
. ·•

Multics Technical Bulletin MTB-464

To: Distribution

From: Steve Herbst

Subject: New value interfaces

Date: 010/23/80

This MTB proposes a set of command, active function, and
subroutine interfaces based on the existing value command. They
allow users at command level, exec_com's, and programs to
reference value segments containing name-value pairs. The names
are character strings, and the values can be any data type,
converted to any other.

The value active function itself, with short name val, is
used to return the value of a name. Commands to define and list
associations, and to switch data bases, have longer names such as
value_set (vs), rather than the currently used entrypoint names
(value$set). The major additions to the existing value facility
are:

1. The ability to maintain perprocess associations that are
not stored in any value segment and disappear when the
process terminates. This feature allows a value segment
to be used as a nonwriteable template containing initial
values, and read by the user's process to define its own
values: value_set -perprocess [value foe -permanent]

In default mode, [value] returns the perprocess value of a
name if one exists; otherwise, it returns the value
stored in the user's default value segment, or a specified
value segment. The explicit reading and setting of
private values is determined by use of the -perprocess
(-pp) eontrol argument to the various value commands, its
opposite being the default -permanent (-perm).

2. A way of specifying a default value (-default)· to be
returned when no value is defined.

3. A way of automatically calling an active function (-call)
to obtain a value to return when no value is defined for a
variable.

4. An update feature (-update, -ud) causes [value_set -ud] to
return the previous value of an association, so that the
caller can push and pop values. The default is for

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-464

[value_set] to return the value that it sets.

I think that having previous values automatically
remembered by a -push and -pop feature is unreliable
because an exec_com A that calls exec_com B cannot know
how many times B has pushed or popped the stack of values.
The proposed interface requires each caller to maintain
its own stack of values.

5. A way of causing value_set to increment or decrement the
current value by an integer, assuming that the value is
the character string representation of an integer.

6. A command to delete associations, value_delete, allows the
user to specify that a name has no defined value. Null
string is allowed as a defined value.

7. The addition of -match and -exclude to value_set,
value_delete, and value_list allows the user to specify
classes of variable names. The implementation of these
control arguments follows the answer command: each takes
a string to be searched for in the variable name; if the
string is surrounded by slashes, it is a qedx regular
expression to match variable names. For example, the
command line "value_set -match /_count$/ Qfl sets all
counts to zero. ..-..

8. A value_set_lock (vsl) command/active function to set the
value of a name by calling set_lock_$lock with the current
process id rather than by simply copying a value. The
active function returns true if the lock was locked within
a specified wait time. This locking feature can be used
by exec_com's to share databases.

9. A set of subroutine interfaces making all the commands'
capabilities available to programs, and additionally
handling various data types. The value_$set and
value_$get entrypoints are called as options (variable)
and convert between the data type of the value argument
and the internal character string representation. Two
more entrypoints value_$set_data and value_$get_data
accept pointers and lengths of uninterpreted regions of
storage, allowing programs to store structure data as
variable values.

The specialized entrypoints named value_$test_and_set and
value_$test_and_set_data set values only if the old value,
or the first N words of the old structure value (for
example, a version number), ~atch a second input value.
These calls are used by a program to make sure that
another program has not been using the same name for its
own associations. ""'

MTB-464

1 010/23/80 value, val
2
3 Syntax as an active function: [val name {-control_args}J
4
5 Syntax as a command: val name {-control_args}
6
7

Page 3

8 Function: returns the character string value of a name, as set by the_
9 value_set (vs) command. If the name has no value and -default or -call

10 is not specified, an error occurs. Values, except for perprocess values
11 C-perprocess), are stored in a value segment with suffix "value"
12 (see "Notes on value segment" below).
13
14
15 Arguments:
16 name
17 is a character string. It can -name STR to specify a name
18 beginning with a minus sign, to distinguish it from a control
19 argument.
20
21
22 Control arguments:
23 -default STR, -df STR
24 specifies a default value to be returned if none is set. The

-25 character string STR must be quoted if it contains blanks or other
,.6 special characters. A null string is returned if STR is "".

27 If this control argument is not specified and no value exists, an
28 error occurs.
29 -pathname PATH, -pn PATH
30 specifies a value segment other than the current default one,
31 without changing the default. See "Notes on value segment" below.
32 -permanent, -perm
33 does not look for a perprocess value. The default is to return the
34 perprocess value if one exists, otherwise return the value stored
35 in the value segment. If none exists, an error occurs.
36 -perprocess, -pp
37 looks only for a perprocess value, not for one stored in any value
38 segment. If a perprocess value is not found, an error occurs.
39 This control argument is incompatible with -pathname.
40 -call AF_STR
41 if no value is set for name, the active string AF_STR is expanded
42 and the value of name is set to be the string's return value.
43 Surrounding brackets must be omitted from AF_STR and the string must
44 be quoted if it contains blanks or other special characters, for
45 example "query What tape'?" or "value las t_da te". If -pe rproce ss is
46 also specified, the value set by -call is a perprocess one. Otherwise,
47 it goes into the value segment.
48
49
50 Access required: r on the value segment, except for perprocess
~1 values. Also, w is required to set a value by -call.

