Multics Technical bulletin s TE-U461

To: Uistribution
From: Eernie Greenberg and Jim Lavis
Date: 10/02/30

Subject: A winagow Video System Implementation

1. INTKORDUCTION

This MTB proposes an implementation of a window vicec svstem
on Multics. A previous NMTB (45&) aescribed the purpose and
general nature of a window vigceo system, and must be reaa and
masterea first. Tnis “TE shows how suci a thing can be ccne.

Unfortunately, thnere are still some problems to be solved,.
A subsequent MTEB (462) proposes an interim system, sufficient for
the needs of the menu system, which also sidesteps the unsolved
problems.

Acknowledgement:

We would like to thank 0Olin S8Sibert and Lyman hazelton for
contrivuting to many of the ideas expressed nerein. We also owe
quite a bit to the ITS and Lisp tiachine output systewms, and the
ideas containea within CHRTSTY on ITS.

Send comments to:

the System M continuum >udd>m> jrd>mtgs>tv

or by kultics meil, on MIT or System i, to
Greenberg.pultics or JRDavis.lkultics

or by phone

Greenberg: (617)-492-9330 HViw 261-4330
Davis: (617)-492-4362 HVN 201-9y382
Mmultics Project 1internal working documentation. ot to Dbe

aistributed outside the Multics Project.

107027560 page 1

MTE-461

2. OVERVIEW OF THE PROPGSAL

The essense of the proposal is to implement windows by an
upward compatible extension of 1ox I1/0 switches. fach winaow
will correspond to a switch. Normal iox stream I1/0 will work
as it does on a terminal, ana additional features will be

accessed by a new subroutine similar to iox .

Once the switches are set up (by a subsystem or Dby
initialization of the process environment) for the reguired
windows, all tnat need be done 1s to route different outputs
through different 1o switches - the outputs will appear in
separate windows. After the initiasl setup, all that is required
is a call to 1ioa fswitch. kouting wvarious outputs through
different switches is a small modification to subsystems which
buys back great utility in a video-managed environment. 0On
printing terminals, "syn'ing all these switches to user output as
today retains today's tuncticnality with no loss of cenerality.

The Winaow system will be dividea into twc levels, each
implemented by an 1ox module, The 1tirst level, Wwincow
Management (Wh) makes terminal - independgent calls to the lower
level to 1implement 3 single window for a wuser application
program. Ekach attachment of Wi maintains a single window.
Attachments of wh are ignorant of other attachments, 1t any. The
second level, Terminal Control (TC) contains all

terminal-specitfic support, and 1is callec only by wi.

Normal user output will be routed through a aM attachment.
Subsystems whicn can use a video screen to advantage, as opposeaq
to those that manage one as tneir primary {function, can use H
attachments to Keep various forms of output visible
simultaneously. Ordinary ica <c¢alls (ioa sswitch) will suffice
to output to windows in this way. -

Applications can manage their screens by calls to «wWH.

Typical <c¢alls might create a window, position the cursor to some
location in the window, ana output some characters in the winaow.

To ceonform to practical limitations, we propose to limit
windows to non-overlapping, non-nested windows.

page 2 10/02/506

MTB=-461

3. BASIC WILLDOW MANAGEMERT

A program that wishes to use a window obtains one via 1ox_
attachment. Just as for any other use of iox , & new IGCL 1s
created and returned.

The usual i1ox operations are also definea tor windows.
Characters may be output by iox $put chars, and (atter output
conversion) appear on the screen, replacing whatever used to be
there. The window system will be controllea by 10X $modes ang
iox $control calls. A call to iox $get line returns a line (but
see Input Line Editting below). . -

3.1. Line Wrapping

Overlength lines will be wrapped, Jjust as today. &s much of
the line as will fit on the current terminal 1line 1s printed,
with the remainder of the line placed on the next line, preceeded
by the character seguence "\c¢". There has been no demand ror any
other sort of processing, although plausitle cpticns include a

user-settable "wrap character'; placing the wrap cnaracter at the
end of the 1line, insteaa of the begining of the new; and
truncating 1lines, rather than wrapping them. lhere 1is no

particular problem in adding these, 1 need ever arises.

