
t·l u 1 tics Tech n i ca 1 Bu 11 et in i'' TE:- 4 6 1

To: Uistribution

from: Bernie Greenberg and Jim Gavis

Date: 10/02/oO

Su b j e c t : A 'rd n a ow V i u e o S y s t em Im p 1 e rn en t a t ion

1. INTHODUCTIOll

This ~Tb proposes an implementation 01· a window viceo system
on Multics. A crevious MTB (458) aescribed the purpose and
general nature of a window vioeo system, and must be reaa ana
masterea first. This ~Tb shows how such a thin~ can be acne.

Unfortunately, there are still some problems to be solved.
A subsequent MTS (462) proposes an interim system, sufficient for
the needs of the menu system, which also siaesteps the unsolved
problems.

Acknowledgement:

·we would like to thank Olin Sibert and Lyman hazelton for
con t r i bu t i n g to ma n y o f t h e i d e a s e x pr es s e d her e i n • .~ e a 1 so owe
q u it e a bi t to the ITS and Li s p t··, a ch i n e out put sys terns , and the
ideas containea within CRTSTt on ITS.

Send comments to:

the System M continuum >udd>m>jrd>mtgs>tv

or by r-, u 1 t i cs ma i 1 , on MIT or System t•i , to
Greenberg.Multics or JHDavis.~ultics

or by phone
Greenberg:
Davis:

(617)-492-9330 HVU 261-9330
(617)-492-~3d2 HVN 261-9382

Multics Project internal working documentation.
aistributed outside the Multics Project.

10/02/80

f~ot to be

page 1

hTc-461

2. OVERVlE't.' Of TllE r1 lWPGSAL

The essense of the proposal is to imple~ent windows by an
upward compatible extension of iox 1/0 switches. Each winaow
will correspond to a switch. ~ormal-iox stream 1/0 will worK
as it does on a terminal, ana addiTional features will be
accessed by a new subroutine similar to iox •

Once the switches are set up (by a subsystem or by
initialization of the process environment) for the required
windows, all that need Le aone is to route different outputs
through different io switches the outputs will appear in
separate windows. After the initial setup, all that is required
is a call to ioa $switch. houting various outputs through
different switches ii a small modification to subsystems which
buys back great utility in a video-managed environment. Un
printing terminals, 11 syn 11 ing all these switches to user cutout as
today retains toaay's 1·uncticnality with no loss of ~en~rality.

The ~inaow system will be divided into two levels, each
implemented by an iox moaule. The rirst level, ~inaow
Management (W~) makes terminal - inaepenaent calls to tlie lo~er
level to implement a single window for a user application
pr o gr am • t:: a ch a t ta ch 1n en t o f w (•: 'll a i n t a i n s a s i n g 1 e w i n d ow • ~
Attachments of ~N are ignorant of other attachments, if any. The
second level, Terminal Control (TC) contains all
terminal-specific support, and is callea only by ~M.

Normal user output will oe routed through a ~M attachment.
Subsystems whicn can use a viaeo screen to advantage, as opposea
to those that manage one as tneir primary function, can use WM
attachments to keep various forms of output visible
simultaneously. Ordinary ioa calls (ioa $switch) will suffice
to output to windows in this way.

Applications can manage their screens by calls to WM.
Typical calls might create a window, position the cursor to some
location in the window, ana output some characters in the winaow.

To conform to practical limitations, we propose to liffii~
windows to non-overlapping, non-nested windows.

page 2 10/02/bG

1"1TB-4b 1

3. BASIC WI~DO~ NA~AGEMENT

A program that wishes to use a ~indow obtains one via iox
attachment. Just as for any other use of iox , a new IOCD ii
created and returned.

The usual iox operations are also aefined for windows.
Characters may be output by iox $put chars, and (after output
conversion) appear on the screen, replacing whatever used to be
there. The window system will be controllea by iox $modes and
iox $control calls. A call to iox $get line returns a-line (but
see-Input Line Editting below). - -

3.1. Line Wrapping

Overlength lines will be wrapped, just as today. As much of
the line as will fit on the current terminal line is printed,
with the remainder of the line placed on the next line, preceeded
by the character sequence 11 \c". There has been no demand for any
other sort of processing, although plausible options include a
user-settable "wrap character••; placing the wrao character at the
end of the line, instead of the tegining of the new; and
truncating lines, rather than wrapping them. lhere is no
particular problem in adding these, if need ever arises.

