
MULT'ICS TECHNICAL BULLETIN ~-ITB - 439

Date: 3 March 1980

From: Bernard S. Greenberg

Subject: Emacs Paper for Honeywel.L Conference

To: ~rrB Distribution

Attached is a reproduction of my paper, "Multics Emacs, an Experiment
in Computer Interact ion," which I will p~·esent · at the Fourth Annual Honeywell
International Software Conference, in Minneapolis, on March 25.

Unlike most t>!ultics Technical Bulletins, this memo is not limited to the Multics
Development Community. It may be reproduced without permission, as long as its
contents, origin, and this title page are left intact. It may not be
republished without permission.

MUL!lL~ tMAL~ --- AN ~XP~HlMtNl lN LUM~U!~ft ~Nl~na~!lUN ~/~U/OU

Bernard S. Greenberg
Honeywell Information Systems, Inc.
Cambridge Information Systems Laboratory, MSD/LISD
575 Technology Sq. (Mail Sta. MA22)
Cambridge, MA, 02139
HVN 261-9330

Overview

Multics Emacs i~ a video oriented text preparation and
editing facility being released as a product in Multics Release
8.0 in early 1980. Multics Emacs features the ease of use of
stand-alone word processing coupled with the power of the full
Multics progtam environment. Multics Emacs is coded in th& Lisp
language, and is the first released Honeywell software coded· in
Lisp. The use of Lisp has provided an extensibility which has
nourished the development of a wide variety of features which
have brought Multics Emacs far beyond its original goals.

Multics Emacs marks the entry of Multics into the arena of
video oriented user interfaces. While its original conception
was as a text editor, it has grown into an entire user
environment: an embedded mail system, interactive message
system, features for compiling and debugging programs with
automatic aid, and other features, have since brought Multics
Emacs out of the domain of text editors and into the domain of
comprehensive paradigms for user interaction. Valid questions
have been brought to the forefront about the exact roles of
"editors", "editing features", "buffers'', and so forth in an
integrated user environment. These issues will be dealt with in
more detail later on. What is more, Multics Emacs has provided
a .starting point for other current research on alternative
video oriented interaction scenarios on Multics.

Multics Emacs is a member of a class of what we have
designated as "mainframe video editing systems": those which run
on mainframe computer systems, usually general purpose, medium
or large scale computer utilities, yet interact in a very
tightly coupled loop with the user, interacting on every
character typed, and maintaining on a screen a model of text
being edited. This style of text editing is usually associated
with stand-alone "word processing'' systems, which optimally
combine the cost effectiveness of microcomputer technology and
v idea display devices. However, st and-alone "word.· processing"
systems can be no more than what they are; the power·or a total,
integrated computer utility is absent, as is any possibility of
application of the vid~o interaction paradigm to any ·problem
except text preparation.

Mainframe video editing systems, running on multi-user
computer utilities, pose a problem to system designers, insofar
as the system overhead required to interact so tightly with the
user is usually prohibitive. This almost always reduces the
cost effectiveness of such systems far below that ot stand-alone

Page 1

word processing for comparable tasks. However, one large
portion of the motivation for these mainframe sy ste_ms . is
~recisely the large set of tasks and de~ign goals to which
stand-alone word processing is completely unsuited; this reduces
the number of ·conclusions to be drawn from such comparisons.

The ·mainframe implementation of Multics Emacs has been
directly responsible for the realization of its development
cycle; The imple~entation on the Multics system, running on the
Honeywell Level 68, using a high-level language, has allowed
trial implementation and testing of features on an incremental
basis. Given a running Emacs environment, an Emacs developer
can create· and debug new function from within the en~ir6nment,
while··using all the features of the environment. Since the
inception of the subsystem, all extensions of all sizes hav·e
been developed in this way. This ability is the deliberate
result of the choice of Lisp as the implementation language;
this will be discussed in more detail below.

Relevant History of Real-time Editing at MIT

Multics Emacs evolved from a line of mainframe editors
which acquired video capability as an evolutionary step: editing
feature~ in display terminals were not a model for these
editors; stand-alone word processing systems had not yet
appeared.

The starting point for· this editor family was the TECO
editor on the ITS operating system at the. MIT Artificial
Intelligence Laboratory. TECO (for Text Editor and Corrector)
is a mainframe editor which maintains buffers, (if there are
many, one is selected at a given time) containing files being
edited, and a virtual pointer to a given charaqter position in
the selected buffer. The TECO user types a string of "commands"
at TECO: typically, these commands move the virtual pointer,
add, delete, and display text around it, and so forth.

Two other features of TECO are relevant to the history of
Emacs. Teco allows commands to be grouped into macros by the
user, which may be stored and invoked by name~ In this way,-the
TECO user can build libraries of his or her own commands, and
through successive levels of subroutinization, large and
powerful extensions. The other relevant feature of TECO is a
vast and powerful set of control and data primitives designed to
facilitate such programming; recursion, hashing, non-local
control transfer, con~itions, iteration, and a variety of other
higher-level constructs are available. Stallman [Stallman]
discusses some of these features in depth.

As video display usage became widespread at the MIT A.I.
lab, TECO acquired a feature whereby it could divid~ a video

' i
t·
•
~

~

screen into two regions. User interaction (the typing of ~
commands, responses of TECO, etc.) appeared in the lower window
(delimited screen region). The upper window would be used to
show a visual representation of the text in the buffer around
the virtual pointer (or "point"). Every time the user completed

Oil .l.llvO::l dl.:v.l.Ull, lJ:.\.,U U{JUdveu vllt Uj-Jj-J'-' 1'\1.1.IJUVW, illUU.L!Y.l.Ll!6 vllt:::

text in the window to show the modified state of the text in the
buffer. This operation is known as redisplay. This notion of-a
continuously, automatically updated model of text on a screen is
the central characteristic of the video editor.

