
MULTICS TECHNICAL BULLETIN

To: MTB Distribution

From: T. Casey and R. Mullen

Date: 14 May 1980

Subject: Answering service performance study

1. INTRODUCTION

This memo describes some answering service performance problems
that have been observed on several service systems (both internal
Honeywell and customer systems). It outlines our initial approach
to the study of these problems, and the search for solutions to
them.

Briefly, the problem seems to be that on systems with large
numbers of logged in users, the resulting frequency of logins and
logouts saturates the initializer process, which is unable to
keep up with the workload. As configurations grow even larger,
this problem will become more serious, and it must be understood
and dealt with. The study is still underway. Preliminary results
have suggested·new directions for the study, and we expect this
feedback process to continue. Detailed results and proposed
solutions will be described in later memos. At the time of this
writing, three such memos are planned:

I - Modifications to the supervisor to allow the initializer to
be given preferential treatment by page control and the disk
dim.

II - Identification of the parts of the answering service that
are the greatest consumers of resources; estimates of the
benefits and costs of modifying those parts.

III- Estimates of the maximum throughput (and thus, the largest
configurations) that could be supported, given various
combinations of the modifications described in I and II.

The expected contents of these memos are discussed in more detail
below. The reason for publishing this memo now, before the
results are available, is to inform members of the project that
the study is being done, and to solicit comments and suggestions
that can be acted on while the work is still in progress.

2. THE PROBLEM

On heavily loaded systems, the answering service seems to be a
bottleneck. Users experience annoyingly-long wait times between

Multics ProJect internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

~age 2

.,f

dialing up and receiving a greeting message, between typing the
l,ogin command and being prompted for a password, and between
typing a password and having a process created. They experience
these long waits even when they describe the response time as
hnot so bad" once they are logged in.

Spme users experience extremely long wait times during login,
while_ seeing other users, who started logging in later, finish
logging in before them.

Logouts are also affected: there are long wait times between the
typing of the logout command and the printing of the "logged out"
and "hangup" messages. Some users are in the habit of hanging up
the phone instead of logging out, to avoid this delay; this is a
bad habit now that we have the process preservation facility.

The operators see the problem in several ways: delayed response
to operator commands, inability to enter operator commands, and
lack of any output on the operator console for long periods of
time. The operators sometimes interpret these symptoms as
evidence that the system is hung or crashed, and they return it
to BOS unnecessarily.

Some of these symptoms are probably caused by straightforward
bugs in the code, rather than obscure, intrinsic inefficiencies
in the design. But they are observed most often on heavily loaded
systems, so we will treat them as part of the performance problem
until evidence proves otherwise.

3. OBJECTIVES OF THE STUDY

3.1 Understanding the Problem

The software that runs in the initializer process includes some
of the most complex subsystems in Multics. These include the

·Answering Service, the Message Coordinator, the System Control
subsystem, parts of RCP, Reconfiguration software, and probably
some other things not included in this list. And that uncertainty
is part of the problem.

This software has evolved over the last 12 years. It has been
modified by many different people, most of whom are no longer
part of the project. It continues to be modified independently
arid simultaneoulsy by several people. There is no program logic
manual (PLM), and there is no one person who has enough overall
and detailed knowledge of the software to write a PLM without
spending a great deal of time reading the code to see how it
actually works.

One piece of evidence of our lack of complete understanding of
this software is the following: in the early stages of this
study, a built-in answering service metering facility was
designed and implemented. To save time in the i~itial coding,

MTB-449 Page 3

only those parts of the answering service that were thought to be
the greatest resource consumers were metered. The results of this
metering accounts for only about 50~ of the cpu time and page
faults that were used by the initializer process during the
metering interval. In other words, the other 50i of the resourc~s
used by the initializer process were used by programs that we are
either completely unaware of, or have significantly
underestimated the cost of executing.

So our first objective is to find out what really goes on in the
initializer process: what processing is done, with what frequency
or in response to what conditions, and what it costs.

