
MULTICS TECHNICAL BULLETIN MTB 443

Date: 20 March 1980

From: Bernard S. Greenberg

To: MTB Distribution

Subject: Paper being submitted to Stanford Lisp Conference

Attached is a draft (as submitted) of a technical paper which has
been submitted to the Stanford Lisp Conference, which is being held in August,
in Stanford, California. This paper describes Multics Emacs from a
Lisp-oriented person's point of view: why Lisp was chosen, what things had to
be done because Lisp was chosen, and what ensued. It has not yet been accepted.

Although some material has been excerpted from my previous paper (MTB 439),
which was submitted (and accepted) to the Fourth Honeywell Software Conference,
this paper is basically a different ~·

Unlike most Multics Technical Bulletins, this memo is not limited to the Multics
Development Community. It may be reproduced without permission, as long as its
contents, origin, and this title page are left intact. It may not be republished
without permission.

/

Prose and CONS
(Multics Emacs: a commercial text-processing system in LispJ

Bernard S. Greenberg
Cambridge Int·ormat1on Systems Laboratory
Multics System Development/LISD
Honeywell Information Systems, Inc.
575 Technology Sq. (Mail Sta. MA22)
Cambriage, MA, 0213Y

Page 1

Prose and CONS
(Multics Emacs: a commercial text-processing system in Lisp)

Overview

Nultics Emacs is an video oriented text processing system
released as part of Honeywell's Multics System. Multics Emacs
is written in Lisp. This program is now in use by several
hundred people, who view it bott1 as their standard editor, and a
process and display management system. It is the first
Honeywell software written in Lisp ever to be released.

This paper aoaresses the choice of Lisp as the
implementation language, and its consequences, including some of
the implementation issues. The detailed history of Multics
Emacs, its system-level design considerations, and its impact on
Multics and its user community are discussed in [Greenberg].
One of the immediate and profound consequences of this choice
has been to assert Lisp's adequacy, indeed, superiority, as a
full-fledged systems and applications programming language.
Multics Emacs has established an awareness of Lisp in quarters
where the term had never been heard.

Perhaps even more signit.icantly, persons who have never
encountered Lisp, or who t1ave encountered it in college and
subsequently neglected it, have learned Lisp in order to write
extensions (user-supplied code running in the Multics Emacs
environment). In some cases, the persons involved were not even
programmers and knew no programming language. Tne ability of
Lisp to be shaped into highly specialized languages, via the
macro facility of MacLisp (the Lisp dialect in use on Multics)
[MoonJ, has given rise to a coding formalism of transparency and
simplicity; an unprecedented (in the history of MulticsJ number
of unsolicited contributions coded in this t"orrnalism have been
offered.

Multics Emacs grew out of a need for Multics text
processing to evolve into the world of display editing. In
early 1978, the author became familiar with the EMACS [StallmanJ
editor on the ITS time sharing system at the MIT Artificial
Intelligence Laboratory, which provided a well-debugged user
interface design. EMACS at the AI Lab was coded in TECO, itself
a display editor (coded in PDP-10 machine language). TECO tries
to bridge the gap between being a user editing interface, and a
programrninR language which facilitates the construction of
complex layered subsystems. Stallman [StallmanJ points out how
TECO falls short of both of these goals by attempting this
compromise. Nevert.ne.Less, a significant feature or the TECO
programming environment is the modularization of programs into
functions (called macros in TECO), wn1ch live in a global
environment, and call ---each other and themselves in a by-value
fashion, very much like Lisp.

Page 3

TECO environments, including EMACS on ITS, encourage
eitension. Users build functions and load them into the global
environment, utilizing functions and data already there. Tnis
ex~ensibility encourages the development of large optional
packages, such as mail editing systems and specialized editing
modes knowledgeable about specific programming languages. The
ibundance of such packages is an earmark of EMACS.

