
Multics Technical bulletin

To: Distribution

From: Bernie Greenberg and Jim Davis

Date: 10/01/80

Subject: Towards a Windowed Video System

1. INTRODUCTION

This MTB introduces the concept of a video window system.
system supports the special features of viaeo terminals
independent fashion, while ameliorating their disadvantages •. A
will propose an implementation. This MTB serves only to define

A video window
in a terminal
subsequent MTB

the issues.

Unfortunately, there are still some problems to be solved. This HTB
hopefully is a complete description of the things such a system should do, and
of the issues involved, and offers some answers for the problems we do
understand. Hore thinking can follow from the foundation we lay here.

Send comments to:

the System M continuum >udd>m>jrd>mtgs>tv

or by Kuitics mail, on MIT or System M, to
Greenberg.Multics or JRuavis.Multics

or by phone
Greenberg: (617)-492-9330 HVN 261-9330
Davis: (617)-492-9382 HVN 261-9382

2. MOTIVATION

~ideo terminals are becoming universal on Multics. They are cheaper,
quieter, faster, and more reliable than printing terminals. In addition, the
advent of Emacs has brought even more video terminals to Multics.
Unfortunately, except for Emacs, Multics currently treats video terminals in
almost exactly the same way it treats printinr, terminals (other than the most
rudimentary Ena of Page processing).

Usea in this way, video terminals have two significant drawbacks. The
first is that as lines are sent to the terminal, older, perhaps still useful
information quickly scrolls off the top of the screen and is lost. The secona
weakness is tl:at al1:.0st b]J. vit;Po t~r: .. ir1~ls Er£· un~Gle to overstrike. Multics
goes to great lengths to ensure that "what you see is what you get•, but the
rules appropriate for an overstriking printing terminal simply cannot work on
video terminals in use today.

The existence of Emacs shows that video terminals can be used in ways that
more than compensate for their weaknesses and in fact far surpass anything
possible on a printing terminal. This ·power is based on the ability of video
terminals to selectively write, clear, and re-write different areas of the
screen, offering a chance to display the information that the user wants to see
continuously.

Current readily available video terminals offer no feature to compensate
for the inability to overstrike. This is due to the economics of memory for a
terminal. There is no inherent reason why overstriking cannot be done on a
video device, but tne memory neeaed to hold the aaditional characters would make
the terminal cost more than people are willing to pay for the feature. We can
look to the time when costs will go down, and this feature will be available
again. In the meantime, this suggests tl1at rules for treating overstriking
shoula change incompatibly for ~ terminals. TfiTS"""iSCfiscussed below.

Multics FroJect internal working dncuruental1on. Not to be a1str1Luled outs1ae
the Multics Project.

10/01/60 page 1

3. ThE CONCEPT OF A wINDOW

The basis for the use of screens is the idea of a window - a (rectangular)
area of the screen that is itself a "virtual screen". ~may be many windows
visible ~n one terminal screen at one time. Different windows may contain
different interactions (possibly from different programs) for different
purposes.

There is much flexibility possible in the definition of a window; Windows
that. do not ext~nd clear across the screen, and windows that exist but lie
partially or fully "buried" under other windows are all reasonable to consider.
In some systems, windows may be nested within other windows.

·Output in a window is confined to that window. Output stops when a window
is filled, unt~l the user has read it all, then it resumes. (Optionally unseen
output may be discarded.) Input is edited on a real . time basis (as in Emacs
today). The rest of this section describes the features of a window system.

3.1. Output Conversion

Output Conversion is the conversion of characters in text to a displayable
form, for example, displaying ASCII Form Feed (14 octal) as \014 or on an IBM
2741, displaying Left Bracket as a cent-sign followed by a less-than 'character.
Output Conversion also includes wrapping over-length lines, and placing a "\c"
on the beginning of the new line.

The ring zero TT! DIM does output conversion now.

3.2. End of Page

The system must remove output from a window to make roo~ for new output.
There are three ways to do this.