3.2 Identifying Solutions

Our second objective is to identify processing that can be
eliminated entirely, moved into some other process, or optimized
to consume less cpu time and paging resources. The cost of these
changes must also be estimated.

3.3 Capacity Planning

Our third objective is to produce some estimates of the maximum
answering service throughput that can be achieved, and the
corresponding largest configurations that can be supported, under
various circumstances. These circumstances are made up of
various combinations of the potential improvements identified by
the second objective (each combination having a different total
cost and a different net effect on throughput). The case of no
improvements from the present system will be included, to provide
a baseline.

Then we will make some assumptions (based on data from
systems) about the average length of a login session,
resulting frequency of logins and logouts as a function
number of logged in users.

service
and the
of the

From these figures we should be able to identify points, as
Multics configuration sizes are increased to support greater
numbers of users, where answering service thr-oughput will become
a limiting factor. For each such point, some combination of
performance improvements will b~ identified, that will . raise
answering service capacity to a new, higher limit.

Various sequences of these limit points could be obtained by
varying the order in which performance improvements are applied.
But it seems likely that they will be applied in the order of
increasing implementation cost, taking cost effectiveness inio
account as well. That is, the most costly to implement will be
put off until last, in hopes that changing circumstances will
remove the need for their ever being done.

eage 4 MTB-449

Marketing requirements, including both configuration sizes and
~ime frames, will also have to be taken into account in choosing
the order in which improvements will be made.
e
It is important to recognize that the capacity and cost estimates
wdll be derived from combinations of other estimates, each having
some degree of uncertainty. The uncertainty of the final
estimates will be greater because of the cumulative effect of the
4ncertainties of all the estimates that go into them. Obviously,
the usefulness of the final estimates will vary inversely with
~heir uncertainty. The accuracy limitations must be taken into
account when using these estimates for product planning or task
scheduling purposes.

In other words, if we estimate the average session length to be
45 minutes but it might actually be 30 minutes or 60 minutes, and
we estimate that the effect of a given performance improvement
will be a login rate of 250 per hour but it might actually be 225
or 275, and we estimate the cost of the improvement to be 2 man
months but it ~ight actually take 1 or 3, it is not useful to say
that we think we can achieve a 188 user system at a cost of 2 man
months when it might actually be a 112 user system at a cost of 3
man months or a 275 user system at a cost of 1 man month.

Even if out initial capacity estimates are not accurate enough to
be used for planning purposes, they should be worth publishing,
along with the methods used to derive them. This will serve to
identify all of the parameters relevant to answering service
capacity planning. We should be able to obtain more accurate and
useful capacity estimates as we learn to estimate the individual
parameters with increasing degrees of confidence.

4. PRELIMINARY ANALYSIS

Before beginning the current study, it was possible to make some
statements and hypotheses about answering service performance,
based on some earlier experiments and observations, and our
understanding of how the software works.

Note that most of the numbers given in this section are typical
values observed by the authors on various systems, in the course
of other work. They are not the results of careful measurements
in controlled experiments. (Su~h measurements are planned as part
of this study.) The numbers are presented here to give the reader
a feeling for their magnitude, and to suggest how close we may be
to our capacity limits.

The priority scheduler allows for the initializer process to be
allocated an arbitrarily large percentage of cpu time (up to
100$). But, being a single process, it can obviously never use
more than 100$ of a single CPU. ~o, as the number of CPUs in a
configuration increases, a decreasing fraction of the total cpu
time is available to the initializer process.

MTB-449 Page 5

Further, the initializer process, like any other Multics process,
can take only one page fault at a time. The system does not
start to read a page into main storage from the disk until a
process attempts to reference it and finds it missing. At that
point, the process can do nothing until the page is available.
(2) Each page fault forces a process to wait for some length of
real time, equal to at least the sum of the seek, latency, and
transfer times of the disk unit, before being able to resume
computation. Thus the greatest rate at which one process can use
cpu time is a fraction of 1 CPU. The fraction is a function of
the ratio of cpu time to page faults for that process; the more
page faults the computation requires, the smaller the fraction.