The ability of users to extend the implementation was the
~nost important factor in the choice of a programming language
for Multics Emacs. The two choices at the time appeared to be
PL/I, the traditional Multics system programming language, and
TECO. The outcome was the decision to implement it in Lisp.

Historically, nearly all Multics programs have been written
in PL/I. Multics PL/I [AG94] is one of the most complete
implementations of the ANSI PL/I standard in existence, and has
matured over the years as the sole system support langua~e
implementation for Multics. PL/I presented itself as the
natural choice. Viewing the ITS experience in perspective, it
seemed as though marked efficiency could be gained by
implementing an EMACS-like editor directly in PL/I, as opposed
to as a system of interpreted code in some other language, such
as TECO.

Various scenarios for extensibility in a PL/I-based
implementation were evaluated. The PL/I-based Multics process
environment is one of the classic models of extensibility in the
literature. The ability to extend and customize one's Multics
process environment via PL/I subroutine call and definition has
provided the model for many operating systems since. Yet,
several features of PL/I pointed away fro1n its choice as the
Multics Emacs implementation language. Given that any
reasonable implementation of an EMACS-like modularity would
associate editor primitives (e.g., ''move the virtual pointer
forward a character", "delete the current character", etc.) with
PL/I subroutines, extension code would degenerate into a
sequence of subroutine calls. Calls between separately compiled
modules are expensive. The by-reference semantics of the PL/I
call, as well as considerations of the PL/I signalling
mechanism, contribute this expense. Calls to internal
subroutines are less expensive, but by definition, such
subroutin~s are not accessible to other modules. Thus, if
externally accessible procedures were to be had, they would have
to be of the (expensive) external kind. This would add
substantial overhead to even the smallest editor primitive.
PL/I is also notorious for requiring declaration of the smallest
artifacts of every module; all variables used, all external
names, etc., must be explicitly declared.

These considerations led to the choice of Lisp as an
implementation language. Lisp inter-function calls all have the
same overhead, and are traditionally very cheap. Lisp programs
are commonly written with many small functions, whict1 therefore
use inter-function call very heavily. Thus, function calling
has been highly optimized in most Lisp implementations. Lisp's

n- - JI

by-value call is innately more efficient than PL/I's
by-reference call. What is more, every Lisp function (and
global variable) in a given environment may be accessed by any
other function, unless special measures are taken. Of course,
this can be a mixed blessing, in terms of both programming style
and the pitfalls of a global namespace.

Choosing Lisp for reasons of efficiency is a notable
departure from tlle inefficiency arguments usually levelled
against Lisp! Tlle existence of the compiler ends all efficiency
arguments about Lisp being "an interpreted language". The need
to allocate storage and garbage collect is often raised as well;
sagacious storage management policies, which ought be used in
any program in any language, put this 11 problem" well within
limits. Even though traditional programming style in textbook
presentations of Lisp often consumes storage in a wasteful
fashion, it is possible with minimal added difficulty to code
without wasting storage. Part of the problem here can be traced
to what the author considers gross philosophical flaws in the
classical presentation of Lisp. The basis of those arguments is
rooted in tile object/pointer/value distinction outlined below;
almost no presentation of Lisp correctly (in the author's
opinion) portrays the concept of "object". (For a presentation
of the alternative view, see [LispNotes]).

Lisp's notion of data abstraction is uniquely suited to
subsystem construction. The Lisp programmer can define a "data
typen by program convention only, without "informing the
language" in any way. For instance, Multics Emacs defines
editor buffer pointers (called "marks", which are conceptually
inter-character pointers to text, dynamically updated as text is
added and deleted) built of Lisp list cells. Lisp programs in
Emacs ruan ipu 1 ate and store marks, without knowledge of the
internal structure of marks. Here, Lisp fosters isolation of
levels of implementation, both within the internal levels of
Ernacs itself and within extension code.