_,2
53

Page 4 MTB-464

54 Notes:
55 Perprocess values are stored in a temporary value segment in the
56 process directory, and disappear when the process terminates.
57
58 By default, both "value name" and "value name -pn PATH" return the
59 perprocess value of name if there is one, otherwise the value stored
60 in the appropriate value segment. By contrast, "value -pp" returns only
61 the perprocess value, and "value -perm" returns only the one in the
62 value segment.
63
64 See the related command/active functions value_defined (vdf), value_set
65 (vs), value_delete (vdl), value_list (vls), value_set_path (vsp), and
66 value_path (vp).
67
68
69 Notes on value segment:
70 The value segment searched is either the one specified by -pathname or
71 the current default value segment. The default segment is initially:
72 [home_dir]>[user narne].value
73 but can be changed by means of the value_set_path (vsp) command and
74 listed by the value_path command/active function. Use of the -pathname
75 contrpl argument does not change the default segment.

MTB-464 ,..
1 010/23/80 value_set, vs
2

Page 5

3 Syntax as an active function: [vs {name} {value_string} {~control_args}]
4
5 Syntax as a command: vs {name} {value_string} {-control_args}
6
7
8 Function: associates a character string name with a character string
9 value. The value replaces any previous value for name. If -perprocess

10 is specified or the old value is a perprocess one, the value set is
11 perprocess (see "Notes" below). Otherwise, the association is stored in
12 a value segment (see "Notes on value segment" below). ·
13
14
15 Arguments:
16 name
17 is a character string. It can be -name STR to specify a name
18 beginning with a minus sign, to distinguish it from a control
19 argument. There is no restriction on the length of the name.
20 value_string
21 is a character string value, quoted if it contains blanks or other
22 special characters. It can be -value STR to specify a value STR that
23 begins with a minus sign, to distinguish it from a control
24 argument. There is no restriction on the length of the value.

,-25
.6
27 Control arguments:
28 -add N
29 adds N to the integer value of each name selected by the other
30 control arguments. If any of the names has no value or has a value
31 that is not the character string representation of an integer, an
32 error occurs. The value of N is allowed to be negative or zero, as
33 can be the resulting value.
34 -exclude STR, -ex STR
35 changes all existing associations except those for names that match
36 STR. The character string STR is searched for in names; if it is
37 surrounded by slashes (/), it is interpreted as a qedx regular
38 expression to match names. Only perprocess associations are changed
39 if -perprocess is specified, only permanent ones if -permanent is
40 specified, and both are changed by default. The -exclude control
41 argument is incompatible with the name argument, but can appear
42 multiple times and in combination with -match (see "Notes" below).
43 Neither -match not -exclude is allowed for the active function.
44 -if VALUE_STR
45 sets the value value_string only if an old value exists and is equal
46 to VALUE_STR, otherwise returns an error. If -match and/or -exclude
47 are also specified, all selected names with current values equal to
48 VALUE_STR are set to value_string.
49 -match STR
50 changes all existing associations for names that match STR. The

~1 character string STR is searched for in names; if it is surrounded
j2 by slashes (/), it is interpreted as a qedx regular expression to
53 match names. Only perprocess associations are changed if -perprocess

Page 6 MTB-464

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

is specified, only permanent ones if -permanent is specified, and
both are changed by default. The -match control argument is
incompatible with the name argument, but can appear multiple times
and in combination with -exclude (see "Notes" below). Neither -match
nor -exclude is allowed for the active function.

-pathname PATH, -pn PATH .
specifies a value segment other than the current default one,
without changing the default. See "Notes on value segment" below.

-permanent, -perm
sets a value in the value segment, regardless of whether the old
value if any is perprocess or permanent. The default is to change
the perprocess value if one exists, otherwise to change the
permanent value if one exists, otherwise to set a permanent value.

-perprocess, -pp
sets a perprocess value, regardless of whether the old value if any
is perprocess or permanent. The default is to change the
perprocess value if one exists, otherwise to change the permanent
value if one exists, otherwise to set a permanent value.

-subtract N, -sub N
subtracts N from the integer value of each name selected by the
other control arguments. If any of the names has no value or has a
value that is not the character string representation of an integer,
an error occurs.

-update, -ud
causes the value_set active function to return the previous value or
null string if there was no previous value. The default is to return ~
the value that is set.

Access required: rw on the value segment, except for perprocess values.
Lack of write access results in a warning message:

value_set: No write permission on PATH.
Perprocess value set for NAME.

Notes:
Either name, -match, or -exclude must be specified.

Either value_string or -value STR must be specified.

Perprocess values are stored in a temporary value segment in the
process directory, a~d disappear when the process terminates.

When a value is set in a value segment that does not exist, the user
is asked whether to create the segment. The user's default value
segment [hd]>[user name].value is created automatically and a message
is printed.