It seems, then, that paging is the cause of the initializer
throughput problem. It is known that paging performance is very
sensitive to tuning and configuration, and all of the following
discussions assume a properly tuned and configured system. (3)

Page wait time is composed of I/O time and queue time. I/O time
is composed of seek time, rotational latency time, data transfer
time, and a possible wait time if a physical channel is not
available when needed. Queue time is the time spent waiting for
the device and a logical channel to be available so that an I/O
operation can be started. When an I/O request is placed in a
previously empty queue, it might have to wait for a previously
started I/O to complete. When there are other I/Os in a queue,
they are performed in an order that minimizes seek distance by
choosing the one that has the shortest seek distance from the
current arm position. Separate queues are kept ·for page writes
(which no process is waiting for) and page reads and VTOC reads
and writes (which processes do wait for). The latter are given
higher priority.

The following are the published times for model 451 and 500 disk
units, respectively Call figures are milliseconds Cmsec)):
latency: 8.3 for both; average seek time: 30 and 25; 1-page
transfer time: 5.1 and 3.4. Adding these times gives expected

(2) This limitation could be removed by a pre-paging facility,
which would allow a page read to be started before a process
faults on the page. The mechanism to read a page that has not
been faulted on is available in the supervisor. The problem is
to find a good algorithm for correctly anticipating the need for
certain pages. This is discussed further in section 5.2.3.

(3) Tuning and configuration will be discussed in a separate
memo, not yet published, tentatively titled Configuring arid
Tuning Multics Systems. Briefly, there must be an adequate
amount of memory for each CPU, and an adequate number of disk
channels and spindles to support the resulting paging traffic.
Further, tuning parameters, such as max eligible, must be set to
reasonable values for the hardware configuration.

Page 6 MTB-449

average page 1/0 times of 43.4 and 36.7 for 451 and 500 units,
respectively.

However, the device meters command shows typical I/O times of 30
to 35, with the lowest we have seen being about 28. This can be
explained by assuming that Multics does not cause the kind of
random disk arm movement that the average seek time figures are
based on. The Multics average seek times of 15 to 24 are
probably caused by seek optimizatitin and the fact that successive
pages of a segment are often on the sa~e or adjacent cylinders.
This hypothesis is consistent with the observation that 1/0 times
are slightly higher (35) on heavily loaded systems, where page
read priority overrides seek optimization more often, and
successive page faults are more likely to be from different.
processes for different segments (causing arm movement), rather
than from the same process for successive pages of the same
segment.

The device meters command also shows page wait times of around 50
on moderately loaded systems (with I/O times around 30), and 70
or higher on heavily loaded systems (with I/O.times around 35).
Thus, increased loads drive I/O time up from 30 to 35 and queue
time up from 20 to 35.

An average page wait time of 70 msec means that the highest rate
at which a process can take page faults is about 857 per minute.
And this assumes.a negligible amount of processing between each
pair of page faults. As the amount of processing between page
faults goes up, the maximum rate at which a single process can
take page faults falls even lower~

On one particular system that was experiencing initializer
performance problems, the following observations were made:
logins (4) were occurring at a rate of about 3 per minute;· users
were experiencing very long delays in logging in (i.e., the
demand was calling for a higher rate of logins); and the
initializer process was taking about 833 page faults per minute,
or one every 72 msec, and was hardly ever going blocked.

Three logins and logouts per minute and 833 page faults per
minute gives 278 page faults for each login-logout pair. Separate
measurements, obtained by flushing main memory before each login
and each logout, have indicated that about 300 different pages
are touched for each login, and about 200 for each logout, for a
total of about 500 pages for each login-logout pair. The
discrepancy between the predicted 500 different pages touched and
the observed 278 pages faulted on can be explained by assuming

(q) Assume that, in the steady state, the number of logged in
users remains fairly constant, and thus logins and thus logouts
occur with equal frequency. Then, for convenience, we will talk
about logins per hour, rather than login-logout pairs per hour.