The case can validly be made that passing pointers in PL/I
or some other non-Lisp language could achieve the same effect:
indeed, internally, Lisp does just that. However, Lisp
enaourages conceptualization of a value as ''a list, a record, a
mark, or a buffer" rather than a pointer thereto; all values in
Lisp (other than numbers) are "pointers" to some object.
Correctly explained, Lisp elegantly drops the phrase "a pointer
to'' as conveying no meaning. This is, in the author's view,
perhaps the most fundamental conceptual advantage of Lisp. Lisp
µrograms--pass each other records, buffers, sentences, houses,
students, and toy blocks, rather than pointers, without need for
knowledge or declaration of their internal structure. Such
knowledge need exist only in those modules that actually
construct or decompose them. In the view of the author, this is
the source of Lisp's power and elegance for modelling
Preal-world" systems, and facilitates and encourages the
construction of programs that behave like "real-world" systems.

Page 5

, Another very powerful feature of Lisp, specifically of
~acLisp, is the macro feature of the language, by which the
syntax of the language itself ca11 be extended. The "macro
language" of Lisp is Lisp itself. Lisp allows prograrnruers to
s . .pecify code to run at compile time to implement a rnacro-defined
language. The Multics Emacs extension language is one such.
Please see the Appendix for an overview and samples of the
extension language.

Multics MacLisp has a fully mature debugging system, I/O
facilities, and the ability to interface to other facilities in
Multics. Multics MacLisp also has a powerful compiler, and all
11 production 11 programs are compiled (although the existence of
the Lisp interpreter is invaluable during debugging). Many
other Lisp systems lack these features, and are thus ill suited
to developffient of production software.

The Lisp Machine project at the MIT Artificial
Intelligence Lab [Chineual] greatly influenced the concurrent
development of Multics Emacs. The Lisp machine provided many
models of Lisp-coded, full fledgea, interactive user
environments. There was substantial design crosscurrent between
Multics Emacs and the Lisp Machine's editor, ZWEI [WeinrebJ.
Both editors are coded in Lisp, and implement an EMACS-like
interface.

Implementation Considerations

The first implementation question raised was that of text
representation. Traditional eaitors represent text as
contiguous vectors of characters, sometimes diviaea in two (''gap
editors") at the "point of editing 11 • Lisp does not provide a
natural representation of such an object. Lists or arrays or
characters could be used, but potent hardware
string-manipulation instructions would then te ruled out. Lists
of characters utilize storage inefficiently as well. ~hen

editing of several multi-hundred-line proerams simultaneously is
a design goal, this inefficiency cannot be tolerated. Arrays of
characters are storage-efficient, but the language is not
designed to deal with them as character strings, and hence
provides no appropriate primitives.

Many Lisp implementations, MacLisp included, provide a
11 character string" data type, in addition to the normal "atoms"
(which are called symbols in ~acLisp). Character strings have
printable representations, and that is all (i.e., they do not
have property lists or bindings, and are not catalogued in an
ob 1 i st (ob arr a y i n 1-'i a c Li s p)) . Th i s t y p e o 1' obj e ct fa c i 1 i tat es
use of hardware string primitives.

Text buffers in Emacs are represented as doubly-linked lists
representing lines of text. Each line is represented by a
triplet of a string, the previous line, and the next line in
that buffer. The string contains the character content of the

line. This representation is a
flexibility of list structure and
erriciency of the ctiaractcr vector.

compromise between the
the hardware and storage

The decision to represent text lines by Lisp objects was
also designed to facilitate display management. Most editing
operations consist of changes within a line, or insertion or
deletion of lines. Current video terminals support clearing,
inserting, and deleting lines, and updating of data within
lines. Gy representing buffers as lists of lines, a continuous
mapping of lines, from the user's text file, through the buffer
structure, through the display manager, to the terminal, is
maintained. The Emacs display manager maintains a screen image,
which is an array of objects representing the text on each
screen line. Each such object comprises a string representing
the contents of' tl1e screen line, and the editor line triplet for
the buffer line being displayed on this screen line. At screen
update time, the display manager computes a new screen image,
and searches for matching lines. An old line and a new line are
considered to "match" if they are the same object, that is,
"EO". Whether or not the contents of the line has changed, the
identity of the line is the display manager's basic cue to
direct insertion, deletion, and updating of lines.