The -match and -exclude control arguments are applied in the order
specified. Successive -match arguments add to the set of names
processed (union) and successive -exclude arguments narrow down the
set (intersection). For example, assume the defined variables to be:

rs_seg_length, rs_area_length, rs_str_len, arg_str_len, buf_size

MTB-464 Page 7 ,..
1u7 The command line:
108 vs 0 -match /_len/ -exclude /_length/ -match /seg_length/
109 operates as follows:
110 The first -match /_len/ causes the set of selected names to be:
111 rs_seg_length, rs_area_length, rs_str_len, arg_str_len
112 The following -exclude /_length/ produces the intersection of this set
113 with the set of names NOT matching /_length/:
114 rs_str_len, arg_str_len
115 The following -match /seg_length/ produces the union of this set with
116 the set of names matching /_seg_length/:
117 rs_str_len, arg_str_len, rs_seg_length ,
118 Finally, the value of each of these selected variables is set to 0.
119
120 See the related command/active functions value (val), value_defined
121 (vdf), value_delete (vdl), value_list (vls), value_set_path (vsp), and
122 value_path (vp).
123
124
125 Notes on value segment:
126 The value segment searched is either the one specified by -pathname or
127 the current default value segment. The default segment is initially:
128 [home_dir]>[user name].value
129 but can be changed by means of the value_set_path (vsp) command and
130 listed by the value_path (vp) command/active function. Use of the
~1 -pathname control argument does not change the default segment.

Page 8 MTB-464

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
-47
48

010/23/80 value_set_lock, vsl

Syntax as an active function: [vsl name {-control_args}]

Syntax as a command: vsl name {-control_args}

Function: sets the value of a name by calling set_lock_$lock, thereby
testing whether it is already locked (whether a value is defined and
was set by value_set_lock). It returns false if the existing value
was locked either by the calling prpcess or by another valid (running)
process, otherwise it returns true and sets a value. If no value for
name exists or the value was not set by value_set_lock, a new value is
set and value_set_lock returns true.

Arguments:
name

is a character string. It can be -name STR to specify a name
beginning with a minus sign, to distinguish it from a control
argument.

Control arguments:
-pathname PATH, -pn PATH

specifies a value segment other than the current default one,
without changing the default. See "Notes on value segment" below.

-permanent, -perm
sets a lock value in the value segment. (Default)

-perprocess, -pp
sets a perprocess lock value. The default is -permanent.

-wait_time N, -wtm N
specifies the number of seconds N to wait for the lock to become
unlocked (have an undefined value) if it is currently locked.
The default is 10 seconds. If N is greater than 60 seconds, the
value_set_lock command prints a message after waiting 60 seconds.

Access required: rw on the value segment, except for perprocess values.

Notes on value segment:
The value segment searched is either the one specified by -pathname or
the current default value segment. The default segment is initially:

[home_dir]>[user name].value
but can be changed by means of the value_set_path (vsp) command and
listed by the value_path (vp) command/active function. Use of the
-pathname control argument does not change the default segment.

MTB-464 Page 9
,,..

1
2
3
4
5
6
7
8
9

10
11

'12
13
14
15
16
17
18
19
20
21
22
23
24

~~
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

..S1
,;2

010/23/80 value_delete, vdl

Syntax as a command: vdl {name} {-control_args}

Function: causes one or more names not to have define~ values, as
set by value_set and "value -call". Both perprocess values and those
stored in a value seg are deleted, unless -perprocess or -permanent is
specified.

Arguments:
name

is a character string. It can be -name STR to specify a name
beginning with a minus sign, to distinguish it from a control
argument.

Control arguments:
-all, -a

deletes all defined pe rpr ocess and. permanent values. If -pe rproce ss
is. specified, only perprocess values are deleted. If -permanent is
specified, only values stored in the value segment are deleted.
The -all control argument is incompatible with -match and -exclude
and with the name argument.

-exclude STR, -ex STR
deletes all existing values except those for names that match STR.
The character string STR is searched for in names; if STR is
surrounded by slashes (/), it is interpreted as a qedx regular
expression to match names. Only perprocess values are deleted if
-perprocess is specified, only permanent ones if -permanent is
specified, and both are deleted by default. The -exclude control
argument is incompatible with -all and with the name argument, but
can appear multiple times and in combination with -match (see
"Notes" below).

-match STR
deletes all existing values for names that match STR. The character
string STR is searched for in names; if it is surrounded by slashes
(/), it is interpreted as a qedx regular expression to match names.
Only perprocess values are deleted if -perprocess is specified, only
permanent ones if -permanent is specified, and both are deleted by
default. The -match control argument is incompatible with -all and
with the name argument, but can appear multiple times and in
combination with -exclude (see "Notes" below).

-pathname PATH, -pn PATH
specifies a value segment other than the current default one,
without changing the default. For more information, type:

help value -section "Notes on value segment"
-permanent, -perm

deletes only values stored in the value segment. The default is to
delete the perprocess value if one exists, otherwise to delete any
permanent value.