The next development was the onset of "real-time editing".
A feature ("Control R Mode") was added to ITS TECO which, when
activated, placed the video terminal's cursor in the text
display window, at the point in the display corresponding to the
virtual pointer ("point") in the buffer. In this mode, single
characters were read from the keyboard, in character-at-a-time
fashion. "Text" characters (ordinary printing characters) were
interpreted as requests to place themselves in the buffer at the
current point ("self inserting"): thus, text was inserted at the
current virtual pointer simply by typing it, with no need for an
"insert text" command. ASCII control characters, and
combinations of ASCII control characters with other characters,
were interpreted as requests to invoke editor commands. The
"connection" or binding between an ASCII control character and
TECO editing command was chosen for mnemonicity, e.g., "Co~trol
D" to Delete the character at the virtual point. After each
typed cliaracter (be it text or command, or more precisely, when
no more input was buffered), a redisplay was performed to update
the image of the buffer as well as update the position of the
terminal's cursor to correspond to the virtual point.

The net visible effect of "Control R mode TECO" was much
like today's stand-alone word processing, or "terminal editing",
with the crucial difference that a tremendously powerful
mainframe editor was involved. The illusion of "editing the
text on the screen by typing characters" is common to all three
kinds of editing. This has since become the standard paradigm
for use of a video screen as an aid for text creation and
editing. Those who have attempted to teach the use of computers
for editing to the computer-naive have universally found this
paradigm simpler and more readily grasped than that of the
classic time sharing editor based line editors. At this time,
(early 1970's) similar systems (TVEDIT, E, etc.· [EDOC]) had
also appeared· at Stanford University and other places.

The final prehistoric evolutionary step of Emacs was a TECO
feature whereby arbitrary macros could be assigned to keys in
Control R mode. A user could then construct his or her own
commands of unlimited power or sophistication, and have them
invoked by a single keystroke in Control R mode. Thus, a
command to "move the current virtual point to the end of a
sentence" could be coded as a TECO macro, and associated with a
key, which when pressed in Control R mode, would appear to act
as a "key which moves the cursor to the end of a sentence."

This development led to a proliferation of packages of
macros intended for use in Control R mode at MIT AI in the
mid 1970's. Each of these packages contained a large repertoire
of us~ful function, featuring knowledge of many common text
constructs, including many used in programming languages 1

Page 3

'~

i
presenting an integrated interface for invoking these sequences
from. keystrokes.) Of h~hesde pdack~ge.s, one knR'?wnh ads EMA5rtvs 11< for ~;
Editing Macros ac ieve om1nance. ic ar a man
[StalltnanJ,-:--rhe- chief developer of EMACS, details more of this
histoFy, and how EMACS differs from these earlier packages.

A central fe~ture of the philosophy embedded in EMACS was
that of editor construction by extension. The interfaces and
keystroke commands provided by ·EMACS (on ITS) form a unified
whole, documented and presented as an editor, not ''a collection
of macros to be used in Control R modett. The user 6f EMACS is
unwaware of the existence of the underlying TECO. .Similarly,
EMACS encourages the construction of further packages by adding
levels, using the facilities (functions, protocols, etc.)
provided both in EMACS and natively in TECO.

[In keeping with Multics and ITS usage, we use "EMACS" to
designate the ITS editor, "Multics Emacs" to .designate the

-Multics editor in specific, and 11 Emacs 11 to designate the Multics
editor when· its differences from the ITS editor are not
relevant, or either subsystem when distinctions are not
relevant.]

The notion of extension is a critical one: the ability for
both users and implementors (the distinction here deliberately
blurs and vanishes) to add new levels of function and thus buiid
either "larger editors" or major facilities (major modes) within
EMACS is the most visible single distinguishing feature of
EMACS. Typical extensions create specially tuned sub-editors
oriented towards (for example) editing Lisp programs, editing
PL/I prdgrams, preparin~ English text, etc.

The concept of sub-editors tuned for programming language
editing is significant. Many languages have syntactic
constructs which are difficult to deal with without automatic
help: the balancing of parentheses in Lisp is a classic case in
point. Here, and in an increasing number of cases, the
difference between a language or set of language features being
usable or not is made by the existence of an ~ditor with special
features for that language.

inception of Emacs on Multics

In early 1978, Multics' text preparation facility consisted
of two text justifiers, one being phased in and the other being
phased out, some powerful dictionary tools, a batch~~ode
abbreviation expander, and two editors. Both editors were
half duplex, line-at-a-time, printing-terminal oriented editors
in the classic time sharing mold. One was an unmodified
reimplementation of the EDL/EDA editor interface of CTSS,
intended for the most naive users. The other, the Multics
standard editor, was a stripped down version of B~ll's QED
editor [CG40], a venerable warhorse which had been used to.enter
and modify all of the Multics system for years. A version of
TECO implemented by MIT also existed, but was very weak
(compared to ITS TECO), was also half duplex and
printing-terminal oriented, and had never acquired a large
following.

By early 1978, almost all Multics programmers and users
were using the Multics standard editor, or a greatly augmented
private version thereof, which had acquired a large number of
popular features without altering its basic design. At this
time, the author, in preparation for an annual lecture series at
MIT, encountered EMACS on ITS, and immediately began
contemplating what it would take to implement such a sub~yste~
on Multics. It was then 6lear to the author that the.next step
in Multics editor development, which had been stagnating, would
not be evolutionary, but revolutionary. EMACS provided a
well debugged model, which had evolved through substantial
design iteration. ·

At once, the problem of lacking character-at-a-time l/O on
Multics had to be overcome. Since its inception, Multics has
histo~ically interacted on a line-at-a-time b~sis; the
preponderance of half duplex printing terminils for Multics'
first decade is largely responsible for this orientation. The
front-end/mainframe protocols are organized for line
t~ansmissions. Outside of Emacs, Multics provides no form of
display support .

. As soon as experimentation with EMACS-like concepts was
desired, character-at-a-time I/O was effected on an experimental
basis by a p~tch to the front-end software. This patch sufficed
for many months; yet, the overhead implied by this mode of
transmission (and the implementation in terms of this ~atch) was
a cause for concern in many quarters. Those who had ~orked hard
towards Multics performance goals were alarmed at the prospect
of a subsystem that interacted on every character. The patch
existed for many months on the development site at Honeywell's
Cambridge Information Systems Lab; experimentation only spread
to the MIT Multics site by use of the character-at-a-time
support implicit in the ARPANET and the Multics ARPANET
implementation.