One option is to scroll output off the top of the window. Almost all video
terminals, even those without cursor addressability features, will scroll
continuously when fed output consisting of lines ending in linefeeos. Most
scroll oy one line, at least one scrolls by four. Scrolling a window smaller
than the full screen is only feasible if the terminal has the ability to insert
and delete lines or the line speed is 9600 baua or above. without the
insert-delete lines feature, the entire window must be re-written. In the
single case where there is one window which covers the whole screen, the
terminal's inherent ability to scroll can be used. It isn't obvious how to use
this feature though, given that windows can change size, shape, location, and
number after creation. A winaow that starts out covering the full screen may
not always do so.

A second option is to move the cursor to the top of the window, and begin
output from there, overwriting lines. There are some who feel this is easier to
read than scrolled output, since the lines aon't move across the screen. In
many cases, the user will be perusing a large file. This mode resembles reading
output a page at a time.

A third option is to clear the window, and begin from the top.

3.3. MORE Processing

"MORE" processing is that window management function which is invoked when
an attempt is made to sequentially output more text than will fit in a certain
window. More processing halts the cutout at the bottom of the window to allow
the user to inspect (read) the window contents, and acknowledge having read it,
before the next windowful is displayed.

~ultics does a crude form of this on terminals in "page length"
printing "EDP" when output has filled a screen (which is a degenerate
window). lhe user acknowledges having "read" the window by hitting a
or newline. ALL process output stops until that formfeed has been hit.

mode by
case of a

formf eeo

Host systems that claim to support video terminals say "MOHE?" or something
equivalent when MORE processing is invoked, telling the user that more follows.
A space is a common acknowleagement character, aue•to its ease of typing.
Proper MOkE processing involves the option of hitting some other character to
say "no more, I don't want to see the rest of t~is thinP." On Multics today,
this can only be done by hitting UUIT, which is treacherous, because
unanticipated error messaRes or, worse yet, console messaRes; can be thrown away
with no indication that they were lost.

10/!Jl/80

-

MTB-458

3.4. Input Editing

By now the idea of real-time input editing should be familiar. One of the
fundamental concepts or· the Multics input system is that "what you see is
what you get". It is possible to implement that concept by using the ability of
display terminals to selectively erase unwanted input. In Emacs, g and Y really
remove characters from the screen, and this should be true in the window systefu
as well.

The editor should support erase and kill, an input escape character, and
offer some way of recovering a killed line. The editor can be arbitrarily
powerful. Word-delete is a reasonable next step. So is the ability to insert
text in the middle of a line (rather than just at the end). une hard problem is
deciding how to control the editor. Emacs uses ASCII control characters, but
these are reserved for line, device, and protocol control by the standard. It
seems even less good to use printing characters for editing.

Real time erase and kill processing is an IN~OMPATibLE, though minor,
change to input canonicalization. Under the present scheme, an erase character
can itself De overstruck with a printing character, thus changing its effect
from deleting the character to the left to deleting the character it was
overstruck with. In effect, this is a way or cancellinR an erase character.
The difference between current input schemes and a real-time editor is that in
the current scheme you overstrike an erase character to "discard" it, in a
real-time editor you undo what it did by recalling the text.

Similarly, under
an erase character.
possibility is that
killea line.

the current scheme a kill character can be overstruck with
We don't say here how to un-kill a line, but one

a line may be un-killed by typing an erase character on a

The audit editor shows that it is useful to make previous input lines
editable, so that the user can correct errors and resubmit command lines with
minimal typing.

4. SCEllARIOS

Here we give a few of the ways that windows might be employed:

In the simplest scenario, a window is just a stream output device. Output
appears in the window, and scrolls towards the top. This is what Multics offers
today, augmented with MORE processin~ and input editing.

The next step is to create multiple windows.

The probe aebu~ger could utilize multiple windows very effectively.
Interactive dialog might go in one window, the current source in a second
window, and the values of variables might be displayed in another. Octal
dumping might well go in a fourth, optional, winaow, stack traces in a fifth,
etc. The Emacs Lisp-debug moae demonstrates how useful and powerful such an
environment is. Similar debuggers exist on other systems. A sample screen
appears at the end of this aocument.