Page 10 MTB-464

53 -perprocess, -pp
54 deletes only perprocess values. The default is to delete the
55 perprocess value if one exists, otherwise to delete any
56 permanent value.
57
58
59 Access required: rw on the value segment, except for perprocess values.
60
61
62 Notes:
63 Either name, -all, -match, or -exclude must be specified.
64
65 The -match and -exclude control arguments are applied in the order
66 specified. Successive -match arguments add to the set of names
67 processed (union) and successive -~xclude arguments narrow down the
68 set (intersection). For example, assume the defined variables to be:
69 rs_seg_length, rs_area_length, rs_str_len~ arg__str_len, buf_size
70 The command line:
71 vdl -match /_len/ -exclude / __ length/ -match /seg_length/
72 operates as follows:
73 The first -match /_len/ causes the set of selected names to be:
74 rs_seg_length, rs_area_length, rs_str_len, arg_str_len
75 The following -exclude /_length/ produces the intersection of this set
76 with the set of names NOT matching /_length/:
77 rs_str_len, arg_str_len
78 The following -match /seg_length/ produces the union of this set with ""'
79 the set of names matching /_seg_length/:
80 rs_str_len, arg_str_len, rs_seg_length
81 Finally, the value of each of these selected variables is deleted.
82
83 See the related command/active functions value (val), value_defined
84 (vdf), value_set (vs), value_list (vls), value_set_path (vsp), and
85 value_path (vp).

MTB-464 Page 11 ,,.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
~5

_6
27
28
29
30
31
32
33
34
35
36
37
38
39
40

010/23/80 value_defined, vdf

Syntax as an active function: [vdf name {-control_args}]

Syntax as a command: vdf name {-control_args}

Function: returns true if name has a value set by the value_set (vs)
command or by "value -call", false otherwise. The value can be
perprocess or reside in a value segment (type "help value").

Arguments:
name

is a character string. It can be -name STR to specify a name
beginning with a minus sign, to distinguish it from a control
argument.

~ontrol arguments:
-pathname PATH, -pn PATH

specifies a value segment other than the current default one,
without changing the default. For more information, type:

help value -section "Notes on value segment"
-permanent, -perm

returns true only if a value is defined in the value segment,
regardless of whether a perprocess value exists. The default is to
return true for either a perprocess or a permanent value.

-perprocess, -pp
returns true only if a perprocess value is defined.

Access required: r to the value segment, except for perprocess values.
Lack of r access is equivalent to no value defined in the segment.

Notes:
See the related command/active functions value (val), value_set (vs),
value_delete (vdl), value_list (vls), value_set_path (vsp), and
value_path (vp).

Page 12 MTB-464

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

010/23/80 value_list, vls

Syntax as an active function: [vls {name} {-control_args}]

Syntax as a command: vls {name} {-control_arg}

Function: lists one or more name-value pairs as set by value_set and
"value -call".

Arguments:
name

is a character string. It can be -name STR to specify a name STR
beginning with a minus sign, to distinguish it from a
control argument.

Control arguments:
-all, -a

lists all defined values. Only perprocess values are listed if
-p~rprocess is specified, only permanent ones if -permanent is
specified, and both are listed by default. The -all control
argument is incompatible with -match and -exclude and with the name
argument.

-exclude STR, -ex STR
lists all values except those for names that match STR. The
character string STR is searched for in names; if it is surrounded
by slashes (/), it is interpreted as a qedx regular expression to
match names. Only perprocess values are listed if -perprocess is
specified, only permanent ones if -permanent is specified, and both
are listed by default. The -exclude control argument is incompatible
with -all and with the riame argument, but can appear multiple times
and in combination with -match (see "Notes" below).

-match STR
lists all values for names that match STR. The character string STR
is searched for in names; if it is surrounded by slashes (/), it is
interpreted as a qedx regular expression to match names. Only
perprocess values are listed if -perprocess is specified, only
permanent ones if -permanent is specified, and both are listed by
default. The -match control argument is incompatible with -all and
with the name argument, but can appear multiple times and in
combination with -exclude (see "Notes" below).

-pathname PATH, -pn PATH
specifies a value segment other than the current default one,
without changing the default. For more information, type:

help value -section "Notes on value segment"
Multiple -pn arguments are allowed to list values in more than one
value segment.

-permanent, -perm
lists only values stored in the value segment. The default is to
list both permanent and perprocess values.

MTB-464 ,..
~3 -perprocess, -pp

Page 13

54 lists only perprocess values. The default is to list both perprocess
55 values and those stored in the value segment.
56
57
58 Access required: r on the value segment, except for perprocess values.
59
60
61 Notes:
62 Either name, -all, -match, or -exclude must be specified.
63
64 The list is sorted alphabetically by name.
65
66 The value_list command by default lists perprocess and permanent values
67 interspersed, the perprocess names preceded by "PP "
68
69 The value_list active function returns the selected names separated by
70 spaces, and no values.
71
72 The -match and -exclude control arguments are applied in the order
73 specified. Successive -match arguments add to the set of names
74 processed (union) and successive -exclude arguments narrow down the
75 set (intersection). For example, assume the defined variables to be:
76 rs_seg_length, rs_area_length, rs_str_len, arg_str_len, buf_size
~7 The command line:

8 vls -match /_len/ -exclude /_length/ ·-match /seg_length/
79 operates as follows:
80 The first -match /_len/ causes the set of selected names to be:
81 rs_seg_length, rs_area_length, rs_str_len, arg_str_len
82 The following -exclude /_length/ produces the intersection of this set
83 with the set of names NOT matching /_length/:
84 rs_str_len, arg_str_len
85 The following -match /seg_length/ produces the union of this set with
86 the set of names matching /_seg_length/:
87 rs_str_len, arg_str_len, rs_seg_length
88 Finally, the value of each of these selected variables is listed.
89
90 See the related command/active functions value (val), value_defined
91 (vdf), value_set (vs), value_delete (vdl), value_set_path (vsp), and
92 value_path (vp).