Page 5

•f, ' .

f

The second problem in a trial implementation was the choice
of a programming language. Historically, all Multics programs
have been written in PL/I. Multics PL/I [AG94] is one of the
f.1/llest implementations of the ANSI PL/I standard extant, and
h~as evolved over the years as the sole system support language
~~plementation for Multics. Its object code efficiency,
rpbustness, and maintenance are superlative .. Thus; PL/I seemed
tp be the natural choice. Being able to view the ITS experience
in perspective, it seemed as though marked efficiency could be
gained by implementing an EMACS-like edi~or directly in PL/I, as
Opposed to as a system of macros in .some other language (viz.,
~ECO), and avoid the interpretive overhead of that latter
fanguage. Stallman [Stallman], in retrospect, speaks of.the
deficiencies of TECO as an implementation language as well.

However, one of the chief lessons of the ITS experience was
the value of ·extensibility: EMACS as an environment in which
editing subsystems can and ought be created by
user/imple~entors. The power to grow is the greatest power of
all: A direct implementation of an EMACS-like interface, no
matter in what language it was realized, would have to have
modular, simple low- and medium-level interfaces for utilization

· by user code.

Various scenarios for extensibility in a PL/I-based
implementation were evaluated. The Multics process environment
is one of the classic models of extensibility in the literature,
and it is PL/I-based. The ability to extend and customize one's
Multics process environment via PL/I subroutine calL and
definition has provided the model for many operating systems
since. Yet, several features of PL/I pointed away from .its
choice as the Multics Emacs implementation language.· Given that
any reasonable impl~mentation of an EMACS-like modularity would
associate editor primitives (e.g. , "move the virtual pointer
forward a char act er 11 , "delete the current character", etc.) with
PL/I subroutines, exten~ion code would degenerate into a
sequence of subroutine calls. Calls between separately compiled
modules are expensive. Calls to internal subroutines are 'cheap,
but by definition, ~uch subroutines are not. accessible to other
modules. Thus, if externally accessible (i.e., usable by
extension) procedures were to be had, they would have to be of
the (expensive) external kind, which would add substantial
overhead to even the smallest editor primitive. Furthermore,
PL/I is notorious for requiring declaration of the smallest
artifacts of every module; all variables used, all external
names,. etc. Programs consisting of hundreds of lines of
declaration and ten lines of code are not uncommon. It seemed
as if people were going to write extensions, the overhead of
declaring each editor primitive to be used and its parameters,
as well as every global variable and its data type and precision
would stand squarely in the way.

This led
language. In
distinction.
are coequal.

to the choice of Lisp as an implementation
Lisp, there is no external/internal subroutine

All functions (the Lisp procedural abstraction)
Lisp inter-function calls all have the same

I
I
I

""' l 1

I
!

I

more than a PL/I internal call. Lisp calls are traditionally
very cheap. Lisp programs are traditionally written with many
small (i.e., ten or fifteen line) functions, which therefore use
inter-function call very heavily. Thus, function calling has
been highly optimized in Lisp, and much of the overhead
associated with PL/I calling, e.g., setting up a control frame
thread for the benefit of the PL/I signalling mechanism, is not
present. What is mere, every Lisp function in a given
environment may be accessed by any other function, unless very
special measures are taken, and similarly for every global
variable. Of course, this can be a mixed blessing, in terms of
both programming style and the pitfalls of a global namespace.

Lisp's notion of data abstraction also seems more well
suited to subsystem building. In Lisp, one can define a "data
type" by program convention only, without "informing the
language" in any way. For instance, Multics Emacs defines
editor buffer pointers (or "marks", conceptually inter-character
pointers to text, dynamically updated as text is added and
deleted) out of Lisp list nodes. Lisp programs in Emacs can
pass around marks, either to each other or to primitives which
manipulate marks, or store marks, without any knowledge, or 'even
a declaration, of the internal structure or implementation of a
mark. Here, , Lisp fosters an isolation of levels of the
implementation, which is highly desirable, and extends to within
the internal levels of Multics Emacs itself.

Another very powerful feature of Lisp, specifically of
MacLisp [Moon], the dialect in use on Multics 1 is the macro
feature of the language, via which the syntax of the language
itself can be extended. The "macro language" of Lisp is Lisp
itself; Lisp programs are represented (at compile time) by Lisp
data in a "public" representation. Lisp allows programmers to
specify code to run at compile time to implement a macro-defined
language; this is possible because of the Lisp data
representation of Lisp programs, which allows the compiler
itself to be a Lisp program. This in turn allows construction
of highly specialized languages built.out of Lisp: the Multics
Emacs extension language is one such, and is expoµnded on at
length in the Appendix. The success of the extension language
as the vehicle for Emacs extension is· remarkable~ and a.
testament to the power of the Lisp macro facility~

Multics MacLisp has a fully mature debugging system, I/O
facilities, and the ability to interface to other facilities in
Multics. Multics MacLisp also has a powerful compiler, and all
"production" programs are compiled (although the existence of
the Lisp interpreter is invaluable during debugging). Many
other Lisp systems lack these features, and are thus ill suited
to development of production software.

The efficiency of Lisp is also raised when considering Lisp
as a serious contender for a systems implementation language.
The existence of the compiler ends all efficiency arguments
about Lisp being "an intepreted language". The need to allocate

Page 7

-·
,,.

storage and garbage collect is often raised as well; sagacious
st_orage management policies, which ought be used in any program
i rt any language, put this 11 problem" wel 1 within 1 imi ts. Even
though traditional - programming style in textbook presentations
of Lisp often consumes storage in a liberally wasteful fashion,
i-t is possible, with minimal added difficulty, to code in a
fashion which is not wasteful of storage. -Part of the problem
here can be traced to what the author considers gross
p:hilosophical flaws in the classical presentation of Lisp. (For
a presentation of the alternative view, see [LispNotes]).