At all times, the window virtual cursor should be at the row
and column where the next character will go. Printing &
character in column N also moves the cursor to column HW+1. (Somne
characters occupy multiple cclumns, since they print as escape
sequences, and others may occupy no column, Ltut that doesn't
matter here.) But where should the cursor go when a character is
printed in the last column? (assume 80, for this discussion.)
The next character will be printed on the next line, so perhaps
an implicit Ck-LF should te done? but this is wrong, since if
the user ends an 80 character string with a kEWLILE (as is
proper) this will cause an extra tlank line. Insteac, we propose
that when a character is printed in the last column (say, &0),
the window cursor aavances to a "phantom" column (381). If no
cursor motion commands are received, line wrapping will be done
when the next character 1s received. This allows the use of the
full width of the window.

The phantom column will be treated like any other column tcr
the purposes of cursor motion, and the user wno calls the window
system to ask tor the position of the cursor nmust be prepared to
be told it is in column 81.

ko
o
§je]

16702780 ge 3

F

Th=461

This scheme is a 1little tricky to implement on todays
terminals, ©Dbecause they do not behave uniformly when a character
is printed in the last column. In all otner columns, printing &
character causes tlie cursor to move to the right, into the colunn
where the next character will go. When a character is printed in
the last column, some terminals put the cursor in a "phantom"
column (the VIP 7801 and tne VIP 720U). The cursor may be moved
at this point (usually to the next line, bv a Ck-LF trom the
host), but if it is not, an implicit CR-LF 1s done when the next
orinting character 1is recieved. Uther terminals (LDELTA LATA
4OU0) do the implicit CR-LF when the s0th column is used.

Emacs solves this problem by wusing windows that are 7y
characters wide (on an 80 character terminal), so that there will
always Dbe a "next column" thet will to sat= Lo wove into, ¢
will soclve i1t uv rsoulin~ inter-atlun =ooub end ot line behavicr o
the Tir, perore tunls can be made speclific, auditicnal teruiinals
must be studied. The scheme we propose will work i1ine cn the two
VIPs mentionea above, and other terminals will work 1t used with
a shorter line length.

2,2, Character Conversion

Qutput conversion will bLe done in accoraance with the
terminal type t{ile <conversion tables, just as today. T1hese
converslion tables must be expanded to cover the full ranze of the
Multies (9-bit) Character Set.

There are some chanzes to the conversion tables that are
appropriate tor video «aevices, for the ASCII format effectors.
Some, such as SPACE, TAB, and Lr have obvious <translations into
cursor movement. WM will scan ocutput for successive use ol these
characters and {(where possible) output a single cursor
positioning command. The other format etfectors (BS, vT, FF, and
CR) will ve displayea as escape sequences,.

MTB-461

3.3. MORE Processing

In our proposal, The user will strike SPACE to continue
output, or strike KETUKki to abort output. Any other character
will cause the terminal bell to ring.

It the response to MOKE is negative, program interrupt will
be signalled. Multics commands which handle program interrupt
(subsystems) usually do so by resuming their input 1loop. The
Multics command processcr must be changed to handle the condition
for the sake of those commands which do not handle pi now - this
should be equivalent to the command abort condition. The user
has indicated that the remaining output of the command 1is
uninteresting, so the commana should return.

More processing will be determined by the "more" mode, which
is on by default, except on printing terminals.

Further control of more processing might include user
settable prompt string tor the MOKE processor and user settable
characters ifor the two responses. A subsystem wmight want to
handle more processing itself. This could be done by rewurning
an error code frem the iox sput chars call or signalling a
concition, or perhaps by calling & user supplied entry point. we
inake no proposal to supply this now.

-

3.4, End of Window Processing

We will support three modes of operation for end of window

processing. The user or application selects the desired option
by an iox mode call. we define a new mode, called "more mode",
which can take on one of three values, "scroll", "wrap", or
"clear". The notion of an iox mode taking on values 1s not new,
since the "11" mode does that now, as does the audit trigger
mode. we will use the syntax convention established “ by the
audit dim, and write T'more mode=zwrap" in the mode string. A
subroutine has been «designed to parse mode strings in this
syntax, and will ©pe useful to other io modules, as well as any

command that has a mode string argument.

The default mode will ©be more_mode:scroll for terminals
with insert-delete lines, and more_mode=wrap for all others.

An attempt to select scroll mode for a terminal without
insert-delete 1lines will be in error. (The TTIF tells whether a
terminal supports insert-delete lines, and a control order is
provided to zllow the user to enquire.)

16702750

ko]

m

Ju

T

[Ox

MTE=-461

3.5. Handling QUIT

MOKRE processing oftfers a new way to discard output of
programs, and will serve one of the purposes ot QUIT. Eut
programs must still be interrupted, so QUIT is still needed. The
behavior of QUIT on Multics causes several problems today. The
standard Multies handler for quit eventuzlly passes iox a
resetwrite order, which in turn is passed into ring 0, and out to
the FNiP.