Page 14

1 010/23/80 value_set_path, vsp
2
3 Syntax: vsp path {-control_arg}
4
5

MTB-464

6 Function: sets the default value segment used by the value commands
7 without -pathname.
8
9

10 Arguments:
11 pa th
12 is the pathname of a value segment or a nonexistent segment, which
13 is created. The value suffix is assumed.
14
15
16 Control arguments:·
17 -brief, -bf
18 suppresses the warning printed when the user lacks write access
19 to the value segment.
20
21
22 Acces~ required:
23 At least r access to the value segment is required, and rw is
24 preferred. If the user lacks r access, the default path is not changed
25 and an error message is printed. If the user lacks rw, the default
26 path is changed, but a warning is printed. The -brief control argument ~
27 can be used to suppress this warning.
28
29
30 Notes:
31 The default value segment in a process is initially:
32 [home_dir]>[user name].value

MTB-464 Page 15

r
1 010/23/80 value_path, vp
2
3 Syntax as an active function: [vp]
4
5 Syntax as a command: vp
6
7
8 Function: returns the pathname of the current default value segment
9 used by the value commands without -pathname.

Page 16

1 010/23/80 value_
2

MTB-464

3 Function: reads and maintains value segments containing name-value
4 pairs.
5
6
7 Entry points in value_:
8
9

10 :Entry: get: 010/23/80 value_$get
11
12 Syntax:
13 dcl value_$get entry options (variable);
14
15 call value_$get (seg_ptr, switches, name, value_arg, code);
16
17
18 Function: returns the defined value of a name.
19
20
21 Arguments:
22 seg_ptr
23 is a pointer to the base of a value segment. To initialize a new
24 value segment, create a segment with suffix "value" and call
25 value_$init_seg with a pointer to its base. If seg_ptr is null, the .._.
26 default value segment is used, which is initially:
27 [home_dir]>[user name].value
28 but can be changed by value_$set_path or the value_set_path (vsp)
29 command. (Input)
30 switches
31 is a bit (36) word of switches: (Input)
32 perprocess
33 looks only for a perprocess value, not for one stored in any
34 value segment. This switch is in compatible with "permanent".
35 The default if both switches are off is to return the
36 perprocess value if one exists, otherwise return the value
37 stored in the value segment.
38 permanent
39 looks only for a value stored in the value segment.
40 name
41 is a fixed-length or varying character string. If fixed-length,
42 trailing blanks are trimmed. There must be at least one character.
43 (Input)
44 value_arg
45 is the returned value, having any data type. If conversion from the
46 internal character string representation cannot be performed,
47 error_table_$bad_conversion is returned. Conversion errors cannot
48 occur if value_arg is a character string, but if it has a
49 maxlength > o, the error code error_table_$smallarg is returned if
50 truncation occurs. (Output)
51 code ""
52 is a standard error code. It is error_table_$oldnamerr ("Name not

MTB-46 4 Page 17

~

:J3 found.") if no value is defined. (Output)
54
55
56 Access required: r access to the value segment, except for perprocess
57 values.
58
59
60 Notes:
61 Perprocess values are stored in a temporary value segment in the
62 process directory, and disappear when the process terminates.
63
64
65 :Entry: get_data: 010/23/80 value_$get_data
66
67 Syntax:
68 dcl value_$get_data entry (ptr, bit (36), char(*),
69 ptr, ptr, fixed bin (18), fixed bin (l8), fixed bin (35));
70
71 call value_$get_data (seg_ptr, switches, name,
72 area_ptr, buffer_ptr, buffer_size, data_size, code);
73
74
75 Function: returns, into a caller-supplied buffer, the region of storage
76 that is defined as the value of a name, as set by either

,J~ value_$set_data or value_$test_and_set_data.

79
80 Arguments:
81 seg_ptr
82 is a pointer to the base of a value segment. To initialize a new
83 value segment, create a segment with suffix "value" and call
84 value_$init_seg with a pointer to its base. If seg_ptr is null, the
85 default value segment is used, which is initially:
86 [home_dir]>[user name].value
87 but can be changed by value_$set_path or the value_set_path (vsp)
88 command. (Input)
89 switches
90 is a bit (36) word of switches: (Input)
91 perprocess
92 looks only for a perprocess value, not for one stored in any
93 value segment. This switch is incompatible with "permanent".
94 The default if both switches are off is to return the
95 perprocess value if one exists, otherwise return the value
96 stored in the value segment.
97 permanent
98 looks only for a value stored in the value segment.
99 name

100 is a character string with at least one nonblank character.
101 Trailing blanks are trimmed. (Input)
102 area_ptr

J,IJ3 if nonnull, points to an area in which the value can be allocated.
· J4 If null, buffer_ptr and buffer_size are used. (Input)

Page 18 MTB-464

105
106
107
108
109
110
1 1 1
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

buffer_ptr
if area_ptr is null, points to a region of storage into which the
value can be copied. (Input)

buffer_size
is the number of words in the buffer pointed to by buffer_ptr.
(Input)

data_size
is the number of words in the value. If it is greater than
buffer_size, only buffer_size words are returned, data_size is set
to the full size of the value, and error_table_$smallarg is
returned. (Output)

code
is a standard error code. It is error_table_$oldnamerr ("Name not
found.") if no value is defined. (Output)

Access required: r on _the value segment, except for perprocess
values.