The normal behavior of Lisp is to return objects as
function results. String operations such as concatenation and
substring extraction generate new strings, allocating storage
every time such an operation is performed. Tnis behavior was
felt to be unacceptable for a text editor: if this strategy were
utilized unmoau ied, the number and frequency of operations of
an editing system (e.g., entry or deletion a single character)
would allocate stor3ge proportional to the square of the length
of text being entered.

A new type of Lisp object, the "rplacable string", was
devised to solve this problem. A "rplacable string" is one
whose "contents" (i.e., the set of characters in its printable
representation) may be changed. Its "length" may be changed as
well. Rplacable strings are similar to the treatment of strings
on the Lisp Machine, where strings are a special case of arrays.
They constitute a new fundamental data type in Multics MacLisp,
and were implemented not by in-language extension, but by
augmenting the MacLisp in1plementation by out-of-the-language
techniques.

In Emacs, the "current line" being edited is represented by
such a string. Tne first time a line is modified, the string
rep r e s e n t i n g t h at 1 i n e ' s con t en ts l s cop i e d i n to the '' c u r re n t
line" rplacable string (only the current line can be modified).
Insertion or deletion of text from the current line is
accomplished by changing the contents of this string. Changing
the contents of this string, in turn, is accomplished by
powerful hardware primitives which can efficiently move
character strings left or right in place. When the editor moves
off the modified line, the rplacable string is copied back into

Page 7

a normal string (rplacable strings operate outside the normal
Lisp storage management scheme, and thus the number of them is
kept to a minimum).

Emacs takes advantage of the storage management and garbage
9ollection policy of Lisp in a novel way ir1 another phase of the
~isplay manager. When Emacs computes a screen image, it saves
not only the triplet repres·enting a line, but its ''contents of
line" element (the string representing the actual characters).
An array of these "contents of 1 in es'' is saved between screen
updates. When display update (redisplay) time arrives, and the
display manager finds a buffer line (i.e., a triplet) in common
between the old and new screen image, it checks to see if the
"contents of that line" (the string in the triplet) is the same
object as what was saved in the array of "contents of lines" for
that line, at the time of the last screen update. If this is
indeed the case, the display manager knows for certain that the
user-visible contents of the line, and thus its representation
on the screen, have not changed, and need not be recomputed.
This simple comparison (for identity of object, a pointer
comparison in hardware terms) avoids the need for keeping or
comparing arrays of characters from the buffer at display update
time and saves vast amounts of computation. This technique is
based upon the fact that Lisp objects retain their identity as
long as--t"hey are known in the environment, ana no two objects
share identity.

Subsequent Developments

In the two years since its inception, Multics Emacs has
grown from an experimental Lisp program to a twenty-thousand
line plus subsystem that is in use across the country and sold
as a product. It is currently used in the preparation of almost
all Multics documentation. Its growth and subsequent
development were a direct result of the decision to implement it
in Lisp. User experimentation with modifications and
alternative interfaces were possible only through the extensible
nature of the Lisp environment. Significant comprehensibility
of code (cf. the well-known opaqueness of TLCO) was achieved by
the use of Lisp and Lisp macros. This comprehensibility was a
prerequisite for user extension.

Multics Emacs has acquired, as hoped for, a proliferation
of optional packages, including a mail system, an interactive
message system, various menu-driven interfaces, packages for
editing languages as diverse as FORTRAN and Lisp. Recent
developments include a word-processing system similar to turnkey
text processing systems, and "modes" for managing dialogues with
remote computers connected via communications lines or the
ARPANET.