A very closely related effort to Multics Emacs w~s the_ Li~p
·Machine at the MIT Artificial Intelligence Lab [Chineual], which
has been under development during the entire history of Multics
Emacs. All software on the Lisp Machine is coded in Lisp,
including~-all parts of the operating system, the user utility
programs, and most notably, the editor, ZWEI [Weinreb], which is
EMACS-like. There was substantial design crosscurrent between
Multics Emacs and ZWEI during the simultaneous development of
both; the common features of these Lisp-coded EMACS-like editors
were of great interest to both developers. The Lisp machine as
a whole provided many models of Lisp-coded, full fledged,
interactive user environments.

One of the unplanned benefits of Lisp which has proved to
be of inestimable value is the ability to develop Emacs
extensions from within Emacs: the ability to write Lisp
functions, one by one, in an Emacs buffer in Lisp Mode (a
sub-editor suited to editing Lisp programs) and test and debug
them by observing their effect on the invocation of Emacs which
is editing them. This paradigm has been directly responsible
for the large growth of Multics Emacs extensions.

Communications Efficiency

In order to reduce the overhead associated with very
tightly coupled user interaction (and the associated problem of
response) in a multi-user computer utility, implementors of
mainframe video editing systems have devised various techniques
and communications strategies, whose general import are usually
to move processing of typed characters further and further down
the ·1evels of the operating system and communications software.
The further down such processing is moved, the fewer levels of
software must be invoked to respond to each typed character.
Such techniques involve increasingly complex data management and
synchronization protocols between levels and nodes of
communications software the further down into the operating
system they are moved.

The technique used in Multics Emacs to reduce the
character-at-a-time expense is called "negotiated echo". It is
a scheme which optimizes the handling of the most common case of
interaction, namely, the insertion of a printing character into
the buffer at the end of a text line and its subsequent
appearance on the screen, in response to its being typed by the
user. When prerequisite conditions are met, the Multics

---- -· ----v..a......,,~4- ._,..._...._ ..,,.,.._... '- 0 ... ~..- -~• a. ._.1 • ...,--~llU .JUJ. \,,Well t;'

that negotiated echo can begin: the front-end will then echo
(retransmit to the screen) all printing characters typed by the
user until an "end condition'' is met. Characters so echoed
appear on the screen as typed, just as if a redisplay had
occurred after each was entered into the buffer. When an "end
condition", such as reaching the end of a line, or the typing of
a non-echoable character occurs, all characters are sent to the
mainframe and negotiated echo stops.

When negotiated echo stops, characters are shipped to the
mainframe in character-at-a-time fashion as they arrive. Only
when the mainframe requests to reinitiate negotiated echo, and
no characters are in transit, does negotiated echo resume. To
determine whether or not characters are in tran~it, both
communications processor and mainframe keep a count of processed
characters since the last front-end echoed character. The
request to restart negotiated echo includes the value of this
count as perceived by the mainframe. As long as Emacs is in the
state of having its virtual pointer at the end of a line (with
some other constraints not mentioned here) requests will be made
for characters via negotiated echo as opposed to raw characters.
Thus, if resynchronization fails, repeated attempts will be made
to resynchronize until no characters are in transit.

The echo negotiation protocol is viewed as a three level
hierarchy; Emacs, the Multics mainframe communications software,
and the front end software are each prepared to echo characters.
Each requests the next level to produce characters, some leading
prefix of which may have been echoed by that or lower levels.
Each level reprocesses those that have not been echoed, and
echoes the leading prefix thereof which · is echoable. This
architecture allows for multiple types of communications
processor, some of which may not support negotiated echo. It
also allows for arbitrary cessation of negotiated echo at any
level for reasons unknown to the higher levels (for instance,
running out of buffer space to hold echoed untransmitted
characters).

The resynchronization technique described above succeeds
only when · the network delay between front end and mainframe is
not on the average longer than the mean inter-character time of
the typist. For multi-node networks with long packet delays,
this resynchronization technique will not work.

Further features of the echo negotiation protocol include
the ability for the mainframe to deterministically stop
negot1ated echo in progress, and the ability to dynamically
redefine which characters are considered "non-echoable". An
example of the use of the former feature is the interactive
message facility, which aborts echo-negotiated input upon
arrival of messages. An example of the use of the latter
feature is the semicolon character in a sub-mode of the PL/I
program editing mode: semicolon is the PL/I end of statement
chara~ter, and in this mode, typing it triggers an automatic
position to the indented beginning of the next line.

Page 9

Echo negotiation has achieved its goal of reducing the
mainframe interrupt and wakeup overhead of Emacs use to well
wlthin manageable limits. The vast majority of interaction with
Efuacs consists of entering text at the end of a line, whether it
be new documents, programs, or even long-named editor requests.
A§ long as the system is not overloaded, it has the added
benefit of causing character echo to be instantaneous. When the
system load increases, resynchronization takes correspondingly
longer, and characters default to being processed in increasing
numbers by Emacs as opposed to the communications software.
lhis is seen by the user as decreased response.

The Place of Emacs in Multics

Multics Emacs has achieved wide popularity at the two
Multics exposure sites, at MIT, and at Honeywell's Large
Information Systems division in Phoenix, Arizona~ Abo~t one
hundred people use it regularly. Those with video terminals
rarely revert to any other form of editing once having seen
Emacs. The truly naive as well as the sophisticated master the
user interface in short order, paralleling the ITS experience.
Due to various economic situations, the extra expense resulting
from the machine overhead of this form of editing seems to be no
deterrent. The availability of video terminals is currently the
controlling factor of Emacs use at these two sites.

When Emacs users invoke Emacs, they tend to interact with
it for a 'long time, editing many files at length. Since
interacting with Emacs is vastly different from interacting with
other Multics facilities, the user becomes acclimated to the
Emacs mode of interaction: this tends to prolong the user's stay­
in Emacs. Since starting up an invocation of Emacs is a ~low
and expensive process, there is added incentive to stay "inside''
Emacs as long as possible. Toward this end, a number of "modes"
have been created which parallel existing function in Multics,
but operate within the Emacs environment. These features always
utilize Emacs screen management and editing capabilities
implicitly, and are often more attractive and powerful than the
native Multics facilities when a video terminal is in use. This
parallel function has rightly generated some controversy.