At all times, the window virtual cursor should be at the row
and column where the next character will go. Printing a
character in column N also moves the cursor to column ~+1. (Some
characters occupy multiple columns, since they print as escape
sequences, and others may occupy no column, but that aoesn't
matter here.) But where should the cursor go when a character is
printed in the last column? (assume 80, for this discussion.)
The next character will be printed on the next line, so perhaps
an implicit Ck-Lf should be done? But this is wrong, since if
the user ends an 80 character string with ~ ~E~LINE (as is
proper) this will cause an extra blank line. Insteaa, we propose
that when a character is printed in the last column (say, 80),
the window cursor aavances to a "phantom" column (81). If no
cursor motion commanas are received, line wrapping will be done
when the next character is received. This allows the use of the
full width of the window.

The phantom column will be treated like any other column t'or
the purposes of cursor motion, and the user who calls the window
system to ask for the position of the cursor must be oreoareci to
be told it is in column 81.

10/02/80 page 3

r-;T b-461

This scheme is a little tricky to implement on todays
terminals, because they do not behave uniformly when a character
is printed in the last column. In all other columns, printing a
character causes the cursor to move to the right, into the column
where the next character will go. ~hen a character is printed in
the last column, some terminals put the cursor in a "phantom"
column (the VIP 7801 and the VIP 72UU). The cursor may be moved
at this point (usually to the next line, by a CR-LF from the
host), but if it is not, an implicit CR-LF is done when the next
printing character is recievea. Other terminals (DELTA LATA
4000) do the implicit CR-Lf when th~ b0th column is used.

Emacs solves this problem by using windows that are 79
characters wide (on an BO character terminal), so that there will
always be a "next column 11 that '.,·ill t·c :>:::!;-to r.r;vc ii:tr:. t-.

'..Jill solve it ~n· ~cuJ.r,-~ i~:1or .. ;:;ti<;r~ ::L:out end of line behavior to
the Tl'f. before this can be made specific, aoaitional terminals
must be studied. The scheme we propose will work r·ine on the two
VIPs mentioned above, and other terminals will work ii used witl1
a shorter line length.

3.2. Character Conversion

Output conversion will be done in accoraance with tne
terminal type file conversion tables, just as today. 1hese
conversion tables must be expanded to cover the full range 01· the
Multics (9-bit) Character Set.

There are some changes to the conversion tables that are
appropriate for video devices, for the ASCII format effectors.
Some, such as SPACE, TAB, and Lr have obvious translations into
cursor movement. WX will scan output for successive use of these
characters and (where possible) output a single cursor
positioning command. The other format effectors (BS, VT, FF, and
CR) will oe displayea as escape sequences.

oage 4 10/02/31.J

hTB-461

3.3. MORE Processing

In our proposal, The user will strike
output, or strike HETUhN to abort output.
will cause the terminal bell to ring.

SPACE to continue
Any other character

If the response to MOkE is negative, program interrupt will
be signalled. ~ultics commands which handle pFograru interrupt
(subsystems) usually do so by resuming their input l~op. The
Multics command processor must be changed to handle tt1e condiLion
for the sake of those commands which do not handle pi now - this
should be equivalent to the command abort condition. The user
has indicated that the remainini output of the command is
uninteresting, so the commana should return.

!"lore processing will be determined by the "more" mode, wr1ich
is on by default, except on printing terminals.

Further control of more processing might include user
settable prompt string tor the MORE processor and user settable
characters for the two responses. A subsystem might want to
handle more processing itself. This coulo te done by ret.urnin2;
an er r or cod e from the i ox ::; p u t ch a rs ca 11 or sign a 11 i n g a
concition, or perhaps by callTng a-user supolied entry ooint. We
make no proposal to supply this now.

3.4. End of Window Processing

We will support three modes of operation for end of· winaow
processing. The user or application selects the desired option
by an iox mode call. we define a new mode, called "more mode",
which can take on one of three values, 11 scroll", "wrap", or
"clear". The notion of an iox mode taking on values is not new,
since the 11 11 11 mode does that now, as does the audit trigger
mode. We will use the syntax convention established by the
audit dim, and write "more mode=wrap" in the moae string. A
subro~tine has been designed To parse mode strings in this
syntax, and will be useful to other io modules, as well as any
commana that has a mode string argument.

The default mode will be more mode:scroll for terminals
with insert-delete lines, and more_mo~e=wrap for all others.

An attempt to select scroll mode for
insert-delete lines will be in error. (The
terminal supports insert-delete lines, and a
provided to allow the user to enquire.)