The most powerful use of the window system will be by programs that take
advantage of the ability to move the cursor about, re-write selected areas of
the screen, and so on. Such programs will "know" that they have a video device
at their disposal, and will perhaps also have to fino reasonable ways of
behaving on non-video devices as well.

A mail reading
one window, with
the mail itself was
window, with ·the
entered.

program might keep a list of the contents of the mailbox in
a moving cursor to indicate which mail was being read, while
in a second window. A reply would be entered in a third
original still visible for reference as the response was

Emacs could take advantage o(window support, which it provides for itself
now.

Finally, there is the menu system, which uses one window for display of a
menu and a secona for output from the commands.

The common ractor in all these scenarios is that
spatially. Information that is important to the user
a tixed location, and is easy to locate. Transient or
somewhere else, out of the way, in a separate window,
window without affecting the important data.

10/01/80

the screen is divided
remains on the screen, in
unimportant location is
and it scrolls out of its

page 3

5. LIMITS OF WINDOWS

A liindow Video system can do things that can't be done without ON, t.ut the
cicldr:o fe2turf•S ~.1..,11't l'C'·.•1: fur fr(t. 1hc- ~ind~; c.r windows that can be supported
with tolerable efficiency depends strongly on the terminal and the line speed.

It is an absolute reqyirement that the terminal and communications line be
asynchronous and full duplex. At a minimum, the terminal must have an
aadressable cursor. If the line speed is 9&00 baud or greater, then other
features may be absent. At any lower speed, the ability to clear to the end of
a line is required. MTB 419 sets out the requirements of a viueo environment
for terminal features.

A terminal without the ability to insert and delete lines cannot fully
support more than one window unless the line speed is greater than 9600 baud,
because inserting or deleting lines may (in the worst case) involve transmission
of hundreds of characters. At line speeds below 9600 baud, the transmission
delay is unacceptable.

Given the ability to insert and delete lines, multiple windows can be
supported reasonably well at 1200 baud, provided that the windows extend across
the full width of the screen. These •vertically star~ed" windows are the kind
provided by Emacs.

A second limit to windows is the size of the screen. A 24x80 cannot
comfortably be used with more than three windows, because there isn't enough
room for an interesting amount of data in the windows. Some terminals, (e.g.,
the HIS! VIP7801 (some models) and the Delta Data 4000), support "multiple
pages", i.e., memories larper than the screen, but this does not increase the
visible area at all. At best, given very sophisticated display management, such
memory can be used to optimize user waiting time, but its use as a user-visible
interactive feature seems inadvisable.

It is also appropriate to consider bit-map displays. A bit-map display is
a type of video display composed not of characters but of points, arranged in a
matrix, typically 1024x512 points. Although no such device is used with Multics
toaay, there is reason to believe one may be in the future. bit-m~p displays
can display text i~ arLitrary font~, sizes, positions, and orientations.
Lecause they have more points on them then ASCII CRTs do, they can display a
full page of text; and many more windows than will fit on a 24x80 CRT. Finally,
both line and grey-scale graphics may be freely mixea with text. Window systems
were originally devised for bit-map displays. If Multics ever gets bit-map
aisplays, the window system must bE!'able to support them.

6. THE BACKSPACE PROBLEM

As mentioned above, video terminals now available can't overstrike.
Overstrikes are used for three main purposes: characters are overstruck by the
erase character to erase them; overstruck with underscores to underline them;
and overstruck to form characters the terminal can't print (i.e. APL).

Input editing meets the need for rubout, it remains to deal with
underlining and overprinting.

First, although some terminals (e.g. the VIP7801) have a "forms"
capability that can represent underlined text, these features are so difficult
to use and so variable from terminal to terminal that they are useless. There
is no special case for underlining of ~hich we can take advantage.