The tirst problem is that the program executing when a QUIT
(ips) signal occurs may not be the cne that procuced the output
that prompted the wuser tc strike QUIT. lievertheless the
resetwrite discards &ll penaing output, weven that of the
"innocent" program. There 1is nc concept in the 1o svstem ol what
"program" produced which 'output" (except for use of dedicatecd
switches, now possible via the window system). The wWworst case ot
this now is when message ocutput is lost.

A second problem 1s that when a "resetwrite" 1is 9passed to

the FNP it stops its output immeciately. It is possible to stop
output while in the wmiadle otf a wmultiple character terminal
control sequence, The resulting terminal state 1is undefinea,

Users of the Honeywell VIF 7601 mwmay have noticea that the
terminal sometimes beeps, and flashes "IHVALID CUMMANLY, retusing
toc dc anything untlil reset. Other terminals have similar
problems. Furthermore, there is no way ifor ring U or ring 4 to
know just how many characters were actually sent to the terminal,
sSo tfthe screen contents and cursor location become uncefined as
well,

A third problem with resetwrites is that occasionally the
resetwrite also resets characters written after the reset order
itself. Emacs users who have hit QUIT may have noticed that the
screen 1is not always clearec betore entering a new commana level,
This is because thie screen-clearing character is discarded. This
problem is due to an MCS design problem.,

The grave lack ot MCS resources makes it appropriate to 1tix
these problems in ring four.

Until the FHNP can be made aware of cursor position ana the
indivisibility of <certain character sequences, it is iwperative

that resetwrite orders notv be sent to ring 0. This means that
there 1s no way f{or the user to stop output that is alreacy "“on
route" to the terminal. Fortunately, wh Wwill never send more

than one window full of ocutput at a given time,.

page © 10/62/760

‘

MTB=-461

Some printing terminals also have ocutput escape seguences.
Normally, printing terminals are run without MORE processins. we
can choose Lo senc the resetwrite (thus possibly interrupting a
multi-character escape sequence), or not send i1t (and all pending
cutput in ring € will still be sent. We don't know whicih choice
is better (per terminal).

.6. Contrcl of Asynchronous Qutput

Ca)

A problem with the current outputft system is that output can
appear while the user 1s blocked for output, For example, during
the printing of a lengthy segment, the user umay go blocked for
output. An IPC wakeup can arrive at this point (e.g. a message)
and the output will appear in the midale of the segment being
printed.

A second kind ot asynchronous event 1is the IPS signezl. This
includes QUIT handling (printing "QUIT") and "alrm" anc ‘“cput"
timers. CQCutput from IPS programs (e.z. memo, blip) is harder to
handle because it can come at any time, not just when the process
is blocked. The window system can be interrupted at any time,
possibly with the window data 1in an inconsistent state. IPS
interrupts coula be masked, but that might 1mpose perrormance
problems.

Wwe do not know now to handle asynchronous output at this
time. A& particularly hard problem 1s what to do when output
arrives during MOhE processing. we will try avolding this Dby
masking ipc_ during HURE walts.

3.7. User Input

Programs can get input from the window system in & variety
of ways. The simplest, and most common, 1s to call
iox $get line. Tnis will invoke the line editor (see below).

A call to iox $get chars will always return exactly one

character. Since the system operates in brezkall wmocde, there 1is
no need to wait tor & newline. Characters returned are not
echoed.

An important feature of the get chars czll 1s that it never
returns more than one character. This is essentizsl to zllow
type-ahead to work. OCtherwise, 1i' the the user were typing

10702780 page 7

FMTL=-461

ahead, it would ©obe possible rfor the caller to inacvertantly
“"gobble" input intended tor some other program. As 1t 1is,
type-ahead will not be echoed ahead. Characters will be echoea
when tney are read. The alternative 1is to echio characters
"blindly", and thus occasionally 1in the wrong place or in the
wrong way. wne prefer the conservatlive approact, and most
operating systems providing video support make the same choice.

At some point we might consider a scheme allowing "wronz"

echoing to Le '"rolled back" upon notification from ring fcur that
the "naive" echo-aheac was incorrecet.

3.8. Input Lirne Editing

WM will provide line-editing input for all callers of
iox Sget line. WM will set characters from TC, wrap or scroll or

"\¢™ s lines ©pass the right margin, and so forth. am will
perform all erase and kill processing 1in real time, via
ecnc-negotiation, wnen tne usSer sirixkes newline, the line 1is

returned to the caller.