10/02/60

a terminal without
T!F tells whether a
control oraer is

pc::ge 5

hTB-461

3.5. Handling QUIT

MORE processing offers a new way to discard output ot·
programs, and will serve one of the purposes of QUIT. But
programs must still be interrupted, so WUIT is still needed. Ihe
behavior of QUIT on Multics causes several problems today. The
standard Multics hanaler for quit eventually passes iox a
resetwrite order, which in turn is passed into ring O, and out-to
the FNP.

The first problem is that the prograru executing when a QUIT
(ips) ~ignal occurs may not be the one that proauced the output
that prompted the user to strike QUIT. Nevertheless the
resetwrite discards all penaing output, even that of the
"innocent" program. There is no concept in the io system of what
11 program 11 produced wnicn "output" (except for use of deaicated
switches, now possible via the winaow system). The worst case 01·
this now is when message output is lost.

A second problem is that when a 11 resetwrite 11 is passed to"""'
the FNP it stops its output immeaiately. It is possible to sto~
output while in the miadle of a multiple character terminal
control sequence. The resulting terminal state is undefined.
Users of the Honeywell VIP 7801 may have noticed that the
terminal sometimes beeps, and flashes "INVALID COHhAhG", refusing
to do anything until reset. Other terminals have siruilar
problems. Furthermore, there is no way for ring O or ring 4 to
know just how many characters were actually sent to the terminal,
so the screen contents ana cursor location become unaefined as
well.

A third problem with resetwrites is that occasionally the
resetwrite also resets characters written after the reset order
itself. Emacs users who have hit QUIT may have noticed that the
screen is not always clearea before entering a new command level.
This is because the screen-clearing character is discarded. This
problem is due to an MCS aesign problem.

The grave lack of MCS resources makes it appropriate to fix
these problems in ring four.

Until the FNP can be made aware of cursor position ana the
indivisibility of certain character sequences, it is imperative
that resetwrite orders no& be sent to ring O. This means that
there is no way for the user to stop output that is alreaay "on All\
route" to the terminal. Fortunately, Wt-I will never sena ::1ore
than one window full of output at a given time.

page 6 1(J/U2/o0

MTB-461

Some printing terminals also have output escape sequer1ces.
Normally, printing terminals are run without hORE processin~. he
can choose to senc the resetwrite (thus possibly interrupting a
multi-character escape sequence), or not send it (and all pending
output in ring 0 will still be sent. We don't know which choice
is better (per terminal).

3.6. Control of Asynchronous Output

A problem with the current output system is that output can
appear while the user is blocked for output. For example, during
the printing of a lengthy segment, the user way ~o blocked for
output. An IPC wakeup can arrive at this point (e.g. a message)
and the output will appear in the midale of the se~ment being
printed.

A second kind of asynchronous event is the IPS signal. This
includes QUIT hanaling (printing "QUIT") and ''.al rm" and "cput"
timers. Output from IPS programs (e.g. memo, blip) is harder to
handle because it can come at any time, not just when the process
is blocked. The window system can be interrupted at any time,
possibly with the window data in an inconsistent state. IPS
interrupts coula be masked, but that might impose perforrnance
oroblems.

\<ie do not know how to handle asynchronous output at this
time. A particularly hard problem is what to do when output
arrives during MOhE processing. ~e will try avoiding this by
masking ipc during MOf\E waits. -

3.7. User Input

Programs can get input from the window system in a variety
of ways. The simplest, and :nost common, is to call
iox_$get_line. This will invoke the line editor (see below).

A call to iox $get chars will always return exactly one
character. Since-the system operates in breakall mode, there is
no need to wait for a newline. Characters returned are not
echoed.

An important feature of the get chars call is that it never
returns more than one character.- This is essential to allow
type-ahead to work. Otherwise, if the the user were typin~

10/02/80 page 7

hTG-461

ahead, it would be possible for the caller to inacvertantly
••gobble" input intended for some other pro~ra1n. As it is,
type-ahead will not be echoed a!lead. Characters will be echoea
when they are read. The alternative is to echo characters
"blindly", and thus occasionally in the wrong place or in the
wrong way. ',ie prefer the conservative approach, and most
operating systems providing video support make the same choice.

At some point we might consider a scheme allowing 11 \-Jrong;"
echoinµ; to be "rolled back" upon notification frorn rinf' four that
the "naive" echo-aheaa was incorrect.

3.8. Input Line Editing

~M will provide line-editing input for all callers of
iox $get line. ~~ will get characters from TC, wrap or scroll or
11 \ c Ti · as - 1 i n e s p a s s t he r i g h t ma r i;; i n , a n d so f o r th • "' ;., w i 11
perform all erase and kill processing in real ti:ne, via
echo-negotiation. ~hen the user stri~es newline, the line is
returned to tne caller.