Overprinting is done usinr, the ASCII &S character. On a printing terminal,
this character moves the "cursor" backward. If the cursor is moved backwards on
a video terminal, the previous contents will be destroyed by the next character
output. ~e propose to display the BS as an escape sequence. hather than
display the octal escape ("\010"), which is fairly meaningless, we propose a
new, more mnemonic sequence: "\BS". This convention can be extended for all
other non-printing ASCII characters.

One alternative for input of BS is to treat it as an erase character. This
has been proposed by users of Multics before, and does ensure that "what you see
is what you get•. It is in the MHY PFS. The disadvantage of this is that this
changes the meaning of BS, leaving no way to input text that will be overstruck.
Also, when video terminals that can overprint appear, users will have to change
thir habits again.

A second alternative is to move the cursor to the left (like Emacs ~B)
Printing characters would self-insert, rather than overstrike. This is only
possible if the editor is extended to allow middle-of-line editing.

One option offered by Emacs is to suppress the display of backspace.
Successive overstruck characters will appear next. to each other. Yor example,
the word "Seem" overstruck with underscores, would be represented as "S e e m".

page II 10/01/80

kTB-4158

This has the advantap,e of keeping all characters on the screen, but it takes:r·.,U.P
extra screen positions. Formatteo text lines displayed in this way seem to ·b'e-··
overlenp,th, thoup,h they fit in their specified lenr,ths when printed. · In
addition, the user can't tell whether a string is really overstruck, or just
"funny looking". (!-'or example, the string "S eeiii" used . above is
indistingl}isable from ~· to an Emacs user is thismod"e:)

The best we can do for APL is to.define printable output escape sequences.
This will be hard to understand, but better than any other possible result.

7. FUkTHER EXTENSION

7.1. Piece of Paper Management

Useful information stays visible longer when multiple windows are used then
when they are not, but it will always be the case that there will be more worth
saying than room to say it in. On a printing terminal the user can search back
through the paper for something previously printed, On a vioeo terminal the
information is gone (unless the audit dim is being used). A window system can
address this problem by what we call "Piece of Paper Management" (PPM).

The basic idea here is to implement a virtual screen larger than a real
screen, or in general, larger than the virtual screen on wliTC'ii""lt is displayed.
A "piece or paper" is like an editor buffer, it has a given content at all
times, cooroinates within it, and a "c'urrent position" •. A given piece of paper
can be on display or not at any given time. The dynamic bindings of pieces of
paper to windows allows a great deal of flexibility.

To implement PPM with any efficiency requires a Redisplay function.
kedisplay is the procedure which updates a winaow (or screen) contents by
comparison of its known contents with an imar,e of "what it should look like",
and using character-by-character, line-by-line, or better, comparison techniques
to determine how best to make the window look like it should. Redisplay
minimizes the number of characters sent to the terminal to update the screen,
because of line speed limitations. Redisplays generally involve tremendous
complexity to minimize terminal output, cursor motion, and computation time.

It isn't clear what functions PPM should try to perform. It should be
possible to scroll backwards through paper, to see previous output. Should the
user ask the application to scroll, or should s/lle communicate directly with the
window system for this. Does scrolling backwards also move the cursor? If so,
where ooes output go when the cursor is not at the end of the paper? If not,
does the cursor vanish? If the paper contains user input requests, it would
clearly be desirable to be able to "pick up" previous input for re-entry. ls it
meaningful to alter a transcript of user output? The design we present allows
for eoiting an input line. An extension -to editting buffers is reasonable
(think of seno mail). ~oes this·commit us to re-implementing Emacs, or at least
its lower founaations?

1.2. DESK MANAGEMENT

Windows are created, can chan~e size and position, and are oestroyed.
Since all winaows share the space of one terminal, changes in one window effect
other windows. Desk Management coordinates this for the user.

we don't know what Desk Management should do.

When a new window is created, wh•re does it get its space from? Does it
replace one or more existing windows, or do some windows shrink to provide space
for it? How can the user control the size and position of winoows? Is the size
and position of windows controlled by the application, the user, or both?

