
MULTICS TECHNICAL BULLETIN MTB-441

To: MTB Distribution

From: Melanie Weaver and Richard Barnes

Date: March 11 , 1980

Subject: Alternate New Call/Push/Return Strategy

INTRODUCTION

This MTB proposes an optimized call/push/return (CPR) strategy
for PL/I and FORTRAN that is compatible with the current scheme.
It is based in part on MTB-434, titled "New Call/Push/Return
Strategy". The strategy described in MTB-434 proposed
incompatible stack frame changes which would affect many (about
90) system programs and would force several users (such as
compiler writers) to change their programs. After some
discussion, it was felt that the estimated performance gain might
not justify the cost of implementation. The strategy described
in this MTB does not require any stack fram~ changes and so has a
much lower implementation cost. There is still significant
performance improvement, however.

Basically, the proposal is to change the compiled call, entry and
return sequences along the lines described in MTB-434 and to
optimize the code in the operators somewhat. After the system is
recompiled to use this, there should be about 3.6S performance
impovement. The gain projected for the strategy in MTB-434 was
about 6%. In addition, this-.MTB describes a way to substantially
reduce the CPR overhead for non-quick internal procedures and
provides more information about binder optimizations.

PL/I CHANGES

The changes proposed for PL/I external procedures are the same as
those proposed in MTB-434 with the excep~ion of those involving
stack frame or stack header changes. ·This means that there will
be no double word to copy, the entry pointer will not be
replaced, the stack will remain doubly threaded, and the stack
end pointer will still be used. A prototype code sequence is
attached.

Calls to some internal procedures can be optimized even more. If
the compiler knows that a non-quick internal procedure is NOT
called through an entry variable, the code can call an
intra-segment internal call entry operator simil~r to that
proposed for bound segments. This could speed up recursion in
internal procedures.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

•

MTB-441 MULTICS TECHNICAL BULLETIN

The changes for internal procedures can be summarized as follows:

- Make most of the changes indicated for external procedures.

- Have a single operator that combines call and entry. Pick
up the stack frame size in the calling sequence.

- Freeze the offsets of the call entry operators in
pl1 operators so that the transfer vector need not be used.
Internal entries are not traced.

- In some cases, the display pointer need not be stored in or
retrieved from the argument list.

- Use a different pointer register convention for argument
lists so that PRO can continue to point to the operator
table.

- Do not load or restore indicators.

BINDER CHANGES

This MTS provides additional implementation information for some ~
of tt1e bound segment optimizations described in MTB-434. The
types of changes proposed are the same, although the actual code
sequences differ. Quick external procedures (sharing stack
frames) is not further discussed here.

The basic bound segment optimization is to bypass the call
operator when resolving a link betwe~n two components. Instead,
an operator (or embedded code) that combines the functions of the
call and entry operators is used. In certain cases, the return
sequence is also shorter.

The decision about when to optimize is independent of the
location of the optimized code. The code is embedded in the
objec~ segment if the· compiler has allowed room for it and if the
bindfile has specified it. Otherwise, special operators are
used. Optimization takes place when indicated by relocation bits
(defined later in. this MTB), subject to certain restrictions.
Relocation bits are used for several reasons. They are currently
the binder's only means for determining where and how to
change/relocate code. They can distinguish. between link
references that are part of calling sequences and link references
used for· e~try variables, etc. They can indicate reliably the
location of return sequences. The definitions of the new
relocation bits are given below. Briefly, one pattern means link
15 relocation in a calling sequence. Another pattern means an
external return sequence. Entry sequences are already located
via definitions.

Page 2

MULTICS TECHNICAL BULLETIN MTB-441

The binder should always be able 'to optimize calling sequences
that are flagged by the the new relocation bits and that can be
resolved within the bound segment. It does .not matter whether
the called entry is retained or not b~cause the original entry
sequence remains int~ct; the optimiz•d code circumvents it. Even
calls to components compiled with older versions of the compiler
can use the new bound call entry operators. The binder should
always set PR2 to · the "real" entrypoint so that
stack frame.entry pointer will be set properly. Since the new
(PL/I- and FORTRAN) entry sequences are one. word shorter, the
compilers should add a pad word to them so that:

1) the bound call entry operators can always use the same
instruction to transfer back to the program, and

2) the symbol block offset, etc. used by stu are the same
distance from the entry point. ·

The new calling sequence should have a word of pad in the form of
a NOP instruction to allow room for the binder to insert code to
use the new bound call entry operators The pad should be added
even when the program Is compiled with space for embedded entry
and return code because the decision about whether to use the
operator or embedded entry code depends on the callee. The
binder can determine whether a component has space for embedded
operator code by a bit in the object map (see Object Map Changes
below}. An alternative to the pad in the calling sequence would
be for the bound-call entry operator to load the stack frame size
directly from the entry sequence. While this method would save 1
instruction if the caller and callee were not in the same bound
segment, this would cost an extra memory reference if the caller
and callee were in the same bound segment. That extra memory
reference could be especially expensive on the ADP because of the
high expense of loading the cache just to make one memory
reference in an 8-word memory block.