The c u r r en t e ch o - n e go t i a t i o n i n t e r fa c e a 11 ow s f o r s i H: p 1 e ;; ~
(rubout) processing to be done by ring zero or the fllP- althou;zh
not currently implemented, tt1is again can be Jone as resources
permit.

The BS character will echo as an escape sequence. Tile
editor will canonicalize the line before returning it.

The line editor will keep track of the line being edited.
The input line may extena across several screen lines. If the
cursor is at the left edge of a screen line, and the erase
character is struck, the cursor must move to the right edge of·
the preceeding line.

There are some unsolved problems with the editor:

It is likely that users may want to supply their own
eaitors. This should be possible.

It isn't cl~ar what to do if the input line can't fit on tne
whole window.

As mentioned above, the editor uses echo negotiation. Users
may want to use echo negotiation as well, for example, to do
command completion (where you need only type enough of the name
of a command to make it unique, strike some key, and the system -"II\
completes the name, or tells you that the name wasn't unique).
It shoula be possible to save and restore the table of ureak

pa~e 8 10/02/80

MTB-461

characters for echo negotiatea input.

4. ADVANCED WINDOW USAGE

All the feature thus far describea are available to all
callers of the winaow system, even if they are unaware ot calling
it. But for those programs that will benefit from a video
interface, we provide !'acilities for manipulating the screen
itself. A window is a superset of a sequential input/output
device, and additional operations are provided for windows that
do not correspond to current iox calls. These operations work
on the virtual screen providea by each window.

:.-te propose an interface, very much like that of iox • An
array of entry variables (like iox entry variables) ~ill be
accesible !'rom the attach data of t~e IOCE for the window
attachment. Also like iox_, these entries will be callable
through a transfer vector, which we call dctl • lhe array ot·
entry variables is called a Video Control BlocI (vcb).

These calls could be added to iox itself, but since they
apply only to video terminals we feel it is more appropriate to
access them through a airrerent name. It would also be possible
to access these functions by iox control orders, but this would
require the programmer to allocati anu fill structures for each
call. This would be far less convenient than the subroutine
interface, and less efficient as well.

We don't give all the subroutine interfaces here, only
enough to give the "flavor" of the interface. All the
subroutines have a first argument which is the IOCB for the
window switch, and a last argument which is a standard system
error code.

dctl $position cursor (iocbp, xpos, ypos, code);
dctl-$home (io~cp, coae);
dctl-$clear to end of line (iocbp, code);
dctl-~clear-winaow-(iocbp, coae);
dctl-$clear-to end of window (iocbp, code);
dctl-$scrolT winaow CTocbp, scroll count, code);
dctl:=$output:=raw_chars (iocbp, "string", code);

The next HTB gives full ana specific aetails for a set of
window operations.

Each attachment of W~ maintains its own 'logical' cursor
w i th i n i ts \·d n do w • '•; ;., c an u e c ::: 11 c '. ~
curscr, ;:-~ ... ('.:.'.;: cur:ocr .::: L3<""J : .. eve:: l· riJ i.ci tly as characters are

10/02/cU

typecJ, deleted, etc. .1i"; in turn calls TC to position the"""
terminal cursor to some new absolute position. in: kno~.;s tile
position of its winaow on tne screen, and translates cursor
coordinates from tt1e relative (tl1e virtual screen it proviaes) to
the absolute. The lowest level (TC) will relocate the cursor by
the fastest motion - this is quite terminal dependent.

The logical window cursor rnay not be where the physical
terminal cursor is, since the most recent I/0 may have been in
some other window. ~~ must be aware of this possibility.
Suppose an application positions the cursor in one window, then
does some I/C in a dif·1·erent window, the some output in the first
window. W~ must cause the cursor to come back to where it thinks
it should be. The alternative is to have the caller of ~M Keep
track of the window containing the cursor, but this is an undue
buraen, is not modular (and may be impossible for the user to
fulfill). It is easy for Wh to do this. All attachments of 't.l•i
will share a common static pointer to the last IOCb tnat winaow
i/o was done on. If the ICCB is not the same as the curre~t
IOCB, then an absolute position is aone before further
operations.

~. TERMINAL CONTkOL

TC aeals with issues of padding, whitespace optimization,
and choice of optimal cursor movement. TC performs blocking on
behalf of ring 0 buffer management. TC also has the
responsibility for interface with Echo negotiation, and
ultimately, with that help, has the responsibility for producing
terminal input and echoing it.

wM calls TC as if it were another WM. Unlike
output terminal-specific escape sequences, not dctl

Wtvi, TC
calls.

will

The tty_ dim will implement TC. king zero tty 1noaules will
be run in raw mode, as all conversion will alreaay have been done
by i~M.