MTB-449 Page 1

that some pages are used by both login and logout functions, and
so there are fewer than 500 different pages touched during a
login-logout pair, and th~t some of the involved pages are pinned
in memory by heavy use and are not faulted on.

To summarize, a prediction based on the required number of ·page
faults ~er login and the maximum page fault rate gives a maximum
login rate of slightly less than 2 per minute, while a login rate
of 3 per minute is observed on a heavily loaded system where the
initializer is running continuously, has some of its pages pinned
in memory by heavy use, and is unable to keep up with the demand
(which is for a login rate higher than 3 per minute).

Thus it appears that, with the current software and the current
configuring and tuning criteria, 3 logins per minute is the
limit, independent of the size of the configuration. That's 180
logins per hour. If the average session length is one hour, this
means that a 180 user system is the largest that can be.
supported. An average session length of 45 minutes implies a 135
user system; while a 30 minute session length implies a 90 user
limit. (5)

We recognize that dealing with maximum throughput and average
session length results in optimistically high·capacity estimates.
Queueing theory shows that 100) of the -theoretical system
capacity can not be used, because there will be periods of
relative idleness and periods of overload when the delays will be
unacceptable to many users. This subject will be dealt with in
more detail in Memo III. The preceding discussion serves to give
the reader a feeling for the magnitude of the numbers, and how
close to the limit we are.

5. SOME POSSIBLE SOLUTIONS

Since the bottleneck is based on the limited rate at which a
process can take page faults, (6) the possible solutions fall
into three categories: increase the rate at which page faults can
be taken; decrease the number of page faults that the initializer
process must take in order to complete a given amount of

(5) The equation for max users (maxu) is:

maxu = max_logins_per_hour * average_session_length in hours

(6) There is no cpu time bottleneck at present, and none is
anticipated. The initializer process currently uses about 20$ of
1 CPU, and CPUs in the future are expected to be many times
faster than current ones. We do not expect to be able to raise
the limit imposed by paging to the point where CPU time becomes
the limiting factor. Waiting on some of the system locks might be
the next bottleneck that we encounter; this will be investigated,
but we do not see it as a problem in the near future.

Page 8
''·

processing; or split up the processing among several processes,
a~lowing several page fault sequences to be going on in parallel.
Solutions can also be categorized as hardware or software
changes.

~-1 Hardware Solutions

Adding hardware to a configuration (memory, or disk channels and
spindles) is always available as an effective, short term

· solution to this problem. But it is expensive, and our current
thinking is that it is not cost effective. The assumption is
that the hardware is adequate to support the user load (although
perhaps just barely so), and only the initializer process is in
trouble.

Adding memory will allow the initializer process (as well as
other eligible processes) to keep more of its pages in memory.
This will allow it to accomplish a given amount of processing_
while taking fewer page faults. Further, since all other
processes will be taking fewer page faults, disk traffic will be
lighter, ~nd page faults will be able to be taken at a so~ewhat
higher rat~. Adding 1MB (7) per CPU to a configuration that has
3MB per CPU would probably produce a significant improvement.
Adding additional 1MB increments per CPU, for a total of 5MB or
more per CPU would produce successively diminishing returns. At a
purchase price of $50,000 per 1MB, this is a very expensive
solution, and is probably not to be considered seriously,
although the throughput increase produced by each 1MB increment
should be measured before a final judgement is made.

Adding disk channels and spindles will tend to decrease the I/O
queue length, allowing page faults to be taken at a somewhat
higher rate. However, there are limits to the use of this·
solution. Newer disk drives are tending toward greater storage
capacity per spindle, which tends to decrease the number of
spindles in a configuration. Seek times and data transfer rates
are not getting significantly faster. Further, increasing the
total paging transfer rates by any means _(additional channels or
higher transfer rates on individual devices) will tend to
overload IOM capacity, requiring the addition of an !OM to the
configuration. This seems to be an even more expensive solution
than adding memory. This alternative will not be considered any
further.