The current ecno-negotiaticn interface allows for simple i
(rubout) ©processing to be done vy ring zero or the FLP- althouzn
not currently implemented, tnis again cen be done as resources
permit,

The BS cnaracter will echo as an escape seguence, The
eaitor will canonicalize the line before returning it.

The line editor will keep track of the 1line ©Uveing edited.
The 1input line may extend across several screen lines. I the
cursor is at the left edge of & screen 1line, and the erase
character 1s struck, the cursor nmust move tLo the right edge of
the preceeding line,.

There are some unsolved problems with the editor:

It is likely that users may want to supply their own
editors. This snould be possible.

It isn't clear what to do 1if the input line can't fit on thne
whole window.

As mentioned above, the editcr uses echo negotiation. Users
may want to use echo negotiation as well, for example, to do
command completion (where you need only type enough of the name
of a command to make 1t unique, strike some key, and the system
completes the name, or tells you that the name wasn't unigue).
It shoula be possible to save and restore the table of vrezk

page 8 10/02/8G

MTB-461

characters for echo negotiatea input.

4, ADVANCED WINDOW USAGE

All the feature thus far describea are available to all
callers of the winaow system, even if they are unaware ot callinsg

it. but tor those programs that will Usenetit rfrom a video
interface, we provide 1tacilities Tor manipulating the screen
itself. A window 1is & superset of a sequential input/output

device, and additional cperations are provided for windows that
do not correspond to current iox calls., These operations work
on the virtual screen provided by each window,.

we propose an interface, very much like that of 1iox . An
array of entry wvariables (like iox entry variables) wWill bpe
accesible rrom the attach data of the ICCH for the window
attachment. Also like 1ox , these entries will be callable
throuzh a transter vector, which we call dectl . The array or
entry variables is called a Video Control Block (vco).

These calls could be addea to iox itselr, but since they
apply only to video terminals we feel it is mcre approbriate to
access them through a diiferent name. It would also be possicile
to access these functions tv iox control orders, but this would
require the programmer to allocate anu fill structures for each
call. Tnis would be far 1less convenient than the subroutine
interface, and less efficient as well.

We don't give all the subroutine interfaces nere, only
enough to give the "flavor" c¢f the 1intertace. All the
subroutines have a first argument which 1is the IOCE for the
window switch, and a last argument which is a standard systeun
error code.

dectl $position cursor (iocbp, xpos, ypos, code);
dectl shome (iocop, code);

detl §$clear to end of line (iocbp, code);

dctl jclear winaow (iocbp, code);

detl $clear to enda of window (iocbp, code);

detl $scroll winaow (TIocctp, scroll count, cocae);
detl $output raw chars (iocop, "string", code);

The next MITE gives tull anu specitic aetails for a set of
window operations.

Each attachment of Wi maintains 1its own 'losgical' cursor
within 1its window. whoocan be collew oy-licinly Lo noeve Lio=
curser, o U curser lzo Loves Loollicltly as chniaracters are

16702780 paze v

MTb=401

typed, aeleted, etc,. «¥ in turn calls TC to position the
terminal cursor to some new absolute position. Wi Knows the
position of 1its winaow on thne screen, and translates cursor
coordinates trom tne relative (tne virtual screen it proviaes) to
the absolute, The lowest level (TC) will relocate the cursor by
the fastest motion - this 1s gquite terminal dependent.

The logical window cursor may not be where the physical
terminal cursor 1s, since the most recent I/0 may have been in
some other window. Wi must be aware oif this possibility.
Suppose an application positions the cursor in one winaow, then
does some I/C in a ditfterent window, the some output in the first
window. Wik must cause the cursor to couie back to where it thinks
it should be. The alternative 1s to have the caller ot WM Keep
track of the window containing the cursor, but this is an undue
purden, 1is not moduler (and may be impocssible for the user to
fulfill). It 1is easy for WM to do tnis. All attachments of wh
will share a common static pointer to the last ICCh that winaow
1/0 was done on, I the ICCB 1s not the same as the current
I0CB, then an absclute position 1is aone betfore rurther
operations.

5., TERMINAL COHTHOL

TC aeals with 1ssues of padcding, whitespace optimization,
and cholce of optimal cursor movement. TC performs blocxking on
behalf of ring 0 buffer mwmanagement, TcC also has the
responsibility for intertace with Echo negotiation, and

ultimately, with that help, has the responsibility for producing
terminal input and echoing it.