The Lisp editing mode, notably, by providing automatic
parenthesis balancing, among other syntactic aids, renders Emacs
an invaluable aid in Lisp program construction. Emacs would be

. ,.

of tremendous value in Lisp program preparation even if it were
not written in Lisp. The existence of such aids removes one of
the major obstacles to many people's use of Lisp.

One of the unplanned benefits of Lisp which has proven to
be of inestimable value is the ability to develop Emacs
extensions from within Emacs. Persons developing extension code
enter Lisp functions into an Emacs buffer set up in Lisp Mode.
As the extension coder enters and edits functions, he or she can
ask Emacs to evaluate the function definitions, thus adding
these functions to the Emacs environ:nent. Functions so defined
can then be invoked explicitly by Ernacs command, and their
results and effects observed. In this fashion, programs can be
developed function by function, coding higher level functions as
lower level ones are debugged. The effect of editor extension
code being developed can be observed as it is written; by means
of screen-splitting (windows) the extension developer can view
extension code under development and observe its effect when run
simultaneously. Facilities to trace and set breakpoints in
functions being debugged are provided. In Emacs Lisp Debug
mode, the programmer can divide the screen into three regions:
one displaying code being edited and debugged, one containing
the sample text buffer upon which the code is operating, and one
an interactive dialogue between the programmer and the Lisp
interpreter. The editing features of Emacs are avail~ble for
every interaction.

A most exciting frontier of Multics Emacs is "Multics
~ode 11 , in which control of all user input and output is managed
by Emacs. It is an instance of an "editor top level", wherein
Emacs screen management and editing features apply to all user
interaction. Emacs editing becomes applicable to all input, and
earlier input and output can be edited (or searched through)
using standard Emacs commands. Here, the distinction between
editor and systern vanishes, and the Multics user interface takes
on entirely new dimensions. Emacs, particularly with Multics
mode, is, like the Lisp Machine, an experiment in Lisp-coded
process env ir·onments. Multics, the "PL/I machine" becomes, in
fact, a Lisp machine.

The diversity, scope, and power of Emacs is directly
attributable to the Emacs extension environment, all of whose
power derives from Lisp. The straightforward and simple
extension language was possible only through the power of
HacLisp macros and compile time facilities, and the simplicity
of the Lisp function call. The resultant clarity of the
extension language has allowed almost all extension coders to
acquire proficiency through imitation of examples. Incremental
debugging of code, as in the Emacs extension development, is
only possible ir1 languages with powerful interpreters; only when
a full compilation facility is available as well, as in MacLisp,
can production code be developed in this manner.

Page 9

The growth and development
Lisp.

of ~'.u 1 tics Erna cs can
summarized in one wora:

\014
References

Multics Emacs is defined and documented by two published
Honeywell Manuals, [C!-12'(], which describes the total user
interface, and [CJ52], which details the extension writing
language and facilities.

[AG94] Multics PL/I Language Specification, Order #AG94,
Honeywell Information Systems, Inc.

[CH27] Emacs Text Editor User's Guide, Order #CH27, Honeywell
Information Systems, Inc., Dece:nber 1979.

[Chineual]
Weinreb, Li. & Moon D., "The Lisp Machine Reference
Manual'', MIT Artificial Intelligence Laboratory, 1979.

[CJ52] Emacs Extension Writer's Guide, Order #CJ52, Honeywell
Information Systems, Inc., J anuc:.iry, 19&0.

[Greenberg]
"Multics Emacs: an Experiment in Computer Interaction",
in Proceedings, Fourth Annual lloneywell .Software
Con f e re n c e , ll on e y we 11 I n for rn a t i on S y s terns , tvl a r ch 1 9 8 0 •

[LispNotes]
Greenberg, Bernard S., "Notes on tr1e Programming
Language Lisp'', MIT Student Information Processing
Board, 1976, 1978

[Moorl] Moon, David A., ''The MacLisp Reference Manual", ~iIT
Project HAC, 1974.