Typical of this is the Emacs mail system, which places
incoming and outgoing mail in buffers and windows, to facilitate
real-time editing of the mail, paging through mail while reading
it or responding to it, and automatically generating replies.
There exists a complete and integrated Multics mail system,
outside of Emacs, and many have validly raised the point that
the existence of another one, inside Emacs, nowhere as complete,
is questionable at best.

However, the task of mail composition seems to overlap so
largely with the task of text editing, that integration with a
text editor seems appealing. In the standard Multics mail
system, a sharp distinction is made between ''inputting" mail and
11 editing 11 mail. The use of multiple windows to read and reply
to mail, with the ability to page back and forth, is so natural

L.\..dJV LJt:QV\JJ.cJ""'..ll....Jll llt!.::> <.l\...:UJ..'...;v1,,.;u 0 _.._....._ ,,. a _.._..._.'-4Ub "''"'-

mainframe interrupt and wakeup overhead of ~~~~s use to well
within manageable limit::;. The vast majority of interaction with
E1nacs consists of entering t0xt at the end of a line, whether it
be new documents, proBrams, or even long-named editor requests.
As long as the system is not overloaded, it has the added
benefit of causing character echo to be instantaneous. When the
system load increases, resynchronization takes correspondingly
longer, and characters default to being processed in increasing
numbers by Emacs as opposed to the communications software.
This is seen by the user as decreased response.

The Place of Emacs in Multics

Multics Emacs has achieved wide popularity at the two
Multics exposure sites, at MIT, and at Honeywell's Large
Information Systems division in Phoenix, Arizona. About one
hundred people use it regularly. Those with video terminals
rarely revert to any other form of editing once having seen
Emacs. The truly naive as well as the sophisticated master the
user interface in short order, paralleling the ITS experience.
Due to various economic situations, the extra expense resulting
from the machine overhead of this form of editing seems to be no
deterrent. The availability of video terminals is currently the
controlling factor of Emacs use at these two sites.

When Emacs users invoke Emacs, they tend to inte.ract with
it for a long time, editing many files at length. Since
interacting with Emacs is vastly different from interacting with
other Multics facilities, the user becomes acclimated to the
Emacs mode of interaction: this tends to prolong the user's stay
in Emacs. Since starting up an invocation of Emacs is a slow
and expensive process, there is added incentive to stay "inside''
Emacs as long as possible. Toward this end, a number of "modes"
have been created which parallel existing function in Multics,
but operate within the Emacs environment. These features always
utilize Emacs screen management and editing capabilities
implicitly, and are often more attractive and powerful than the
native Multics facilities when a video terminal is in use. This
parallel function has rightly generated some controversy.

Typical of this is the Emacs mail system, which places
incoming and outgoing mail in buffers and windows, to facilitate

.real-time editing of the mail, paging through mail while reading
it or responding to it, and automatically generating replies.
There exists a complete and integrated Multics mail system,
outside of Emacs, and many have validly raised the point that
the existence of another one, inside Emacs, nowhere as complete,
is questionable at best.

However, the task of mail composition seems to overlap so
largely with the task of text editing, that integration with a
text editor seems appealing. In the standard Multics mail
system, a sharp distinction is made between "inputting" mail and
"editing" mail. The use of multiple windows to read and reply
to mail, with the ability to page back and forth, is so natural

that some have wanted to learn to use Emacs for this· reason
alo~e. Certainly, if Multics had integrated video management
(which is at this time under serious design consideration), the
mail system could use it (and will) to advantage: indeed, the
Emacs mail system is indeed a way of getting "video managed
mail" if nothing else. However, the large percentage of the
mail composing/reading task wh~ch is editing mandates that th~
most potent editing technology available be used, and thi"s is
Em~cs. Emacs seems a more likely candidate to contain a mail
system than the mail system to contain an Emacs, so this is the
way it was done. (On ITS, an Emacs-embedded mail system exists
as well).

The unique nature of the Multics process environment,
specifically, the ability to call any procedure or subsystem
known to Multics, if proper interfaces exist, allow a wide
panorama of function to be subsumed into Emacs, and
experimentation with video interfaces to Multics function to be
performed. Creating function via the Emacs extension language
and calling of external Multics routines begets utility without
having to build an environment from ground up, and buys video
management for free (by virtue of the automatic redisplay).

Prototypical of many "special purpose" Emacs modes is the
directory editor, "DIRED", which exists in both Emacs
implementations. The user, inside Emacs, invokes the directory
editor via a sequence of command characters. A display listing
all files in the storage system directory to be ''edited" is
placed in a buffer (and thus, by virtue of the redisplay,
displayed on the screen). Normal Em~cs commands can be used to
position to any line (each line describes one file of the
directory) of the display. In this mode, no commands which
would cause the buffer to be modified may be issued. However,
commands such as "delete this file" and "show me the contents of
this file" are available as keystrokes. Thus, the user moves
the cursor around the display of the directory listing, examines
files, and marks them for deletion (they are actually deleted
when the directory. editor is exited). The user never has to
specify file names, and sees a "large picture" of what files are
in the directory at all times. This "menu"-type interface is
typical of many advanced video systems [PARC].

Another class of special purpose modes invokes large scale
Multics subsystems from within Emacs, and processes their output
in a useful way. In Lisp mode, a single keystroke invokes the
Multics Lisp compiler upon the function at which the cursor is
pointing, and upon its completion, incorporates the object
program into the running MacLisp environment, and displays the
compiler's diagnostics on the screen. In PL/I and FORTRAN
modes, the same keystroke invokes the appropriate compiler upon
the source program being edited. The compiler's diagnostics are
placed in a buffer in a second window, and are analyzed to
identify the source lines flagged as in error by the compiler.
A dedicated command (keystroke) in PL/I and FORTRAN modes moves
the cursor in the source program to the "next line flagged as in
error by the compiler", and moves the "current point" in the

l
i

'

a1agnost1cs buffer to the next diagnostic, such that it is
displayed in the diagnostics window automatically. The
"pointers" to the source lines are kept as "marks", and are thus
valid through the new editing of the source program. In this
way, multiple windows are used to "reply to" source program
erro~s in the same way that mail responses are generated.