S.2 Software Solutions

Software solutions fall into the following categories:

1) Arrange for pages used frequently by the initializer process
to remain in memory (either by wiring or pinning) instead of

(7) 1MB = 1 Million Bytes = 256K words

MTB-449 Page 9

being paged out and in repeatedly.
2) Modify the supervisor so that the initializer can be given

priority in page reads, and can thus take page faults at a
higher rate (while other processes take them at a somewhat
lower rate).

3) Add a pre-paging facility to the supervisor, to allow a
process to notify the system of its anticipated needs for
certain pages, so they can be brought into memory in advance
of references to them; implement suitable controls on the use
of this facility. Modify the answering service to use this
facility for some of its data segments and perhaps also its
procedure segments.

4) Modify the answering service (and other software that runs in
the initializer process) so that either it touches fewer pages
while accomplishing its processing or it can be run in several
processes simultaneously.

5.2.1 Page Pinning

The first alternative can be accomplished today, by identifying
and wiring the N pages most frequently used by the initializer
process. (8)

Consider the following thought experiment: add 100 pages of
memory to the configuration and simultaneously wire the lOO+x
pages most frequently used by the initializer process, where x is
a number (<100) to be determined experimentally. With x=O, the
initializer's throughput will be increased significantly because
a large fraction of its working set will be wired. Further,
throughput of the other processes will be increased slightly
since the initializer will not be competing so heavily fo.r the
other (original) memory in the system, nor will it be
contributing so much to the paging traffic. Then increase x
until the throughput of the other processes is back down to what
it was before the experiment started. At this point, a certain
amount of additional initializer throughput has been purchased,
at a cost of $20,000 worth of memory, and the performance of the
other processes has not been affected.

The disadvantage of this is that the set of pages to be wired
must be identified correctly (and must be re-identified whenever
the answering service software changes); an appropriate size for
the set must be chosen (100+x was an arbitrary number); and the
page frames holding the wired pages are unavailable to other
processes even during (possibly long) time intervals during which
the initializer process is not using those pages.

Thus it seems that this method does not make the most · effective
use of the extra memory, and it is awkward to implement and

(8) One customer site is currently running with most of the text
portion of bound user control wired.

P~ge 10

maintain, possibly leading to a sub-optimal size and content of
the set of pages being wired.

The paging system attempts to make the most effective use of
memory by keeping the most recently used pages in memory. Rather
~han completely overriding it by wiring certain pages, it might
b~ better if we could tell it to give higher preference to
certain pages - that is, to allow them to remain in memory longer
than normal pages, before being paged out for lack of use. This
would provide some of the benefits of wiring pages, but it would
retain the system's ability to adjust automatically to changing
conditions. The size and content of the set of pinned pages would
be continually adjusted, and the extra memory would be available
to other processes when not needed by the initializer.

A number of different algorithms were considered for identifying
the pages to be pinned and determining how long they should be
pinned. Each had 'its good and bad points, including
implementation cost, expected benefits, and potential for
undesirable side effects. Several were implemented and tested.
The details of this work will be given in Memo I. ·

5.2.2 Paging I/O Priority

Recall that page wait time is composed of I/O time and queue time
(each about 35 msec on a heavily loaded system), and that the
queue times of individual I/O operationa are affected by seek
optimization, whereby the next I/O operation is selected from the
queue based on · which one will result in the shortest arm
movement. Further, seek optimization is overridden to give
priority to page reads and VTOC I/Os, which processes wait for.

