of two parts, the
first preceded by the keyword ''t:M:F.S:" and the second preced'ed by
the keyword ''TABLE:". It ass11'.nes that·. the names section consists
of a series of definitions separated by whitespace. Each
d~finition consists of a dummy name (any character string except
"table") followed immediately by a colon, and a series of
synonyms (separated by whitespace and terrninated by a semicolon).
In the table section, there must be one column for each dummy
n~me in the names section, headed by that dummy name.
Alm table tool uses the dumny names only to coordinate synonyms
with table columns. Any narne that is to be used as an operand to
t·he decor pseudo-opshould be included as a syr.onym to so!Tle dummy
name in the names sectio~. Alm table tool assumes that there is
a 11 : 11 delimiter between each column header and one after the last
header. It assumes the
"---" boundary follows.
For each row, it assumes a "l" delimiter after the instruction
name, one between each row/column intersection, and one at the
end of the row. (Just the kind of thin~ you'd expect). If a
given instruction is not in a r.:iven decor, then whitespace should
appear at the intersection of the instruction's row and decor's
column on the table, otherwise an "X" should appear
(alm table tool will also accept "x"). Alm table tool assumes
that-a row-terminates with a ne~·' line character.

Assumptions about defo~s:

macro,
list,

Alm table tool rissur:1es that "defop" is the name of the
that t~ere are no spaces b~twe~n members of the operand
and that the last operand of every defop denotes decor

1 l/O!l/30 -4~ H~ltiple Instruction Sets I

·-

-

11/04/HO l·iTB-469
Revision 1

class. If one finds it desiratle to alter any of these features
of the macro, one should also alter alm table tool to handle the
change. Alm table tool also ~ssu~es thaI the -defop segment it
receives as Tnput nas nothin~ else but defop macros in it.

Alm table tool's output:

Alm table tool writes new versions of defops.incl.alm,
alm_data1, ana alrn_data2 in the workinP. directory. Oplook .alm
must be reassembled to incorporate the new defop ma~ros.
Alm data1 and alm data2, which are referenced by passl .pl1 and
pas~2 .pl1 resoe~tively, need merely be replaced in boijnd alm by
the new versions. Pass1 .Dl1 and pass2 .pl1 need not be
recompiled. -

THE "OIUO!J PHOBLEM 11 :

The 11 0IHON problem" is the fol lowin!1;. We are now in the
process of writing software for a processor which we temporarily
call OttlON. At some point in the future, ORION hardware will
acquire its "real" narne (11 Fred", let us say). 11 Fred 11 is perhaps
the only name by which many of our users will know this hardware.
A decor named 11 or: I(Jt.1" is t t1us rr.ean i np. less to them. r:hen 11 Fred 11

comes alon~, we will need to provide our users with FRED, FHEDp,
and FREDh operands to the decor pseudo op. We, however, who must
write code for FhED processors now, have to use the only name we
have now viz, 11 0RION 11 • How do we avoid the seeming (error prone)
necessity of finding and rewriting all of our "ORI0:.1 code" when
we officially canonize the f~EC operands?

The answer is to keec our ORION operands, but add three
synonyms for them at FkED-tir:ie. The asserr1bler will then accept
either ORION or FRED. This redund2ncy can be accomplished merely
by adding FRED, FkEDp, and FHEDh as respective synonyms in the
names section.

~ultiple Instructio~ Sets -5- 11/04/80

MTB-46'.J
Revision 1

/.*

TABL!'.::

A: L§8 6180 DPS8;
B: L~8p 6180p;
C: OR ION;
D: oRio'.Np;
E: ORIOl!h;
F: VPSSp;

I A I B I c I D I ~ I f" I
I I I . . I I •· ! I

a4bd
a4bdx
a6bd
c;6bux
a9bd
a<)bdx
aar
aarO
aar1
aar2
a.ar3
aar4
aar5

J 1/.Q4/8.0

x
x
x
'f.
x
x
x
x
x
x
x
x
x

A -• • ~' •• ' '• ,,_, •

x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
¥
x
x
x
x

x
x
x
;<
x
.x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x

11/04/dO

MuitJpl~ IpBtruction Sets