An interactive message processor in Multics Emacs creates
buffers associated with senders of interactive messages. These
buffers have their key bindings so set up that typing.lines into
them will send those lines as interactive messages to the
associated user. As messages sent by the other user appear at
the end of the buffer automatically, a "conversation'; can be
held with another user simply by "going to" such a ·"message
buffer". Multiple message buffers (like any other buffers) can
be displayed on the screen in multiple windows, and thus several
conversations can sometimes be seen scrolling simultaneously,
automatically, on a Multics Emacs screen. This facility even
~llows automatic routing and response to interacti~e me~~ages
corning from foreign network sites.

The "ultimate" Emacs mode, in some sense, is one now under
development, called "Multics Mode". In this mode, the full
flexibility of the Multics User I/O system is exercised to
connect Multics Virtual I/O streams [AG91] to Emacs buffers.
The net effect of this connection is to "run a Multics process
from inside an Emacs buffer". The user stays in Emacs for the

. iife of the process. Carriage return submits a line of the
buffer to the Multics command processor; output produced by
Multics appears in the buffer as it occurs. ~hen the Multics
I/O system requests input, the user types into the buffer and a
carriage return transmits the (possibly edited) line back to the
I/O system. Thus, Emacs editing becomes applicable to all
Multics interaction, including searching, scrolling back through
previous interactions, transactions with other Emacs buffers and
so forth. With Multics mode, Emacs literally subsumes Multics,
and the editor/environment distinction vanishes. With the
advent of Multics mode, the question has been raised as to
whether Multics Emacs is an editor with its own support
mechanism, a de facto video system, a video system that should
be within a Multics video support system, or the Multics Video
system incarnate.

Experience and Conclusions

In the two years since its inception, Multics Emacs has
grown from an experimental Lisp program to a twenty thousand
line subsystem encompassing widely diverse Multics facilities
and used across the country. It has inspired a wide variety of
reaction, which in many ways is telling about the state of the
computer marketplace.

In most ways, Multics Emacs shares the ITS Emacs
experience: novice ~nd experienced users find Emacs easy to
learn and to use, and those who use video terminals rarely
revert to earlier editing habits. People seem to become

Page 12

productive and
"conventional"
sub,systems to
pe(sonal Emacs

proficient with Emacs in less time than with the
editors. Skilled programmers build extension
accomplish sophisticated tasks, and libraries of

extensions abound. ·

The impact of Emacs upon Multics, however, is quite
unparalleled in the ITS experience. Cognoscenti at once
recognized .the ostensible similarity between Emacs and
stand-alone word processing systems, and attempted to identify
Em~cs as an integral part of Multics Word Processing. Ways were
sought to support dozens, or hundreds of Emacs users, in vain
ai~empt to approach the economy of the stand-alone word
processors. Nevertheless, the chief goal of Multics Emacs has
been achieved, namely, to provide Multics with as powefful,
advanced, and flexible an editing system as possible. It is a
large augmentation of the power and capability of Multics, and a
boon to those who already have or would have Multics systems: it
is not intended to allow Multics to compete with stand-alone
word processing. The power of a mainframe real-time editor, is
not in its non-existent ability to replace dedicated
minicomputer word processing systems, but in its ext~nsibility,
which allows it to perform more highly specialized .and
sophisticated editing tasks (e.g., the PL/I-FORTRAN error
diagnostic mode above) than those of which any minicomputer
system is qapable.

The emergence of Multics Emacs has sensitized Multics users
to the advantages of integrated video support, and real-time
line editing. The widespread conversion of time sharing users
to video terminals has left the printing-terminal oriented
Multics. interface far behind, and Emacs has let users see how
video terminals can be managed intelligently. As a result,
there is now substantial agitation for integrated video support
in the Multics terminal support and communications areas.

Multics Emacs has been responsible for renewed interest in
Lisp: many people wanting to write Emacs extensions have pursued
Lisp (some knew no other programming language), and have rapidly
become enamored-of it. Multics Emacs is a tremendously potent
tool for the creation ~nd debugging of Lisp programs, taking all
of the pain out of indentation, parenthesis balancing, and
similar mechanizable tasks.

The power of Multics Emacs as a tool for developing itself,
i.e., extensions, cannot be overstated. The line-by-line,
function-by-function incremental input and debugging of code
facilitated by Lisp mode and the active MacLisp environment
allow code to be produced and debugged in seconds, and finely
incrementally developed and reiterated in the same way that a
sculptor polishes and examines his or her work. There is no
interactive program development facility on Multics or ITS
anything like Emacs developing its own extensions: the power of
this facility has been directly responsible for the large number
and wide variety of extensions that have come about.

~1
f
\

I
~

I
I
i
I

r

nui~i~o cm~cs nas ai~u proviuau a testbed for
·experimentation with alternative Multics user interf~ces, and

highly customized environments. The user interface of Multics
does not extend well to video terminals, and would need be
almost completely overhauled for effective video terminal
utilization: the mail system is a case in point. Multics Emacs
has provided a path for experimentation with "entire alternative
interfaces" to Multics.

Multics Emacs has provided a subject matter of interesting
discourse between the Multics Development Community and other
researchers at MIT, Stanford, and elsewhere working on similar
related issues. In addition to a valuable infusion of new and
radically different ideas into Multics, there has been a
give-and-take with those investigating similar interfaces
[Stallman] [Weinreb] [Anderson] [Schiller] during its
development. Multics Emacs in fact "grew up" with these related
editors, which were an active, state-of-the-art research topic

·at the t.ime.

The choice of Lisp was a bold one: it has been the central
artifact responsible for the rapid development of tremendous
function in Multics Emacs. It is clear that an implementation
in PL/I, with no concessions to elegance or modifiability, like
one in assembler language, would support a larger number of
users at smaller cost, but little of the present function would
have been developed.

The choice of EMACS as an interface was an extremely
fortunate one: all subsequent observation has indicated that
many comparable mainframe (and small computer) text editor
interfaces do not share the symmetry and regularity of EMACS.
The lack of an input/edit mode distinction, the treatment of
buffers as uniform strings of characters, and the uniform action
of all commands with respect to the context in which they are
used are the most significant contributors to this regularity_:
these attributes have been largely responsible for its ease of
learning, and 'its conceptual advantage over the conventional
Multics editors.