Although the blnder's decision about whether to optimize is
independent of the specific compiler, the code to be added
requires knowledge of the exact calling and entry sequences.
This is a change of direction for the binder. The current
philosophy is to depend only on standard object segment features.

Optimizing a return sequence is subject to several more
restrictions than the call or entry sequences. An entry may be
entered through either the standard sequence or the optimized
sequence, but a return cannot be optimized unless the program is
known to be called only by another PL/I or FORT~AN program. This
means that none of the component's external entries can be
retained or used in entry variables. The former is known before
relocation begins; the latter cannot be known until all
components have been relocated. The binder will keep track of
all the potentially optimizable return points as it relocates.
Then after all components have been processed, it will know which

Page 3

MTB-441 MULTICS TECHNICAL BULLETIN

components have entries used in entry variables and can change
the return points that are still optimizable. The binder's
definition of "used in entry variables" is an entry referenced
through a link accessed by an instruction with link 15
relocation. In any case, only return points that are flagged by
the new "optimize return" relocation bits can be optimized.

GATE CHANGES

As in MTB-434, this MTB proposes a new gate push operator for
non-hardcore gates and the use of the location transferring to
the setup "subroutine'' as the stack frame's entry pointer. This
is not necessary for compatibility but is significantly faster.
Hardcore gates cannot use this operator because they cannot
access the LOT in the standard way.

Fast hardcore gates will be restricted to calling only ALM
programs. (Currently they call only ALM programs anyway.) The
reason for this is that ALM return operators must be used to
return from a lower ring. The PL/I return operator is being
changed to set PR7 only to the base of the stack it is invoked
on, while the ALM return operator will continue to reset PR7 to
the base of the stack being returned to.

ALM CHANGES

Although the code generated for the push pseudo-op will not
change, the .stack frame size builtin variable ~hould still be
added. It is needed to implement the invocation of the gate push
operator via a macro (rather than with a new pseudo-op). Also it
is still a good idea for ALM programs that currently depend on
the push pseudo-op code to use this instead.

UNRESOLVED ISSUE

It is not clear whether it is advisable to do the optimization
where the binder embeds the CPR sequence in the object code.
This saves only 3 instructions and does embed knowledge of stack
frame formats in object code in a way that we normally frown
upon. Also it requires extra work to implement.

NEW CODE SEQUENCES

This section pres~nts the proposed new code sequences to be used
in the operators. The instructions in the operators are
indicated by a vertical line in the left margin. All other
instructions are in the caller's or callee's object segments.
Code in parentheses is not considered to be part of the CPR

Page 4

MULTICS TECHNICAL BULLETIN MTB-441

mechanism. Argument list preparation is not included. The code
sequences have not been completely optimized for pipelined
hardware. The PL/I versions are prototypes, since there are
several PL/I entry operators. Likewise the bound call entry
operator is also a prototype, since there must be oni for-every
PL/I external entry operator.

Page 5

MTB-441 MULTICS TECHNICAL BULLETIN

PROPOSED PL/I INTER-SEGMENT CALL SEQUENCE
(Total = 34)

(ldaq
epp2
epp3
staq
tsp1
nop

spri1
eppO
call6

eax7
tsp2
(pad)

epp3
spri6
spriO
epp1
spri1
spri1
epp6
epp2
spri2
spbp2
epaq
lprp4
spri4
st.z
eppO
spriO
spri1
ldi
tra

arglist header)
callee
arglist
pr3l0
prOlcall op

pr6istack frame.return ptr
pr3l0
pr2l0

stack frame size
pr6istack_header.new_ent_op,*

pr7 stack header.stack_end ptr,*
pr3 stack_frame.prev sp
pr3 stack frame.arg ptr
pr3 0,7 - -
pr3 stack frame.next sp
pr7 stack-header.stack end ptr
pr3 0
pr2,-2
pr6 stack frame.entry ptr
pr6 text base ptr
pr2 O -
pr7 stack header.lot ptr,*au
pr6 linkage ptr
pr6 stack frame.operator return offset
operator table
pr6lstack fr~me.operator ptr
pr6l4
O,dl
pr214

(random code)

(end of code)
call6 prOlreturn_op

spri6
epp6
eppO
ldi
rtcd

pr7lstack header.stack end ptr
pr6lstack-frame.prev sp,* -
pr6lstack-frame.operator ptr,*
pr6lstack-frame.return ptr+1
pr6lstack=frame.return=ptr

Page 6

,..