When a window is destroyed, what becomes of its space? Is it divided
evenly among all, or split with its neighbors? Is there a way to bequest space
to the winoow that "most deserves" the space?

Emacs attempts to answer some of these questions with "pop-up" windows and
the "window editor". It's not clear what the answers are.

One service the Desk Kanager can perform is to optionally display vi~ual
window separators.

We don't know how subsystems that use windows should behave with respect to
each other, Tbis isn't a problem we have to solve, except that we have to
ensure that it is possible to do whatever is "rir,ht", For example, if there are
some windows on the screen, and the user invokes read mail, does read mail have
the ripht to use the entire screen? ·If so, does it -have the obliiation to
restore the previous winaow contents (or at least configuration) when through?
lf read mail doesn't have the rir,ht to the whole screen, how ooes it know its
limits?- How do you use video_probe on vioeo_read_mail?

10/01/80 page 5

1.3. Visual Attributes

Many terminals today can display text in ways other than white letters on a
black screen le.R. hiRh intensity, low intensity, inverse video, underlined,
blinkinR;- etc.) These attributes are often used for forms input. It is
important to support these features in a terminal independant way, since Multics
needs a forms facility.

Terminals also have simple graphics capability.
addressed by the Multics Graphics System.

This is perhaps better

~e don't know best to define a "virtual" visual attributes terminal. The
design should be easy to use, and implementable on most terminals. A second
problem is that terminals are highly variable in their support of these
features, and it will be hard to find a scheme for describing terminals suitable
for the TTF.

7.ij. Hierarchical Windows

Nested windows can be useful. For example, read mail might want to display
a mode line showing author and subject of the current-piece of mail. This is
most easily done witn a window within a window. It's hard to define the
behavior of heirarchical windows. If a window is cleared, should all inferior
windows be cleared? How can the user see output •under" an inferior window?

There are many more questions about heirarchical windows, but since no
device with enough resolution to be useful with overlapping windows is likely
soon, we won't consider them further.

8. SAMPLE SCREENS

+----------------------------------+--+ b
5
ij
3
2 ,

thrint (line 259)
comman3 processor 11100b
abbrev T7507 -
listen-1775b
process overseer 137773
user_inTt_admin_Tij2370

' ' 1. I

bmp = ij32:1127l27)
i = 17

+----------------------------------+--+ if p -> std symbol heaoer.identifier = "bind map" then do;
bmp = aoarel (p~ p -> std symbol header.area pointer);
i = bmp -> bindmap.n components;- -
if comp ·= 0 then -

: if comp > i then call com err (0, "thrint " "only ·d components in
:\c ·a" i ent)· - -
: eise·' call pst head (aodrel (p, bmp -> bindmap.component (comp) .symb_star
: \ct), -
: addrel (p, bmp -> bindmap.component (comp).name ptr), ! fixed .(bmp -> bindmap.component (comp).name_lng~ 17, O));
I

+---+ stack
v bmp
v 1

o I
I I

+---+

10/CJl/b(J

~16-45b

+---+

' '

rn# lines From
1 (1~) Keith Laumer (Laumer.Multics) Hetief ~eries Sequel

>2 (3) Carry.Multics Carry of vtie.pll
3 (11) Olin Sibert (Sibert.MultAdmin)buR in Probe
4 (25) Sendak.Wild Forest Access Needed

'---:
From: Carry.Multics
Date: 23 March 19b1
Subject: Carry of vtie.pll

Sorry, I could not carry vtie.pll to MISL-Multics, because I don't have
access to the containing dir (>udd>rn>Ossining).

,---
To: Carry.Multics
From: OssininR.MUltics (James Ossining)
Subject: he: Carry of vtie.pl1

Oops I will fix that. Please try again.

+---+

9. QUESTIONS

How does this fit into DSA?

If the terminal has additional character sets, how can they be accessed?

How can the terminal status line ("25th line ") be accessed in a uniform
way?