Notes:
Perprocess values are stored in a temporary value segment in the
process directory, and disappear when the process terminates.

:Entry: set: 010/23/80 value_$set

Syntax:
d~l value_$set entry options (variable);

call value_$set (seg_ptr, switches, name, new_value, old_value, code);

Function: defines a value for a name, readable by value_$get.

Arguments:
seg_ptr

is a pointer to the base of a value segment. To initialize a new
value segment, create a segment with suffix "value" and call
value_$init_seg with a pointer to its base. If seg_ptr is null, the
default value segment is used, which is initially:

[home_dir]>[user name].value
but can be changed by value_$set_path or the value_set_path (vsp)
command. (Input)

switches
is a bit (36) word of switches: (Input)

perprocess
sets a perprocess value. This switch is incompatible with
"permanent". The default if both switches are off is to set
a perprocess value if one already exists, otherwise to set
a value in the value segment.

MTB-464 Page 19 ,..
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179 .
180
~1

. ,2
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

,-q1
....J8

permanent
sets a value in the value segment.

name
is a fixed-length or varying character string. If fixed-length,
trailing blanks are trimmed. There must be at least one character.
(Input)

new_ value
is the value to be set, having any data type. If conversion to the
internal character string representation cannot be performed,
error _table_$badcall is returned. (Input)

old_ value
is the current value, having any data type. If no value is currently
defined, the value of this argument is not changed. If conversion
from the internal character string representation cannot be
performed, error_table_$bad_conversion is returned. (Output)

code ·
is a standard error code. Having no previous value defined does not
cause an error code to be returned.

Ac~ess required: rw to the value segment, except for perprocess
value~.

Notes:
Perprocess values are stored in a temporary value segment in the
process directory, and disappear when the process terminates.

:Entry: set_data: 010/23/80 value_$set_data

Syntax:
dcl value_$set_data entry (ptr, bit (36), char (*),

ptr, fixed bin (18),
ptr, ptr, fixed bin (18),
ptr, fixed bin (18), fixed bin (35));

call value_$set_data (seg_ptr, switches, name,
new_data_ptr, new_data_size,
area_ptr, buffer_ptr, buffer_size,
old_data_ptr, old_data_size, code);

Function: defines the value for a name to be a· specified number of
words of data, readable by value_$get_data.

Arguments:
seg_ptr

is a pointer to the base of a value segment. To initialize a new
value segment, create a segment with suffix "value" and call
value_$init_seg with a pointer to its base. If seg_ptr is null, the

Page 20 MTB-464

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

default value segment is used, which is initially:
[home_dir]>[user name].value

but can be changed by value_$set_path or the value_set_path (vsp)
command. (Input)

switches
is a bit (36) word of switches: (Input)

name

perprocess
sets a perprocess value. This switch is incompatible with
"permanent". The default if both switches are off is to set
a perprocess value if one already exists, otherwise to set
a value in the value segment.

permanent
sets a value in the value segment.

is a character string with at least one nonblank character.
Trailing blanks are trimmed. (Input)

new_data_ptr
is a pointer to the value to be set. (Input)

new_data_size
is the number of words in the value to be set. (Input)

area_ptr
if nonnull, points to an area in which the old (return) value is
to be allocated. If null, buffer_ptr and buffer_size are used.
(Input)

buffer _ptr
if area_ptr is null, points to a region of storage into which the
old value can be copied. If both area_ptr and buffer_ptr are null,
the old value is not returned. (Input)

buffer _size
is the number of words in the buffer pointed to by buffer_ptr.
If the old value is too large to fit, error_table_$smallarg is
returned but old_data_size is correct. (Input)

old_data_ptr
is a pointer to the old value. (Output)

old_data_size
is the number of words returned as the old value. (Output)

code
is .a standard status code. Having no previous value defined does
not cause an error code to be returned. (Output)

Access required: rw on the value segment, except for perprocess
values.

Notes:
Perprocess values are stored in a temporary value segment in the
process directory, and disappear when the process terminates.