[StallmanJ
Stallman, Richard H., 11 Emacs, the Extensible, Custou1izable
Self-Documenting Display Editor', AI Memo 519, MIT A.I.
Lab, June 22, 1979

[~einrebJ

Pa Ere 1 O

Weinreb, Daniel L., "A Real-lime Display-Oriented Editor
for the Lisp Machine'', S.B. Thesis, MIT Dept. of EE & CS,
January, 1979.

Appendix:

Multics Emacs extensions, whether supplied or user written,
are written in Lisp, augmented by a set of macros provided as a
lexically includable program fragment. Extensions are written
in an environment consisting of the native MacLisp functions
(other than 1/0), functions in the editor and standard
extensions, and occasionally the display manager. The editor
functions provide the ability to manipulate the current point of
ea1ting and the buffers, and inspect and change the contents of
1 i nes and buffers. Lisp :uacros are provided for syntactic
sugaring of commonly used syntactic cliches, such as 11 create a
temporary variable, assign a mark at the current point to it,
perform some code, and free the mark'', as well as to augment the
expressive power of MacLisp.

The extension writer creates Lisp functions using the Emacs
command definition facility, which associates with the defined
function name a set of properties facilitating argument checking
and prompting, as well as automatic documentation. In addition
to invoking supplied functions in the extension environment,
functions defined via the Emacs command definition facility may
invoke each other (as may any Lisp functions), or be "connected"
to keys, so that they will be invoked automatically by Emacs
when selected keys are struck.

Extensions use strings, integers, buffer names, and marks
(see above). The basic Lisp data types are only occasionally
used. In fact, reasonably expert extension writing has been
accomplished by persons completely ignorant of fundamental Lisp
data object types. The extension writer has no knowledge of or
dealings with the internal representations of any data structure
of the editor.

The most useful class of function used in extensions are
those which are already capable of being invoked on behalf of
user keystrokes by Emacs. For instance, "forward-word" is very
commonly used in editing to position the cursor past the current
word, which is how the Emacs user conceptualizes ''what Escape-F
does" (Escape-f being the two key sequence standardly used to
invoke this common command). The extension writer, on the other
hand, conceptualizes the "forward-word'' function as moving the
current buffer point to beyond the current word. Using these
functions in extension functions is a valuable technique: the
extension pr6erammer can always experiment with the function to
be used by invoking it in the normal interactive (i.e., by
keystroke) way to determine details of its behavior.

Here is a simple example of an extension function based upon
commands nor111ally available through the keyboard. Its name is
''bracket-word 11 , and it places the word at which the cursor
points in angle brackets:

Page 11

(define-command bracket-word
&documentation ''Puts angle brackets around the word
at which the cursor points."
(forward-word)
(insert-string 11) 11)

(backward-word)
(insert-string "<"))

The fun ct ion "insert-string'' has the same e f feet as the
interactive user typing a sequence of self inserting (trivial,
printing) characters. The invocations of forward-word and
backward-word position the current µoint prior to the insertions
or the character strings. The end result of running this
function would be the same as if the user had typed Escaµe-F
(which invokes forward-word), a right-angle-bracket, Escape-8
(which invokes backward-word), and a left angle bracket. The
net result on the buffer (and the screen) is the same. However,
the intermediate states which would be visible to the user
typing the above sequence will not be visible on the screen when
this extension is run, only the final state will be. Tnis is
because the command interpreter invokes the display manager
after each command character is typed, but tl1is function (as is
visible by inspection) does not invoke the display manager at
all: it invokes only what it is seen to invoke.