MULTICS TECHNICAL BULLETIN

(epp4
(ldaq
epp2
epp3
staq
eax?
tsp1

tra
spri1
epbp?
epp1
spri6
spri3

. epp5
spri5
spri5
epp6
spri2
spbp2
spri4
stz
spriO
spri5
tra

INTRA-SEGMENT CALL SEQUENCE
(WITH OPERATORS)

(TOTAL·= 26)

pr6llinkage ptr,*)
arglist header)
callee -
arglist
pr310
stack frame size
prOlbound_call_entry_op

bound call entry
pr6 1 stack frame.return ptr
pr6 0 - -
pr? stack header.stack end_ptr,*
pr1 stack-frame.prev sp
pr1 stack-frame.arg ptr
pr1 0,7 - -
pr1 stack frame.next sp
pr? stack-header.stack end_ptr
pr 1 0
pr6 stack frame.entry ptr
pr6 text base ptr
pr6,linkage ptr
pr6lstack frame.operator return offset
pr6lstack-frame.operator-ptr
pr614
pr2IX

(random code)

.
(end of code)
call6 prOlreturn~op_no_ind

spri6
epp6
rtcd

pr?lstack header.stack end ptr
pr61stack-frame.prev sp,*
pr61stack frame.return ptr

Page 7

MTB-441

MTB-441

(epp4
(ldaq
epp3
staq
stcd
call6
nap

eax7
epp2
epp1
spri6
spri3
epp5
spri5
spri5
epp6
spri2
spbp2
spri4
stz
spriO
spri5
(random

(end of
epbp7
spri6
epp6
rtcd

MULTICS TECHNICAL BULLETIN

INTRA SEGMENT CALL SEQUENCE
(NO OPERATORS)
(Total = 23)

pr61linkage ptr,*)
arglist header)
arglist
pr3l0
pr61stack frame.return ptr
callee

stack frame size
*-N
pr7 stack header.stack end ptr,*
pr1 stack-frame.prev sp
pr1 stack-frame.arg ptr
pr1 0,7 -
pr1 stack frame.next sp
pr7 stack-header.stack end ptr
pr 1 O
pr6 stack frame.entry ptr
pr6 text ~ase ptr
pr6 linkage ptr
pr6 stack frame.operator return offset
pr6 stack-frame.operator-ptr
pr6 4

code)

code)
pr610
pr71stack header.stack end ptr
pr61stack-frame.prev sp,* -
pr61stack=frame.return ptr

Page 8

MULTICS TECHNICAL BULLETIN

(fld
epp2
eax1
tsxO

tra
ora
epbp7
staq
stxO
eppO
spri6
tra

eax7
epp2
tsp2

tra
epaq
lprp4
epp3
spri6
spriO
epp1
spri1
spri1
epp6
lda
epp3
spri3
epp2
tra
spri4
spri2
spbp2
spbp2
stz
eppO
spriO
spri1
ldi
tra

CURRENT PL/I INTERNAL CALL SEQUENCE
~Total = 48-Y--

arglist head,du)
callee
arglist
pro:call_int this

call int this
8,dl
pr6 0
pr7 0,1
pr6 stack frame.return ptr+1
pr7 0, 1
pro 2,au
pr2 0

stack frame size
pr7istack header.pl1 operators ptr,*
pr2:int entry_op

int entry
pr2-0
pr7 stack header.lot ptr,*au
pr7 stack-header.sta~k end ptr,*
pr3 stack-frame.prev sp -
pr3 stack-frame.arg ptr
pr3 0,7 - -
pr3 stack frame.next sp
pr7 stack-header.sta~k end ptr
pr3 0
prO 0
prO 2,au*
pr6 display_ptr
pr2 -3
save link
pr6:Iinkage ptr
pr6:stack frame.entry ptr
pr6itext base ptr
pr6lstack fraie.return ptr
pr6istack-frame.operatiir ret ptr
operator table - -
pr6lstack frame.operator ptr
pr6l4
O,dl
pr2l5

Page 9

MTB-441

MTB-441 MULTICS TECHNICAL BULLETIN

(random code)