WM calls TC as if it were another WM. Unlike WM, TC will
cutput terminal-specific escape sequences, not detl calls.

The tty dim will implement TC. king zerc tty wogules will
be run in raw wode, as all conversion will alreaay have Deen done
by Wh.

Like WM, TC will have an array of entry points implementing

terminal control operations. For most reasonable teruminals,
these entry points will Ce into tty , wihicii will interpret the
1TF, and cutput the appropriate escape sequences. kEach

"unreasonable" terminal (such as the DELTA LATA 4GG0, or the ALLS
980) will require a special module (a Terminal Control Moaule, or
TCH), analogous to an Emacs CTL,

page 10 10/02/7cU

MTb-461

The Multics SUPLUP USEKR will interpret SUFDUF TLD coces
recievea Ifrom a toreilgn viaeo program, ana call TC to pertorm
screen manipulations on a Multics terminal.

Emacs itself will call 1IC, thus tftreeing Ewmacs users f{rou
writing Lisp-coded CiLs. A more ambitious WM 1s requirea 1t
Emacs 1s to call wh.

TC mwaintains kKnowledge of the physical terminal's cursor

positicn, which c¢an be read via the detl $read cursorpos call,
TC performs relative and absolute cursor motion via the two calls
detl $position cursor and detl 3position cursor rel. TC

determines based on its own criteria ot “optimality ana its
Kknowledge of the cursor position whether the terminal's absolute
or relative npositioning should be wused, or -tabs, carriasze
returns, or any or what combination of some or all of these
should be used.

The TC level is intended, we reiterate, to te called only by
totally video-intensive prcagrams (real-time video editors, user
SurbuUP, etc.,), ana the WM level. It does not fit well within the
functionality ot 1ox ; 1like the 3270 dim, it supports neither
get line, or any PL/I-file-like operations; 1its model is a
virtual video terminal, as opposed to a PL/I file, and the two
have little in common: iox serves only to manage 1instantiations
of terminal and I/0-controlling entities.

5.1. buffered Output

Under the normal nmnmode of operation, each 1iox or dectl
operation will be sent out throuzh ring 0 as calls are made.
This may have performance implications. Since in many cases the
caller of TC will make several calls in sucession, with only the
ultimate window state of interest, it is worthwhile to be able to
operate TC in a pbuffered mode, where requéests are stored until a
Wwrite order 1s received, or the pufter rills, or some other event
occurs which makes it necessary to dump the butfer. Euttferea
mode gives permission to TC to butter output, but does not 1impose
an obligation on WM to GO sO. '

There will be order calls to turn bufterea mode on ana otf,
and a dectl call to write the buffer,

Butfering will be done by TC. Each attachment of Wk will

cause the TC buffer to be flushea if it may contain characters
buffered on behalf ot some other WM attachment.

10/02/760 paze 11

MIb=-461

6. DEVICE INDEFEWDENCE

All gevice incependent seguences are stored 1n the Systeu
Terminal Type rile, ana interpretec by TC. Wik must have sone
information about the generic capabilities ot the terwinal,
although ncot about how the capabllities are invoked.

WM must Kknow it the terminal 1s able to overprint, to scroll
a window, to erase specitic positions. It wust know how the
terminal acts in the last column.

Some terminals will be so complex that they cannot be
described by the video into in the TiF. We expect tc support
these terminals with special io modules (analagous to CTL: used
by Emacs), but haven't detined these further.

7. PxINTING TERMIKALS

7.1. Line Editing on a Printing Terminal

ﬂ

Printing terminzls dJdiffer rIrom videco terminals in tnat
(among otner things) they can usually overorint, tut can't delete
characters. This means that the line editor will not pe able to
remove deleted chnaracters from the line. Insteaa, a deleteaq
character will Dbe overstruck with the erase character. The
cursor will remain over the deleted character. 1If further erase
characters are struck, then more characters will be cverstruck.
It @ printing character 1is hit, the terminal will 1linefeed, ang
characters will be echoed under the character they replace. This
1s similar to Emacs use on a printing terminal now.

7

A kill character will echo as &, followed by a newline.

BS will echo as cursor motion,

pafe 1z 16/6z2/750U

MTB=-461

How

how
control?

How
recelved

. QUESTIONS

do you use augit with

does this 11t with the

can control and escape
over networks?

the window svstem?

AW3SI X3.04

sequences

be

standara

rellably

tor

sent

video

and