:Entry: defined: 010/23/80 value_$defined

MTB-464 Page 21

~

r..v1 Syntax:
262 dcl value_$defined entry (ptr, bit (36), char(*), fixed bin (35))
263 returns (bit (1));
264
265 defined_sw = value_$defined (seg_ptr, switches, name, code);
266
267
268 Function: returns "1"b if a value is defined for name, "O"b otherwise.
269
270
271 Arguments:
272 seg_ptr
273 is a pointer to the base of a value segment. To initialize a new
274 value segment, create a segment with suffix "value" and call
275 value_$init_seg with a pointer to its base. If seg_ptr is null, the
276 default value segment is used, which is initially:
277 [home_dir]>[user name].value
278 but can be changed by value_$set_path or the value_set_path (vsp)
279 command. (Input)
280 switches
281 is a bit (36) word of switches: (Input)
282 perprocess
283 · looks only for a perprocess value, not for one stored in any
284 value segment. This switch is in compatible with "permanent".

}J5 The default if both switches are off is to return the
6 perprocess value if one exists, otherwise return the value

~87 stored in the value segment.
288 permanent
289 looks only for a value stored in the value segment.
290 name
291 is a character string with at least one nonblank character.
292 Trailing blanks are trimmed. (Input)
293 code
294 is a standard status code. (Output)
295
296
297 Access required: r on the value segment, except for perprocess values.
298
299
300 :Entry: delete: 010/23/80 value_$delete
301
302 Syntax:
303 dcl value_$delete entry (ptr, bit (36), char (*), fixed bin (35));
304
305 call value_$delete (seg_ptr, switches, name, code);
306
307
308 Function: causes there to be no value defined for name.
309
310

jJIM.1 Arguments:
.2 seg_ptr

Page 22 MTB-464

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

is a pointer to the base of a value segment. To initialize a new
value segment, create a segment with suffix "value" and call
value_$init_seg with a pointer to its base. If seg_ptr is null, the
default value segment is used, which is initially:

[home_dir]>[user name].value
but can be changed by value_$set_path or the value_set_path (vsp)
command. (Input)

switches
is a bit (36) word of switches: (Input)

name

perprocess
sets a perprocess value. This switch is incompatible with
"permanent". The default if both switches are off is to set
a perprocess value if one already exists, otherwise to set
a value in the value segment.

permanent
sets a value in the value segment.

is a character string with at least one nonblank character.
Trailing blanks are trimmed. (Input)

code
is a standard status code. (Output)

Access required: rw on the value segment, except for perprocess
values.

:Entry: set_lock: 010/23/80 value_$set_lock

Syntax:
dcl value_$set_lock entry (ptr, bit (36), char (*), fixed bin,

fixed bin (35));

call value_$set_lock (seg_ptr, switches, name, wait_time,
code);

Function: sets the value of a name by cal ling set_lock_$lock, thereby
testing whether it is already locked (whether a value is defined and
was set by value_$set_lock). This entry point locks the lock if it is
not already locked.

Arguments:
seg_ptr

is a pointer to the base of a value segment. To initialize a new
value segment, create a segment with suffix "value" and call
value_$init_seg with a pointer to its base. If seg_ptr is null,
the default value segment is used, which is initially:

[home dir]>[user name].value
but can-be changed by value_$set_path or the value_set_path (vsp)
command. (Input)

MTB-464 ,..
j05 switches
366 is a bit (36) word of switches: (Input)
367 perprocess

Page 23

368 sets a perprocess lock value. This switch is incompatible
369 with "permanent". The default is to set a permanent value.
370 permanent
371 sets a lock value in the value segment. This is the default.
372 name
373 is a fixed-length or varying character string. If fixed-length,
374 trailing blanks are trimmed. There must be at least one character.
375 (Input)
376 wait_tirne
377 is the number of seconds to wait for the lock to become unlocked
378 (have an undefined value) if it is currently locked. After that
379 time has elapsed and the lock is still locked, an error code is
380 returned. (Input)
381 code
382 is a standard status code. It is error_table_$locked_by_this_process
383 if the lock is already locked by the caller's process,
384 error_table_$lock_wait_tirne_exceeded if the lock is locked by
385 another process, or zero if this entry point was able to lock
386 th~ lock. (Output)
387
388
JjJ9 Access required: rw on the value segment, except for perprocess.

0
391
392 :Entry: test_and_set: 010/23/80 value_$test_and_set
393
394 Syntax:
395 dcl value_$test_and_set entry options (variable);
396
397 call value_$test_and_set (seg_ptr, switches, name,
398 new_value, old_value, code);
399
400
401 Function: defines a new value for a name, only if the name has a
402 specified current value.
403
404
405 Arguments:
406 seg_ptr
407 is a pointer to the base of a value segment. To initialize a new
408 value segment, create a segment with suffix "value u and call
409 value_$init_seg with a pointer to its base. If seg_ptr is null, the
410 default value segment is used, which is initially:
411 [home_dir]>Person_id.value
412 but can be changed by value_$set_path or the value_set_path (vsp)
413 command. (Input)
414 switches

,..,5 is a bit (36) word of switches: (Input)
--16 pe rprocess

Page 24 MTB-464

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

name

tests and sets a perprocess value. This switch is
incompatible with "permanent". The default if both switches
are off is to test the perprocess value if one is defined,
otherwise to test the value in the value segment. The value
set is perprocess or permanent depending on the value tested.

permanent
tests and sets the value in the value segment.

is a fixed-length or varying character string. If fixed-length,
trailing blanks are trimmed. There must be at least one character.
(Input)

new_ value
is the value to be set, having any data type. If conversion to the
internal character string representation cannot be performed, the
error code error_table_$badcall is returned. (Input)

old_ value
is the caller-supplied value that must equal the value currently
defined in order for the new value to be set. (Input)

code
is a standard status code. It is error_table_$action_not_performed
if old_value does not match the currently defined value.