(end of code)
tra pro:return op

tra
epbp7
spri6
epp6
epbp7
eppO
ldi
rtcd

return mac
pr6:o
pr7 stack header.stack end ptr
pr6 stack-frame.prev sp,*
pr6 0
pr6 stack frame.operator ptr,*
pr6 stack-frame.return ptr+1
pr6 stack=frame.return-ptr

Page 10

MULTICS TECHNICAL BULLETIN

(ldaq
epp2
epp3
staq
eax7
tsp1

spri1
epp4
epbp7
epp1
spri6
spri6
spri4
spri3
epp3
spri3
spri3
epp6
spri2
spbp2
stz
spriO
spri3
tra

NEW PL/I INTERNAL CALL SEQUENCE
- -- (Total = 27)

arglist header)
callee
arglist
pr310
new stack frame size
prOTint_call entry_this

pr6 stack frame.return ptr
pr6 linkage ptr,*
pr6 O -
pr7 stack header.stack end ptr,*
pr1 stack-frame.prev sp
pr1 display ptr -
pr1 linkage-ptr
pr1 stack frame.arg ptr
pr1 0,7 - -
pr1 stack frame.next sp
pr7 stack-header.stack end ptr
pr3 0
pr6 stack frame.entry ptr
pr6 text base ptr
pr6 stack frame.operator return offset
pr6 stack-frame.operator-ptr -
pr6 4 -
pr2 X

(random code)

(end of code)
call6 prOlreturn_op_no ind

spri6
epp6
rtcd.

pr71stack header.stack end ptr
pr61stack-frame.prev sp,* -
pr61stack=frame.return ptr

Page 11

MTB-441

MTB-441

ldx7
epp2
tsp2

tra
epp4
spri3
spri6
spriO
epp6
epaq
lprp4
spri4
epp5
spri5
spri5
eax7
stx7
tra

MULTICS TECHNICAL BULLETIN

NEW GATE PUSH SEQUENCE
CfOtal = 18)

.stack frame size,du
pr7:stick heider.pl1_operators_ptr,*
pr2:gate_pµsh_op

gate push
pr7 itacK header.stack end ptr,*
pr4 stack-frame.entry ptr
pr4 stack-frame.prev sp
pr4 stack-frame.arg ptr
pr4 0 -
pr3 0
pr7 stack header.lot ptr,*au
pr6 stack-frame.lp ptr
pr6 0,7 - -
pr7 stack header.stack end ptr
pr6 stack-frame.next s~
1
pr6:stack frame.translator id
pr2:0 - -

Page 12

... _

MULTICS TECHNICAL BULLETIN MTB-441

NEW RELOCATION BITS

Define the following new relocation type:

"11011"b optimize

where

optimize
indicates an instruction or code sequence that can be
changed to be made more efficient. The specific changes
depend on the compiler(s) involved and may be subject to
restrictions. ·The five bits of relocation code are
immediately followed by a fixed length 3-bit field that
specifies the type of code to be optimized. Currently only
''001"b ~ link 15 relocation at the beginning of a calling
sequence, and ''010"b external return sequence, are
defined.

Page 13

MTB-441 MULTICS TECHNICAL BULLETIN

BINDFILE CHANGES

Define the following master keyword:

Embed_Entry Return

Whenever optimization is indicated by relocation codes,
embed in the bound segment code that is normally in the
call, entry, and return operators. This can bccur only when
the compiler has allowed space for the code. WARNING: use
of this keyword causes th~ bound segment to contain code
that is dependent on system conventions which are subject to
change. , ,

Define the following normal keyword:

no embed entry return

Do not embed operator code in this component even if the
compiler has allowed room for it.

Page 14

MULTICS TECHNICAL BULLETIN MTB-441

OBJECT MAP CHANGES

Define the following object map flags:

has_cpr_pad

The object segment has space for system-dependent
call/push/return code to be inserted.

embeds_cpr code

The object segment contains code normally found in the call,
entry, or return operators. This code may stop working if
the system's call/push/return conventions change.

These additions require only compatible changes to the object map
and object info structures.

STACK HEADER CHANGES

The stack header will be grown to add pointers to four PL/I
external entry operators. The new pointers can be used in
testing without any system changes. However, by the time the
proposed operators are installed, the pointers in the stack
header must be initialized when the stack is created, and all
programs that know about the size of the stack header should be
recompiled.

