¥ultiecs Technical Bulletin MTQ-QO9
Revision 1

From: Eric Bush

To: MTB Distribution

Date: November 4, 1980

Subject: Multiple instruction sets (decors) for the ALM
assemtler

This MIB describes a new teature ot the ALM assembler that
will enable it to fenerate code tor any of several incompatible
machines, and to verify that a user's program is compatible with
the machine and mode(eg., non-privileced, privileged, hyper)tor
which it is intended. In particular, it describes the operation
and eassumptions of alm table tool, a program that allows the ALM
maintainer to automatically implement additions, deletions, or

changes to the universe of instruction sets currently recognizd
by ALM,

LECORS:

The problem of multiple instruction sets is not simply one
of multiple machines. Among the instructions valid on a given
machine are certain subsets that c¢an only be executed when
special conditions obtain, For example, on the Orion processor,

programs running in rings > 0 cannot execute privileged
instructions, and programs not in hyper mode cannot execute hyper
instructions. The smallest unit of program/machine
compatibility, however, is not '"machine X in mode Y" either,

because programs that choose their instructions carefully can run
on any machine in any mode.

Thus we choose as the basic unit of program/machine
compatibility the "decor', which we defiine as a subset of the set
of all instructions available on any machine that we support. A
single decor may thus <contain instructions spanning several
machines. Decors may be defined simply by enumerating
instructions from this superset. Presumably, though, the useful
decors will be those specifying the valid instructions for a
given machine and mode. A program is compatibile with a decor if
all of the instructions that it uses are members of that decor.

Multics Project internal working documentation. HNot to be
reproduced or distributea outside the Multics Project.

Multiple Instruction Sets -1- 11/04/50

FTB-469Y Revision 1 11/C4/80

) At this writing the sssembler has been coded to recognize
six decors:

‘ 1) The set of non-vnrivileged instruction available on
L68&, 6160, and DPS8 machines.

. 2) The privileged and non-privileged instructions on
LL6& and 6180.

3) The privileged and non-privileged instructions on
DPS8.

4) The non-privileced instructions on ORION.

5) The privileged and non-privileged ORIONS.

6) The instructions available in ORION hyber-mode.

The assembler can be automzsticzlly recoded to accept any
desired partitioning of the total instruction set into decors by

the wuse of alm table tool, a special wutility profram to te
described below. Future generations can cut wup the universe
differently, as new processors and moces come along, or as they

realize this not to be the best partitioning, by using this tool.

USER VISIBLE FEATURES:

Each ALM proeram will be considered to be written for a
particular decor. The wuser will communicate his/her intended
decor to the assembler by the uses of the ‘'"decor" pseudo op. It
will take one operand: the name of the decor. The current operand
names are:

L68,6180,0PSE
L68p,6180p
DPS8pn

ORION

ORIOND

ORIOMNK

OV =W N -
N s N s e

The assembler can be automatically recoded to accept different
names by using alm table tool (see below). This 1is particularly
important for the "OKION problem" (see below).

Since, wunlike a compiler, the assemtler nust generate exactly
the machine instructions specified by the user, its management of
multiple decors is limited to determining that the 1instructions
written vy the user are compatible with the specified decor. Any
incompatibility sustains a "B" error. Since the user can force
translation simply by changine the operand, the assembler
puaratees only that the deccr of the programn 1s oroperly
documented (via the operand), not that it will run.

If no decor pseudo op is specified, then the assembler will
assume the first decor: L68/6180/DPS8 non privileced.

11/068/80 -2- multiple Instruction Sets

11/64/80 MTE-4b9
Revision 1

IMPLEMENTATION STRATEGY:

The predecessor of decors, the distinction between GE 645
and 6180 instruction sets, was coded in the 1last 4 bits of
instruction description words in a table in oplook .alm. The
present implementation uses these 4 bits to represent the unique
intersections of available decors. We call these decor classes.
Decor <class ¢, for instance, currently designates the
intersection of ORION, CRIONp, and ORIOKh decors. Thus all the
instructions that are unique to an Orion processor have decor
class 2. (In peneral, one should expect that ! decors will yield
at least ¥ unique intersections. Thus if future maintainers find

themselves approaching 16 decors they should consider expanding
this field).

wWhen the assembler is first invoked, it initializes a decor
variable to zero. If the decor nseudo op is specified by the
user, it is picked up in pass 1 and the decor variable is set to
a value greater than zero corresvponding to the operand given. In
pass 2, as each instruction is processed, its decor class is used
as a row index, and the current value of the decor variable as a
colunn index, into a bit table which tells which classes are
compatible with which decors.

ALM_TABLE_TOOL:

This section describes the operation and current assumptions
of alm _table tool, a utility program bound into bound_alm_ .