Access required: rw to the value segment, except for perprocess
values.

Notes:
If the value tested is perprocess, the value set is also perprocess,
and vice-versa.

:Entry: test_and_set_data: 010/23/80 value_$test_and_set_data

Syntax:
dcl value_$test_and_set_data entry (ptr, bit (36), char(*),

ptr, fixed bin (18),
ptr, fixed bin (18), fixed bin (35));

call value_$test_and_set_data (seg_ptr, switches, name,
new_data_ptr, new_data_size,
old_data_ptr, old_data_size, code);

Function: defines the value for a name to be a specified number of
words of data, readable by value_$get_data, only if the first N words
of the name's current value have specified contents.

Arguments:
seg_ptr

is a pointer to the base of a value segment. To initialize a new

MTB-464 Page 25

!"""
~o9 value segment, create a segment with suffix "value" and call
470 value_$init_seg with a pointer to its base. If seg_ptr is null, the
471 default value,segment is used, which is initially:
472 [home_dir]>[user name].value
473 but can be changed by value_$set_path or the value_set_path (vsp)
474 command. (Input)
475 switches
476 is a bit (36) word of switches: (Input)
477 perprocess
478 looks only for a perprocess value, not for one stored in any
479 value segment. This switch is incompatible with "permanent".
480 The default if both switches are off is to return the
481 perprocess value if one exists, otherwise return the value
482 stor~d in the value segment.
483 permanent
484 looks only for a value stored in the value segment.
485 name
486 is a character string with at least one nonblank character.
487 Trailing blanks are trimmed. (Input)
488 new_data_ptr
489 is a pointer to the value to be set. If null, the current value is
490 deleted and no value is defined. (Input)
491 new_data_size
492 is the number of words in the value to be set. (Input)
~3 old_data_ptr
' .4 is a pointer to some data, whose first old_data_size words must
495 equal the first old_data_size words of the name's current value in
496 order for the new value to be set. (Input)
497 old_data_size
498 is the number of words to be compared. This number can be less
499 than the number of words in the name's current value (used, for
500 example, to compare only the header of a structure), but an
501 error code is returned if it is greater. (Input)
502 code
503 is a standard status code. It is error_table_$action_not_performed
504 if the old-value match fails. (Output)
505
506
507 Access required: rw on the value segment, except for perprocess
508 values.
509
510
511 Notes:
512 If the value tested is perprocess, the value set is also perprocess,
513 and vice-versa.
514
515 The value of a name can be conditionally deleted by passing a null
516 new_data_ptr.
517
518
~9 :Entry: set_path: 010/23/80 value_$set_path

....:0

Page 26 MTB-464

521
522
523
524
525
526
521
528

·529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

Syntax:
dcl value_$set_path entry (char(*), bit (1), fixed bin (35));

call value_$set_path entry (path, create_sw, code);

Function: sets the default value segment used by the value commands
with no -pathname argument.

Arguments:
path

is the pathname. The value suffix is assumed. (Input)
create_sw

is ON to create a value segment if none exists. (Input)
code

is a standard status code. (Output)

:Entry: get_path: 010/23/80 value_$get_path

Syntax:
dcl value_$get_path entry (char (*), fixed bin (35));

call value_$get_path (path, code);

Function: returns the pathname of the current default value segment
used by value commands without -pathname.

Arguments:
path

is the pathname. (Output)
code

is a standard status code. (Output)

:Entry: init_seg: 010/23/80 value_$init_seg

Syntax:
dcl value_$init_seg entry (ptr, fixed bin, ptr,

fixed bin (19), fixed bin (35));

call value_$init_seg (seg_ptr, seg_type, remote_area_ptr,
seg_size, code);

Function: initializes a segment to be a value segment.

Arguments:

MTB-464 Page 27 ,..
573 seg_ptr
574 is a pointer to a segment. (Input)
575 seg_type
576 determines the type of use to which the value segment will be put,
577 and therefore the method of allocating values: (Input)
578 0 - permanent: shareable by multiple processes and therefore
579 locked when modified, with values always stored in the
580 value segment itself. ·
581 1 - perprocess: for use only by the calling process and
582 therefore never locked, with values optionally stored
583 in an area outside the "value segment" (see the
584 remote_area_ptr argument below).
585 remote_area_ptr
586 for a perprocess segment only, points to an area outside the value
587 segment in which values are to be allocated. For example, the
588 "value segment" can be a region of storage 72 words long consisting
589 only of a header, and remote_area_ptr can point to system_free_4_.
590 (Input)
591 seg_size
592 is the number of words available to the value segment, or to the
593 remote area if remote_area_ptr is nonnull. If seg_size is O, the
594 available size is an entire segment. (Input)
595 code
596 is a standard status code. (Output)

;t:J7
- 38
599 Access required: rw on the segment.