Page 15

,,

I*
I*
I*
I*

dcl

dcl

.....0 -

.,_

::r
:::r

I

c!l
I­
L

(((

BEGIN INCLUDE FILE .•. stack header.incl.pl1 .. 3112 Bill Silver */
modified 7/76 by M. Weaver for *system links and more system use of areas *I
modified 3111 by M. Weaver to add rnt ptr */
modified 3/80 by M. Weaver to add new-entry op ptrs */

sb ptr;

stack header based (sb) aligned,

2 ·pad1 (4) fixed bin,
2 old lot ptr ptr,
2 combined stat ptr ptr,

2 clr ptr
2 max -lot size
2 main proc invoked
2 run unit depth
2 cur-lot size

2 system free ptr
2 user free ptr

2 null ptr
2 stack begin ptr
2 stack-end ptr
2 lot_ptr -

ptr,
fixed bin~·17) unal,
fixed bin (11) unal,
fixed bin(5) unal,
fixed bin(17) unal,

ptr,
ptr,

ptr,
ptr,
ptr,
ptr,

2 signal ptr
2 bar mode sp
2 pl1-operators
2 calI~op_ptr

ptr,
ptr,

ptr ptr,
ptr,

2 push op ptr ptr,
2 return op ptr ptr,
2 return-no-pop op ptr ptr,
2 entry __ op_ptr - - ptr,

2 trans op tv ptr ptr,
2 isot ptr- - ptr,
2 set ptr ptr,
2 unwinder ptr ptr,

I* the main pointer to the stack header */

I* · C 0)
I* (4)
I* (6)

also ~sed as arg list by outward call handler .*.
pointer to the lot for current ring (obsolete) *·
.pointer to area containing separate static */

I*
I*
I*
I*
I*

(8,
(10'
(1 0 ,
(1 0,
(11 '

10)
12)
12)
12)
13)

I* (12, 14)
I* (14, 16)

I*
I*
I*
I*

I*
I*
I*
I*

I*
I*
I*
I*

I*
I*
I*
I*

(16, 20)
(18' _22)
(20, 24)
(22, 26)

(24, 30)
(26, 32)
(28' 34)
(30, 36)

(32, 40)
(34, 42)
(36, 44)
(38, 46)

(40, 50)
(42, 52)
(44, 54)
(46, 56)

pointer to area containing linkage sections
DU number of words allowed in lot */
DL nonzero if main procedure invoked in ru1
DL number of active run units stacked */
DU number of words (entries) in lot */

pointer to system storage area *I
pointer to user storage area *I

*.!
pointer to first stack frame on t~e stack *·
poin-ter to end of last stack frame on the s·
pointer to the lot for the current ring */

pointer to signal procedure for current rin1
v~lue of sp before entering bar mode */
pointer to pl1 operators $operator table */

·pointer to standard call-operator ¥/

pointer to standard push operator *I
pointer to standard return operator */
pointer to standard return I no pop operato1
pointer to standard entry operator */

pointer to translator operator ptrs */
pointer to !SOT */
pointer to System Condition Table */
pointer to unwinder for current ring */

::r
:r

<YI
t-
~

I*

I*

I*

*!

I*

..

-

2 sys_link_info_ptr ptr, I* (48, 60) pointer to *system link name table */
2 rnt ptr ptr, I* (50, 62) pointer to Reference Name Table */
2 ect-ptr ptr, I* (52, 64) pointer to event channel table */
2 assign_linkage_ptr ptr, I* (54, 66) pointer to storage for (obsolete) hcs_$as

ptr, I* (56, 70) pointer to PL/I operator ext_entry */ 2 ext_entry_op_ptr
2 ext_entry_desc_op_ptr ptr, I* (58, 72) pointer to PL/I operator ext_entry_desc *
2 ss_ext_entry_op_ptr ptr, I* (60, 74) . pointer to PL/I operator ss_ext_entry */
2 ss_ext_entry_desc_op_ptr ptr, I* (62, 76) pointer to PL/I operator ss_ext_entry_des

2 pad2 (26) bit (36) aligned; I* (64, 100) for future expansion */

dcl

dcl

dcl

'

The following offset refers to a table within the pl1 operator table. */

tv off set fixed bin init(361) internal static; /* (551) octal */

The following constants are offsets within this transfer vector table. */

(call offset
push-offset
return off set
return-no pop offset
entry_offset -

fixed bin
fixed bin
fixed bin
fixed bin
fixed bin

init(271),
init(272),
init(273),
init(274),
init(275)) internal static;

The following declaration is an overlay of the whole stack header.
move the whole stack header should use this overlay.

Procedures which

stack_header_overlay (size(stack header)) fixed bin based (sb);

END INCLUDE FILE ... stack_header.incl.pll */

l l

r -
Cl)

g-'
a::