Acknowledgements

The author is deeply indebted to a large number -0f people
for assistance and encouragement during the prehistory and
development of Multics Emacs. I would like to thank:

William York, Gary Palter, and Richard Lamson, the other
developers and maintainers of Multics Emacs, each
responsible for numerous features, fixes, -and enhancements,
and infinite work.

Richard Stallman, for developing the entire concept of
Emacs, and offering fervid and enthusiastic support from
the first day.

Page 14

I

Horieywell Information Systems, Inc., specifically Charlie
Clingen, John Gintell, and Steve Webber, for the foresight
to allow resources to be committed to this project, and for
developing it into a Honeywell product. ·

Dan Weinreb
information,
mention.

and Dave Moon, for all natures of assistance,
encouragement, and support too numerous to

Larry Johnson, Jerry
maintainers/developers
software.

Stern,
of the

and Robert Coren, the
Multics communications

Earl
early

Killian,
guidance

experience in
software.

Eugene Ciccarelli, and Bruce Edwards for
and continued support, and their vast
terminal support and real-time display

Paul Schauble, for his contributions of FORTRAN mode and
the FORTRAN/PL/I diagnostic scan mode.

Roger Roach and the staff of the
Center for allowing
character-at-a-time real-time
service system, and allowing
grow there.

MIT Information Proces~ing
experimentation with

Lisp-coded editors on their
an Emacs user community to

The MIT AI Lab, for allowing me to use their system, and
become familiar with ITS.

Lee Parks, Charles Frankston, Carl Hoffman, Lindsey Spratt,
Suzanne Krupp, Margaret Minsky, Gerry Sussman, and a large
number of other people for all sorts of help,
encouragement, and ideas along the way.

·1
I
I I

"'\\

I

(
~I

I
l

i
' I
I

. I

ttererences

. Multics Emacs is defined and dqcumented by two published
Honeywell Manuals, [CH27], which describes the total user
interface, and [CJ52], which details the extension writing
language and facilities.

[AG91]· Multics Programmer's Manual, Reference Guide.
Order #AG91. Honeywell Information Systems, Inc.

[AG94] Multics PL/I Language Specification, Order #AG94,
Honeywell Information Systems, Inc.

[Anderson]
Anderson, Owen T., "The Design and Implementation of a
Display-Oriented Editor Writing System", S.S. Thesis,
MIT Dept. of Physics, January, 1979.

[CG40] QEDX Text Editor User's Guide, Order #CG40,. Honeywell
Information Systems, Inc.

[CH27] Emacs Text Editor User's Guide, Order #CH27, Hoheywell
Information Systems, Inc., Dec~mber 1979.

[Chineual]
Weinreb, D. & Moon D., "The Lisp Machine Reference
Manual", MIT Artificial Intelligence Laboratory, 1979.

[CJ52] Emacs Extension Writer's Guide, Order #CJ52, Honeywell
Information Systems, Inc., February, 1980.

[EDOC] Online Documentation on E editor (E.DOC[ALS,UP]),
Stanford University A.I. Laboratory, Palo Alto,
California. ·

[Halbert]

[ITSDOC]

Halbert, Daniel C., "A LISP Debugger for Display
Terminals", S.B. Thesis, M.I.T., Cambridge, MA, 1978.

Eastlake, et al. , "ITS 1. 5 Reference Manual", AI M.emo
161 and revisions, MIT Artificial Intelligence Lab,
Cambridge, Mass.

[LispNotes]
Greenberg, Bernard S., "Notes on the Programming
Language Lisp", MIT Student Information Processing
Board, 1976, 1978

[Moon] Moon, David A., "The MacLisp Reference Manual", MIT
Project MAC, 1974.

[PARC] Teitelman, Warren, "A Display-Oriented Programmer's
Assistant", Xerox Palo Alto Research Center,
Report CSL-77-3, Palo Alto, CA, March 8, 1977

Page 16

[Schiller]
· Schiller, Jeffrey I., "TORES: The Text ORiented Editing

System", revised from S.B. thesis, MIT Dept. of EE & CS,
June 1979.

[Stallman]

[TECDOC]

Stallman, Richard M., "Emacs, the Extensible, Customizable
Self-Documenting Display Editor'', AI Memo 519, MIT A.I.
Lab, June 22, 1979

Online documentation for TECO, MIT AI system.

[Weinreb]
Weinreb, Daniel L., "A Real-Time Display-Oriented Editor
for the Lisp Machine", S.B. Thesis, MIT Dept. of EE & CS,
January, 1979.

I
I

Al\ ~

i
!
i
'

Appendix:

Multics Emacs extensions, whether part of the standard
editor, loadable libraries, or user written, are written in
Multics MacLisp, augmented by a set of Lisp macros provided as a
lexically includable program fragment with Emacs. Extensions
are written in an environment consisting of the native MacLisp
functions (other than I/O), functions in the basic editor and
standard extensions, and occasionally the redisplay code. The
basic editor functions provide the ability to manipulate the
current point, and the buffers, and ·inspect and change the
contents of lines and buffers. Lisp macros are provided for
syntactic sugaring of commonly used syntactic cliches, such as
11 create a temporary variable, assign a mark at the current point
to it, perform some code, and free the mark", as well as to
augment the basic expressive power of MacLisp.

The writer of extensions creates MacLisp functions via the
Emacs command definition facility which associates with the
defined function name a set of properties facilitating argument
checking and prompting, as well as documentation. (All E~acs
commands have online documentation, which can be obtained in
many forms and in many ways, including explicit requests for
information about the function of any given key.) In addition to
invoking supplied functions in the extension environment,
functions defined via the Emacs command definition faci+ity may
invoke. each other (as may any Lisp functions), or be 11 connected 11

to keys, so that they will be invoked automatically by Emacs
when selected keys are struck.