A change to the disk dim
process is waiting for
processes are waiting for
of the initializer's page
time caused by the need
complete.

to give I/Os that the initializer
higher priority than those that other

would reduce the queue time component
wait time down to that portion of queue
to wait for a previously started I/O to

If that time is, on the average, half of the average I/O time,
then this change will reduce the initializer's average page wait
time to 1.5 times the average I/O time. The effect that this will
have on the rate at which the initializer can take page faults
will depend on how much the system average page wait time exceeds
1.5 times the system average I/O time. Experiments with a disk
dim containing these modifications will be described in Memo I.

5.2.3 Pre-paging

Bringing pages into memory in advance of references to them would
allow a process to continue execution, rather than waiting for
one page wait time, after its first reference to a given page.
This would allow the process to complete its computation in less

MTB-449 Page 11

real time. Reducing the time that processes spend waiting for
page faults would reduce MP Idle and NMP Idle, and thus would
tend to increase total system throughput, provided that there is
enough I/O capacity to keep up with the increased paging I/O (9)
and enough extra memory to hold both the set of pages currently
being referenced and the set of pages being read in anticipation
of their·being referenced.

A mechanism to correctly anticipate all page references is
clearly impossible, since it would require predicting the future
with certainty. The best that we can hope to achieve is some good
guesses about some of the pages that will be referenced.

It is possible to envision some page reference prediction
algorithms that could be built into the system and operate
automatically for all processes. (10) However, it seems clear
that really good predictions can only be made by the application
program (11) as it makes decisions that will determine which
pages it will touch next. Building paging decision making into an
application program seems to be violating the spirit of a virtual
memory system, which is supposed to relieve the application
programmer of the need to be concerned with memory limitations.
However, until we have hardware that is both fast and cheap
enough to support this ideal, it might be necessary for us to
provide the option of having application programs· anticipate
their page references so that Multics can achieve the necessary
throughput cost-effectively enough to enable us to sell systems.

We will investigate the benefits of pre-paging to the answering
service by implementing a gate to request the reading of
specified pages of a specified segment. We will place calls to
this gate at points in the answering service where page
references can be anticipated, and measure the answering service
th~oughput increase and. the impact on other processes.

(9) There must be an increase in paging 1/o, since the same set
of · pages must be brought into memory in a ~horter length of real
time.

(10) These might be based on such things as built-in assumptions
about the pattern of page references that will occur in an object
segment after one of its entry points is called, or on the
observation of a reference pattern such as successive pages of a
segmt?nt and the assumption that the pattern will continue.

(11) From the viewpoint of the supervisor, the answering service
is just another application program. While our objective is to
increase answering service throughput, a pre-paging facility
would be available to customers' application programs, controlled
by access to a gate.

Page 12
~

Points where page references can be anticipated include passes
through entire tables, such as the 3 user tables (answer table,
absentee user table, and daemon user table) at accounting update
time, and decisions that cause large blocks of code to be
executed, such as all the code that will be used by the login
command. It might also be useful to reorganize some decision
making so that page references can be anticipated far enough in
advance that the pages will be in memory when they are needed.

5.2.4 Answering Service Modifications

Two classes of answering service modifications are being
considered: redesigning and recoding certain functions so that
they can be accomplished while touching fewer pages; and
splitting up the answering service so that its various functions
can be performed in different processes, in parallel.

The most cost effective of the former have already been done~
Linear searches of the SAT and PDTs at login time were replaced
by hash lookups in MR7.0, and a linear search of the answer table
was eliminated for about 95~ of .all logins, in MR8.0. F~rther
potential improvements become increasingly hard to find, more
costly to implement, and less effective. A detailed study of the
behavior of the answering service software, using trace,
page trace, and built-in meters, will be described in Memo II. It
is not possible to predict the cost and benefit of any potential
improvements that might be discovered by this study, but we """'
consider it unlikely that any more really significant and
inexpensive improvements will be found.

Splitting up the answering service into several processes is an
obvious and very popular suggestion. Conceptually, there is no
difficulty with this. But doing it in general (12) would require
a complete redesign and rewrite of the answering service - a
project that could require many man-years of effort.