The most common extension environment macro is
"save-excursion", which is used to remember the location of the
current point, and restore it after the execution of the
included code within the macro. For example, the following
extension function places a star at the beginning of the current
line, but leaves the cursor at the sa:ne plc.ice in the current
line: (Bear in mind that the position is represented as a mark,
which is relocated automatically as the buffer text changes)

(define-command put-star-at-beginning-of-line
(save-excursion

(go-to-beginning-of-line)
(insert-string "*")))

The "save-excursion" macro encompassing the invocations of
go-to-beginning-of-line and insert-string ensure that the
current point will restored after these functions run. Another
similar macro, save-excursion-buffer, is used to restore the
selection of buffer during its dynamic scope. As switching out
of a buffer saves the location of the current point within that
buffer, save-excursion-buffer subsumes the task of saving the
point within that buffer. A powerful MacLisp facility
(unwind-protect) ensures that the point will be restored even if
put-star-at-beginning-of-line terminates abnormally and its
execution is aborted.

Another set of very common macros in extension writing are
those dealing with marks, providing for the creation thereof,
and freeing at the end of the contained code. The macro
11 with-mark 1' names a varial>le to which a marl< is assignee.: at
execution time: that mark will denote the point in the buffer

which is current at the time the code contained in the macro
begins execution. Tt1e following extension function deletes two
words forward from the current point:

(define-command delete-two-words-forward
(with-mark here

(forward-word)
(forward-word)
(wipe-point-mark here)))

When delete-two-words-forward is invoked, a mark designating the
current point in the buffer is created, and assigned to the
local variable named "here". The generation of the mark and the
local variable are all artifacts of the "with-mark" macro. The
two calls to forward-word are then executed, presumably moving
the buffer point (but not the saved mark) two words forward in
the buffer, and then the function wipe-point-mark is invoked,
passing that mark as an argument. The function wipe-point-mark
deletes all text between the current buffer point and the point
designated by the mark (saving it, incidentally, for possible
user recovery). At the end of execution of
delete-two-words-forward, the mark created by the macro is
freed.

Another class of Emacs extension environment macros are
those used to supplement (ur reimplement) features in MacLisp
thought to be inadequate, either for learning purposes, or ill
adapted to the extension environment. for example, the
extension documentation teaches the use of the "if" macro as
opposed to the native MacLisp "cond" as the fundamental
conditional construct. 11 if 11 is much simpler and
straightforward, suffices for almost all cases, and is similar
to the conditional construct in almost all languages other than
Lisp. "cond" is more general and powerful, but this power is
not often needed, and seems to present a stumbling block to
those learning Lisp. Another macro of this class is
·'do-forever", and its exit form, "stop-doing". The native
HacLisp ''do 11 has two forms, one like the FORTRAN "do", and the
other a powerful multi-variable generalization of this. Most
often, the extension writer wants to iterate not over integer
variables, but over buffer lines or characters: the iteration
variable is thus the global editor state, and the need to
specify or deal with variables which are almost never needed is
undesirable. "if" and "do-forever" are illustrated by the
following extension function, which either finds the first blank
line of the buffer or complains if there are none:

(define-command find-first-blank-line
&documentation "Moves cursor to the first blank line of
the bu ff er . •1

(go-to-beginning-of-buffer)
(do-forever

(if (line-is-blank)
(stop-doing))

(if (lastlinep)(display-error ''No blank lines!"))
(next-line)))

Page 13

the form "(stop-doing)'', if executed, causes control to exit the
I do-forever" form. The predicate n1astlinep'' tests for the
current point being on the last line of the buffer. The
function "display-error" causes an error message to be printed
at the bottom of the screen, and a non-local transfer of control
out of f i n d - f i rs t - b 1 an k -1 i n -e;·- ab or t i n g i t s e x e c u t i on . Th i s
rion-local control transfer provides the reason that a
~stop-doing'' is not needed after the call to display-error .
. !,

· Experience with the extension language has shown that its
meaning is so transparent that the underlying Lisp is all but
invisible: the emphasis of Lisp shifts from its data world to
its being a formalisru for organizing function invocation.
People begin to write Lisp programs naturally, without
realization that they are doing so, and the universe of Lisp
grows with each such keystroke.

D-. ",... 1 II

•