Like WM, TC will have an array of entry points implementing
terminal control operations. For most reasonable ter1ninals,
these entry points will be into tty , ',·1r1icii 1,1ill ir~terprt t the
TJ:'F, and output the appropriate escare sequences. f:.aci1
"unreasonable" terminal (such as the DELTA IJATA 4000, or the AL!.iS
980) will require a special module (a Terminal Control hoaule, or....,
TCM), analogous to an Emacs CTL.

page 1 O 10/02/Su

,...

MTb-461

The Multics SUPDUP USER will interpret ~UPDUP TD coaes
r e c i e v ea fro '.fl a f o r e i g n v i a e o pr o g r a rn , a n a c a 11 TC to p e r t' o r :n
screen manipulations on a Multics terminal.

Emacs itself will call TC, thus
writing Lisp-coded CTLs. A more
Em a c s i s to c a 11 'l'i f·, •

freeing Emacs users frorn
ambitious ~M is requirea if

TC rn a i n ta in s know 1 edge of the phys i ca 1 t er n1ina1 ' s cur so r
position, which can be read via the dctl $read cursorpos call.
TC performs relative and absolute cursor r11otion vTa the t\JO calls
dctl $position cursor and dctl $position cursor rel. TC
determines based on its own criteria or -optimality ana its
knowledge of the cursor position whether the terminal's absolute
or relative positioning should be used, or ·tabs, carriage
returns, or any or what combination of some or all of these
shoula be used.

The TC level is intended, we reiterate, to be called only by
totally video-intensive pro~rams (real-time viaeo euitors, user
SUfDUP, etc.), ana the WM level. It does not fit well within the
functionality ot' iox; like tt1e 3270 aim, it supports neither
get line, or any PL/I-file-like operations; its model is a
virtual video terminal, as opposed to a PL/I file, and the two
have little in comn:on: iox serves only to manaa;e instantiations
of terminal and I/0-controiling entities.

5.1. buffered Output

Unaer the normal mode of operation, each iox or dctl
operation will be sent out throu~h ring O as calls are made.
This may have performance implications. Since in many cases the
caller of TC will make several calls _in sucession, with only the
ultimate window state of interest, it is worthwhile to be able to
operate IC in a buffered mode, where requests are stored until a
write order is received, or the buffer fills, or some other event
occurs which makes it necessary to dump the buffer. Eufferea
mode gives permission to TC to buffer output, but does not impose
an ob 1 i g at ion on i./ ~; to do so .

There will be order calls to turn buffered mode on ana off,
and a dctl call to write the buffer.

Bu ff er in g w i 11 be done by TC . Each a t tac h men t of ',J iv, w i 11
cause the TC buffer to be flushea if it may contain characters
buffered on behalf ot' some other ~!Vi attacr1ment.

10/02/80

f':'IB-461

6. DEVICE INDEPENDENCE

All aevice inaependent sequences are stored in the .Systec;1
Terminal Type file, ana interpreted by TC. W~ must have some
information about the ~eneric capabilities of the terminal,
althou~h not about how the capabilities are invoked.

\.I l'i must know i r the term in a 1 is a b 1 e to over pr int , to s c r o 11
a winaow, to erase specific positions. It must know how the
terminal acts in the last column.

Some terminals will be so complex that they
described by the video info in the TTf. We expect
these terminals with special io modules (analagous to
by E~acs), but haven't defined these further.

7. Pf\Il'iTING TERhINALS

7.1. Line Editing on a Printing Terminal

cannot be
to support
CTL~. ;Jsed

Printing terminals dif.fer from viaeo terminals in that
(among other things) they can usually overorint, but can't delete
characters. This means that the line editor will not be able to
remove deleted cnaracters fruru the line. Insteao, a deletea
character will be overstruck with the erase character. The
cursor will remain over the deleted character. If further erase
characters are struck, then more characters will be overstruck.
If a printing character is hit, the terminal will linefeed, ana
characters will be echoed under the character they replace. This
is similar to Emacs use on a printing terminal now.

A kill character will echo as @, followed by a newline.

BS will echo as cursor motion.

page 12 lU/02/olJ

HT!:-461

b. QUESTIONS

How do yo u u s e a u a i t vJ i t h t h e w i n d o 1r1 s v s t e rn '?

how does this r'it with the AhSI X3.64 stanaara for video
control?

How can control dtld escape sequences be relia~ly sent and
receivea over networks~