Extensions use as data strings, integers, buffer names, and
marks (see above). The basic Lisp data types (symbols and lists
(implemented via conses)) are only occasionally used. In fact,
reasonably expert extension writing has been accomplished by
persons completely ignorant of fundamental Lisp data object
types. The fact that marks are implemented as lower level Lisp
objects is transparent and irrelevant to the Extension writer:
he or she is not allowed, and never has reason, to "decompose"
them; such is the elegant nature of the Lisp object abstraction.
The extension writer has no knowledge of or dealings with the
internal representations of any data structure of the editor.

The most useful class of function used in extensions are
those which are already capable of being invoked on behalf of
user keystrokes by Emacs. For instance, "forward-word" is very
commonly used in editing to position the cursor past the current
word, which is how the Emacs user conceptualizes ''what Escape-F
does" (Escape-F being the two key sequence star.dardly used to
invoke this common command). The extension writer, on the other
hand, conceptualizes the "forward-word" function as moving the
current buffer point to beyond the current word. Using these
functions in extension functions is a valuable technique: the
extension programmer can always experiment with the function to
be used by invoking it in the normal interactive (i.e., via
keystroke) way to determine details of its behavior.

Page 18

I

I._,,

Here is a simple example of an extension function based upon
commands normally available through the keyboard. Its name is
"bracket-word", and it places the word at which the cursor
points in angle brackets:

(define-command bracket-word
&documentation ''Puts angle brackets around the word
at which the cursor points."
(forward-word)
(insert-string ">")
(backward-w.ord)
(insert-string "< 11))

The funct i,on "insert-string" has the same ef feet as the
interactive user typing a sequence of self inserting (trivial,
printing) characters. The invocations of forward-word and
backward-word position the current point prior to the insertions
of the character strings. The end result of running this
function would be the same as if the user had typed Escape-F
(which inVokes forw~rd-word), a right-angle-bracket, Escape-B
(which invokes backward-word), and a left angle bracket. The
net result on the buffer (and the screen) is the same. However,
the intermediate states which would be visible to the ~ser
typing the above sequence will not be visible on the screen when
this extension is run, only the final state will be. This is
because the interactive driver invokes the redisplay after each
command character is typed, but this function (as is visible by
inspection) does not invoke the redisplay, it invokes only what
it is seen to invoke.

The most common extension environ~ent macro is
"save-excursion", which is used to remember the location of the
current point, and restore it after the execution of the
included ~ode within the macro. For example, the following
extension function places a star at the beginning of the current
line, but leaves the cursor at the same place at the current
line: (Bear in mind that the position is remembered via a mark,
which is relocated automatically as the buffer text changes)

(define-command put-star-at-beginning-of-line
(save-excursion

(go-to-beginning-of-line)
(insert-string "*")))

The "save-excursion" macro encompassing the invocations of
go-to-beginning-of-line· and insert-string ensure that the
current point will restored after these functions run. Another
similar macro, save-excursion-buffer, is used to restore the
selection of buffer during its dynamic scope. As switching out
of a buffer saves the location of the current point within that
buffer, save-excursion-buffer subsumes the task of saving the
point within that buffer.

Another set of very common macros in extension writing are
those dealing with marks, providing for the creation thereof,
and freeing· at the end of the contained code. The macro

I

I
~i

t •
I
-!

..
!

execution time: that mark will denote the point in the buffer
which is current at the time the code contained in the macro
begins execution. The following extension function deletes two
words forward from the current point:

,.. (define-command delete-two-words-forward .,.
(with-mark here

(forward-word)
(forward-word)
(wipe-point-mark here)))

When delete-two-words-forward is invoked, a mark designating the
current point in the buffer is created, and assigned to the
local variable named "here". The generation of the mark and the
local variable are all artifacts of the ''with-mark" macro. The
two calls to forward-word are then executed, presumably moving
the buffer point (but not the saved mark) two words forward in
the buffer, and then the function wipe-point~mark is invoked,
passing that mark as an argument. The function wipe-point-mark
deletes all tex-t between the current buffer point and the point
designated by the mark (saving it, incidentally, for possible
user recovery). At the end of execution of
delete-two-words-forward, the mark created by the macro is
freed.

Another class of Emacs extension environment macro~ are
those used to supplement (or reimplement) features in MacLisp
thought to be inadequate, either for learning purposes, or
ill adapted to the extension environment. For example, the
extension documentation teaches the use of the "if" macro as
opposed to the native MacLisp "cond" as the fundamental
conditional construct. "if" is much simpler and
straightforward, suffices for almost all cases, and is similar
to the conditional construct in almost all languages other than
Lisp. The native MacLisp "cond" is much 'more general and
powerful, but this power is not often neede~, and seems to have
presented a stumbling block to those learning Lisp. Another
macro of this class is "do-forever", and its exit form,
"stop-doing". The native MacLisp "do" has two forms, one like
the FORTRAN "do", and the other a powerful multi-variable
generalization of this. Most often, the extension writer wants
to iterate not over integer variables, b.ut over buffe.r lines. or
characters: the iteration variable is thus the global editor
state, and th~ need to specify or deal with variables which
are almost never needed is un.desirable. ·"if" and· "do-forever"
are illustrated by the following extension function, which
either finds the first blank line of the buffer or complains if
there are none:

Page 20

(define-command find-first-blank-line
&documentation "Moves cursor to the first blank line of
the buffer."
(go-to-beginning-of-buffer)
(do-forever

(if (line-is-blank)
(stop-doing))

(if (lastlinep)(display-error "No blank lines!"))
(next-line)))

The form "(stop-doing)", if executed, causes control to exit the
"do-forever" form. The function "lastlinep" (the suffix "p" is
traditional Lisp nomenclature for predicates) tests for the
current point being on the last line of the buffer. The
function "display-error" causes an error message to be printed
at the bottom of the screen, and a non-local transfer of control
out of find-first-blank-line;- aborting its execution. This
non-local control transfer provides the reason that a
"stop-doing" is not needed after the call to display-error.

Experience with the extension language has shown that its
meaning is so transparent that the underlying Lisp is all but
invisible: the emphasis of Lisp shifts from its data world to
its being a formalism for organizing function invo~ation.

..

;

i

I
i
i
I

i

I
I

I
~I

I !