Alm table tool takes as input two include files, a table of
instructions X decors (DECCR TABLE.inecl.pl?l1) and a list of opcode
defining ALM macros (defops.incl.alm) from oplook .2lm, and
produces as output a new version of defops.incl.alm and two
external static data structures: one of the bit table referred to
above, and the other of an operand name table used to assign
numeric codes to the operands. The bit table is referenced by
pass2 .pll1l and the name table by passl .pl1. Alm table tool
determines the unique intersections of decors from the table of
instructions X decors, assigns them numbers, codes these numbers
into the ALM macros for each instruction, determines the numeric
code for each operand to the decor pseuco op, and determines the

dimensions and bit pattern ot the resultant decor class X decor
table.

‘Multiple Instruction Sets -3- 11/04/80

"TE-469 Revision 1 ‘ ' 11704750 L
Alm table tool is currently implemented as a comuand.
Usage: alm _table tool PATH1 PATH2
where PATH1 is DECOR_TABLE.incl.pl?
and . :
PATH2 is defops.incl.alm .
The. teble of instructions X decors and the 1list of detop
macros must <conform to certain standards to be accepted by
alm table tool. Since there are already . current. versions of
A piece of the tatle appears in appendix A.

both, one simple way to avoid runnine afoul of these standards is
to make changes to the existing versions consistent with their
current form. At this writine, the instructions X decors table
is a huge PL1 comment in alm table tool itself. The defop macros
are part of oplook .alu's source code (via include file).
Assumptions about instructions/decor table:
Alm table tool assumes that the table consists of two parts, the
first preceded by the keyword "LAMES:" and the second preceded by
the keyword "TABLE:", It assumes that the names section consists
of a series of definitions separated by whitespace. Each
definition consists of a dummy name (any character string except
"table") followed immediately by a colon, and a series of
synonyms (separated by whitespace and terminated by a semicolon).
In the table section, there must be one column for each dunmny
name in the names section, headed by that dummy nane.
Alm table tool uses the dummy. names only to coordinate synonvams
with table columns. Any name that is to be used as an operand to

the decor pseudo-opshould be incluced as a2 syronym to some dumnmy
name in the names section. Alm table tool assumes that there is

a """ delimiter between each column header and one after the last
header. It assumes ' the
B ittt et * boundary follows.
For each row, it assumes a "|" delimiter after the instruction
name, one between each rowu/column intersection, and one at the
end of the row. (Just the kind of thing you'd expect). 1If a

given instruction is not in a given decor, then whitespace should
appear at the intersection of the instruction's row and decor's
column on the table, otherwise an X" should appear
(alm table tool will also accept "x"). Alm_table_tool assumes
that a row terminates with a new line character.

Assumptions about defops:
Alm table tool assumes that "défop" is the name of the

macro, that there are no spaces between members of the operand _J\
list, and that the 1last operand of every defop denotes decor

11/04/30 oy Multiple Instruction Sets

(Y

)

11/04/KC MTBE-469
Revision

class. If one finds it desiratle to alter any of these features
of the macro, one should also zlter alm table tocol to handle the
change., Alm table tool also =ssumes that the defop segment it
receives as Input has nothing else but defop macros in it.

Alm_table_tool's output:

Alm table tool writes new versions of defops.incl.alm,
alm datal, and alm data?2 in the working directory. Oplook .alm
must be reassembled to 1incorporate the new defop macros.
Alm datal and alm data2, which are referenced by passl .pll and
pasE2_.p11 respectively, need merely be replaced in bound alm by

the new versions. Pass1 _.rl1 and pass2_.pll need not be
recompiled. ’

THE "OR1ON PKOBLEM":

The "QKIOH problem” is the following. We are now in the
process of writing sof'tware for a processor which we temporarily
call ORION. At some point in the future, OKION hardware will
scquire its "real" name ('Frec", let us say). “Fred" 1is perhaps
the only name by which many of our users will know this hardware.
A decor named "ORION"™ is thus mezningless to them. When “Fred"
comes along, we will need to provicde our users with FKED, FEHKEDp,
and FRELh operands to the decor pseudo op. We, however, who must
write code for FHRED processors now, have to use the only name we
have now viz, "ORION". How 0 we avoid the seeming (error prone)
necessity of finding and rewriting all ot our "ORION code" when
we officially canonize the FREL operands?

The answer 1is to keer our CRION ovnerands, but add three
synonyms for them at FkED-time. The assembler will then accept
either ORION or FRED. This redundency can be accomplished merely

by adding FRED, FKEDp, and FKEDh as respective synonyms in the
names section.

Multiple Instruction Sets -5 11/0C4/80

11704730

APPYLDIX A

MTE-46Y

Revision 1

A

NANES:

/F

.
14

-
?
»
?

L65 6180 DPS&:
Lbo&p 6180p

GKION;
ORIONP

: ORIOMUh;
F: DPS8p

b:
C:
D

E:

TABLE:

e e aw - TS A e e R . S e M e M W R W S W s P iee e e G ——

albd
allbdx
abbd
=5bdx
a9bd

i A i I R e R a B e e

Dok D D DG G 1 D 52 DL 3K VG K >

P b I S e T e e T

b i S i T s T I

aybdx
aar

gar(
aari

aar2
asrsy
aard
aars

Multiple Instruction Sets

=6-

11/04/80