The problem with the current code is that there are many locks
that do not actually exist, but are implied by the facts that
only the initializer process modifies certain databases, and it
operates by performing a sequence of indivisible operations. Each
indivisible operation is triggered by an event-call wakeup. A
process can only receive event-call wakeups when it is blocked.
The answering service is careful to mask off event-call wakeups
before entering any code sequence that might cause it to go
blocked. Failure to do this is considered a bug.

(12) By "in general" we mean having multiple processes, each
running the entire answering service, and each able to do all of
the jobs presently done by the single process answering service.
Moving selected parts of the answering service into other
processes is discussed below.

MTB-449 Page 13

To allow the current code to run simultaneously in several
processes, it would be necessary to identify all of these implied
locks, and implement them explicitly. It is unlikely that this
could be done cost effectively. The code was unstructured to
start with and has become more so with each modification. It
could possibly take as much time to identify and implement all of
the implied locks as it would have taken to rewrite the answering
service completely, with locks designed in. And the result would
probably be buggy for years, and harder to maintain than it is
now. (13)

It is possible, however, to see how certain specific functions
could be split out and run in separate processes. Probably the
easiest of these is process creation. The program (cpg) that
fills in a structure and passes it to the supervisor to-request
the creation of a process could be run in a separate daemon
process, communicating with the initializer via event-call
wake•Jps. A single lock on the answer table entry, to prevent a
process destruction from being attempted in one process while a
process creation is going on in the other, would probably be
sufficient. However, our initial metering results lead us to
believe that this could move at most 15~ to 20j of the
initializer's paging load to the daemon process. Process
destruction (dpg) could also be moved out of the initializer
process, but we-estimate that this accounts for less than 10$ of
the initializer's page faults.

The second most difficult function to move to another process
might be the message coordinator. The costs and benefits of doing
this require further study.

We see no other clearly identifiable functions that could be
moved entirely to another single process. (The requirement that
an entire function be moved to a single process is made so that
the implied locks within the function will continue to work since
the indivisible operations that make up the function will
continue to be performed sequentially in a single process.)

6. CONCLUSIONS

The initializer performance problem is real. It is inherent in
the current implementation of the system, and is not caused by
some problem specific to an individual site. It is caused by a
paging bottleneck; all of our observations and analysis agree
with this. With the current software and the current configuring
and tuning criteria, a login rate of no more than 3 per minute
can be supported. This translates to a max users figure of 150 to

(13) People who tend to feel
grounds that "It couldn't
consider that their optimism
how bad the current code is.

more optimistic about this, on
possibly be that hard" are urged to

may be based on unfamiliarity with
You have to see it to believe it.

., .-.---. e

~age 14 MTB-449
l .,

200 users, if session lengths are around an hour, and to lower
max users figures as session_ lengths get shorter.
-
We forsee a need to support larger numbers of users on single
systems, but we do not know how large the numbers will get. The
trend toward distributed processing, with a number of smaller
systems communicating via a network, might tend to reduce the
need for really large systems. We need some external input to
help determine the necessity for raising our max users limits to
any given level •
. ,
We see some ways to raise answering service throughput limits,
but we have yet to determine the expected cost and benefits of
each of these ways. The greatest throughput that we could achieve
is theoretically unlimited, but the cost would be very high. (14)

We will continue to study all of the performance improvement
possibilities described above, and any others suggested by
readers of this MTS, to determine their costs and benefits. And
we will continue to look for input to help determine the true
need for single systems with max user figures significantly
larger than those which we can now support.

This intensive study of initializer performance has generated,
and will probably continue to generate, insights about the
behavior and performance of Multics in general, which could be of
benefit to other large subsystems and the system as a whole. We
think it is worthwhile to continue expending resources on this
study.

(1~) This· would involve complete re-implementation of tfie
answering service to run in multiple daemon processes, each of
which could do all of the jobs currently done in the initializer
process. The number of daemons could be increased to support any
user load, provided that the implementation is done in a way that
minimizes lock contention.

